Nauka To Lubię

Oficjalna strona Tomasza Rożka

Autor: Tomasz Rożek

Czerwony wulkan

Przeglądając internet, mignęło mi zdjęcie z powierzchni Marsa. Zdjęcie największego w Układzie Słonecznym wulkanu. Gdyby był na Ziemi, stożek pokryłby prawie całą Francję. Olympus Mons – prawdziwa Góra Olimp.

Przeglądając internet, mignęło mi zdjęcie z powierzchni Marsa. Zdjęcie największego w Układzie Słonecznym wulkanu. Gdyby był na Ziemi, stożek pokryłby prawie całą Francję. Olympus Mons – prawdziwa Góra Olimp.

Do niedawna uważano, że Mars od (niemal) zawsze jest martwy geologicznie. Niemal, znaczy od bardzo długiego czasu. Ale być może ta planeta wygasłych wulkanów, jeszcze tętniła (geologicznym) życiem jeszcze kilkadziesiąt milionów lat temu. To w skali geologicznej okres dość bliski. Być może płynęła tam lawa, a wulkany wyrzucały w przestrzeń pył i głazy. Do takich wniosków doszli badacze, którzy analizowali np. dane z sondy Mars Global Surveyor (MGS). Badacze z Planetary Science Institute w Tucson w Arizonie oraz z Uniwersytetu w Arizonie wiek lawy na zboczach wulkanu Elysium Mons ocenili na około 20 milionów lat. W innych miejscach lawa może być jeszcze młodsza. Trudno – bez pobrania próbek – oceniać dokładny wiek lawy. Pozostaje szacowanie.

Wspomniany wulkan Elysium Mons mierzy 700 kilometrów średnicy i ok. 13 kilometrów wysokości. W porównaniu z ziemskimi wulkanami, a nawet z najwyższymi szczytami, to gigant. Ale w porównaniu z innymi wulkanami na Marsie, to zaledwie średniak. Bo na przykład wulkan Olympus Mons ma aż 27 kilometrów wysokości ponad otaczającą go równinę (prawie 3 razy więcej niż Mont Everest). To największy – znany – wulkan w Układzie Słonecznym. Naukowcy oceniają, że wygasł około 100 milionów lat temu. I choć – z oczywistych względów – nie ma żadnych zdjęć z tamtego okresu, sama jego obserwacja daje całkiem sporo informacji. To, że jego zbocza są nachylone pod bardzo małym kątem (średnio 5 st) oznacza, że wyciek lawy był bardzo powolny i długotrwały. Nie jest wykluczone, że kiedyś wystawał z dna dużego zbiornika z wodą, bo stożek u podstawy zakończony jest skarpą o wysokości nawet 6 kilometrów. Na szczycie wulkanu znajduje się ogromny krater o średnicy około 70 kilometrów i głębokości 3 kilometrów.

Dlaczego na Marsie wulkany są znacznie wyższe niż te na Ziemi? Mars jest planetą mniejszą a więc jego wewnętrzna energia wyczerpała się dość szybko. Ziemia we wnętrzu ma wciąż bardzo dużo energii. To wychładzanie miało swoje ogromne konsekwencje. Jedną z nich był zanik pola magnetycznego planety i zniknięcie tarczy. To mogło spowodować zdmuchnięcie atmosfery Marsa i wyparowanie całej znajdującej się na powierzchni wody. Inną konsekwencją mogło być zatrzymanie ruchu płyt kontynentalnych. Na Ziemi erupcje nawet najbardziej aktywnych wulkanów trwają – w geologicznej skali – bardzo krótko. Na Marsie raz otwarty „kanał” mógł być drożny przez długi czas. Gdy wulkan zaczął „wylewać” lawę, ten proces nie miał końca. Być może właśnie dlatego stożki wulkanów na Czerwonej Planecie są tak wysokie. To jednak tylko nasze przypuszczenia. O aktywności wewnętrznej innych planet, nie wiemy zbyt wiele.

Brak komentarzy do Czerwony wulkan

Osiągnięcia Polskiej Nauki 2016

W najbliższych tygodniach na facebookowym fanpage Nauka. To Lubie będę opisywał kolejne odkrycia, które zostały uznane za największe osiągnięcia polskiej nauki w 2016 roku. Całą publikację możecie ściągnąć TUTAJ >>>…

W najbliższych tygodniach na facebookowym fanpage Nauka. To Lubie będę opisywał kolejne odkrycia, które zostały uznane za największe osiągnięcia polskiej nauki w 2016 roku. Całą publikację możecie ściągnąć TUTAJ >>>

Publikacja powstała w Ministerstwie Nauki i Szkolnictwa Wyższego.

2 komentarze do Osiągnięcia Polskiej Nauki 2016

Spór jest „po coś”

Prawdziwą rolę sporu doceniłem dopiero pracując naukowo. Gdy spory są „po coś”, mogą budować. Te „po nic” są do niczego. Marnują na nie energię i potencjał. No i czas, którego nie uda się już odzyskać. W końcu nigdy nie masz tyle racji, by twój rozmówca nie miał jej choć troszeczkę.

Prawdziwą rolę sporu doceniłem dopiero pracując naukowo. Gdy spory są „po coś”, mogą budować. Te „po nic” są do niczego. Marnują energię i potencjał. No i czas, którego nie uda się już odzyskać. W końcu nigdy nie masz tyle racji, by twój rozmówca nie miał jej choć troszeczkę.

Pamiętam swoją pierwszą konferencję naukową. Zawsze myślałem, że spotkania naukowców są nudne. No bo czym się tu ekscytować? Przecież oni wszyscy się znają. Wielu z nich razem pracuje. Zwykle prezentują wyniki badań, które albo zostały już opublikowane, albo – przynajmniej w dużej części – omówione. Konferencja w Krakowie (ta pierwsza na której byłem dotyczyła chemii jądrowej) była jednak zupełnie inna. Ci ludzie się tam kłócili! Nie była to jednak zwykła awantura. To był spór, w którym padały argumenty.

Po tej pierwszej, byłem na dziesiątkach różnych konferencji. W Polsce (te u nas nazwałbym łagodnymi), za granicą, na takich, które gromadziły setki uczestników i takich kameralnych na kilkanaście osób. Na konferencjach nie chodzi o to by podzielić się wynikami swoich badań czy opowiedzieć o swojej nowej koncepcji (hipotezie). Temu służą publikacje naukowe. Tutaj chodzi o to, by to co się zmierzyło, zbadało i wyliczyło, skonfrontować z innymi. Głownie z tymi, którzy zajmują się czymś podobnym. Spór – na konferencjach naukowych – jest po coś. Coś z niego wynika. Bez niego, bez wymiany poglądów, myśli czy pomysłów nie ma rozwoju i grozi nam dreptanie w miejscu. Nie raz byłem świadkiem sporów, które kończyły się zawiązywaniem nowych kolaboracji, czyli grup naukowych. Nie raz gorąca dyskusja pomiędzy naukowcami była pierwszym krokiem do podpisania umowy o współpracy pomiędzy instytucjami naukowymi. – Ok, twierdzisz, że wyciągam złe wnioski z tego co wyliczyłem? Twierdzisz, że popełniłem jakiś błąd? W porządku, usiądźmy razem, policzmy to wspólnie. Zobaczymy który z nas się myli.

Szkoda, że spory z których coś wynika tak rzadko pojawiają się poza salami wykładowymi i centrami konferencyjnymi. Szkoda, że tak rzadko pojawiają się np. w życiu publicznym, w tym na internetowych forach. Tam królują spory „po nic”. Po nic, czyli do niczego. Nie chodzi w nich o skonfrontowanie się z inaczej myślącymi. Chodzi o to by się spierać dla samego spierania. Tak jest łatwiej! Spór merytoryczny wymaga przemyślania swoich racji, wymaga przygotowania argumentów, wymaga poświęcenia czasu interlokutorowi. A co jak racje zmienia się, w zależności od miejsca w którym się siedzi? A co jak nie ma się żadnych sensownych argumentów albo z intelektualnego lenistwa nie chce się ich uporządkować? A co jak interlokutora ma się za zdrajcę, kurdupla, agenta albo nieudacznika? W skrócie za człowieka gorszego sortu? Nie warto poświęcać mu czasu – logiczne, prawda? No to mamy gonienie króliczka po to by go gonić, a nie po to by go złapać. No to mamy prężenie muskułów przed kamerami albo na mównicach, zamiast prężyć szare komórki w mózgu na spotkaniach roboczych. Ile my marnujemy czasu i energii na spory „po nic”… Tego czasu nam już nikt nie zwróci.

Mój profesor, bardzo znany fizyk, Walter Oelert, człowiek, który jako pierwszy na świecie „wyprodukował” atom antymaterii dbał o to, żeby jego doktoranci regularnie dzielili się wynikami swoich pomiarów, żeby każdy miał czas na wspólne dyskutowanie. Tylko tak da się uprawiać naukę. Konfrontując się, argumentując i ścierając. W końcu nigdy nie masz tyle racji, by twój rozmówca nie miał jej choć troszeczkę.

Tomasz Rożek

3 komentarze do Spór jest „po coś”

Planety z innej galaktyki!

Naukowcom z Uniwersytetu w Oklahomie (USA) udało się znaleźć planety, które znajdują się poza galaktyką Drogi Mlecznej. To pierwsze takie odkrycie w historii.

Po raz kolejny pokazano jak potężną metodą badawczą jest mikrosoczewkowanie grawitacyjne. Naukowcy z University of Oklahoma, korzystając z danych zebranych przez orbitalny teleskop Chandra, po raz pierwszy w historii odkryli planety pozasłoneczne w innej galaktyce niż nasza Droga Mleczna. Te które znaleziono znajdują się w galaktyce odległej od nas o 3,8 miliarda lat świetlnych. Odkrycie zostało opisane w Astrophysical Journal Letters.

Mikrosoczewkowanie  grawitacyjne to jedna z kilku metod poszukiwania obiektów, które same nie są źródłem światła, ale same „zniekształcają” jego bieg. To też metoda, której udoskonalenie zawdzięczamy polskim uczonym z grupy profesora Andrzeja Udalskiego.

Promień światła niekoniecznie musi poruszać się po linii prostej. Gdy biegnie przez wszechświat i przelatuje w pobliżu dużej masy, zmienia swój bieg. Polscy uczeni tę metodę zastosowali w skali mikro. Tą masą, która ugina promień światła może być np. planeta. Metodą mikrosoczewkowania można odkrywać nawet planety mniejsze od Ziemi. Żadną z pozostałych znanych metod nie potrafimy wykrywać tak małych globów.

Uginanie promieni światła pod wpływem masy postulował Albert Einstein w opublikowanej w 1916 roku Ogólnej Teorii Względności . Eksperymentalnie ten efekt potwierdzono dopiero w 1979 roku, na podstawie obserwacji kwazaru Q0957+561. Dzisiaj mikrosoczewkowanie pomaga łowić planety, a soczewkowanie grawitacyjne pomaga ocenić np. rozkład ciemnej materii we wszechświecie. Czym większa masa, tym ugięcie światła będzie większe, ale nawet to bardzo subtelne, jest przez astronomów (a w zasadzie zaawansowane urządzenia astronomiczne) zauważalne.

A wracając do odkrytych planet. Zbyt wiele o nich nie wiadomo, poza tym, że ich masa mieści się pomiędzy masą Księżyca i Jowisza. Co więcej, na razie nie zanosi się na to, by dało się w jakikolwiek sposób powiększyć wiedzę o nowych planetach. Nie znamy technologii, która by to umożliwiała. – Ta galaktyka znajduje się 3,8 miliarda lat świetlnych stąd i nie ma najmniejszej szansy na obserwowanie tych planet bezpośrednio, nawet z najlepszym teleskopem, jaki można sobie wyobrazić w scenariuszu science fiction. Jednak jesteśmy w stanie je badać, odkrywać ich obecność, a nawet mieć wyobrażenie o ich masach – powiedział Eduardo Guerras, członek grupy badawczej, która dokonała odkrycia.

Wiele lat temu intuicja podpowiadała, że Układ Słoneczny nie może być jedynym miejscem w którym znajdują się planety. I rzeczywiście, badania polskiego astrofizyka, prof. Aleksandra Wolszczana z początku lat 90tych XX wieku pokazały, że Słońce nie jest jedyną gwiazdą z planetami. Dzisiaj planet innych niż słoneczne znamy wiele tysięcy. Ta sama intuicja podpowiadała, że w innych galaktykach niż nasza Droga Mleczna także muszą istnieć planety. No i właśnie – po raz pierwszy – takie odkryto.

 

Więcej informacji:

http://www.ou.edu/web/news_events/articles/news_2018/ou-discover-planets.html

http://iopscience.iop.org/article/10.3847/2041-8213/aaa5fb

For the First Time Ever, Scientists Found Alien Worlds in Another Galaxy

3 komentarze do Planety z innej galaktyki!

Robimy krzywdę naszym dzieciom

Dzieci w ostatnich klasach szkół podstawowych są przeciążone pracą. Nie mają czasu na pogłębianie swoich zainteresowań. Chcielibyśmy, żeby ciekawość dodawała im skrzydeł, tyle tylko, że ich plecaki są tak ciężkie, że nie sposób oderwać się z nimi od twardej ziemi.

Dzieci w ostatnich klasach szkół podstawowych są przeciążone pracą. Nie mają czasu na pogłębianie swoich zainteresowań. Chcielibyśmy, żeby ciekawość dodawała im skrzydeł, tyle tylko, że ich plecaki są tak ciężkie, że nie sposób oderwać się z nimi od twardej ziemi.

Kiedyś postanowiłem zapytać kilka osób o źródło ich pasji. Pisałem wtedy książkę o wybitnych polskich naukowcach, o badaczach, którzy uprawiają naukę na światowym poziomie. Co otworzyło ich głowy? Co napędzało ich do zdobywania wiedzy? Co spowodowało, że zainteresowali się genetyką, meteorologią, medycyną, fizyką,…? Okazało się, że za każdym razem była to książka. Nie szkoła, tylko książka wykraczająca poza szkolny program. Czasami podarowana przez rodziców, czasami znaleziona w bibliotece, czasami otrzymana jako nagroda w jakimś konkursie.

Szkoła może człowieka zainspirować, ale sama szkoła to za mało, żeby podtrzymać tę inspirację. Historie naukowców z którymi rozmawiałem były niemal identyczne. Najczęściej książkę, która jak się później okazywało miała wpływ na kierunek rozwoju zawodowego, ci ludzie dostawali gdy byli jeszcze w szkole podstawowej. To wtedy rodzą się pasje, które – jeżeli odpowiednio prowadzone i podsycane – pozostają na całe życie. Po latach nie pamiętamy prawych dopływów Wisły, długości głównych rzek w Polsce czy rodzajów gleb. Po latach pamiętamy okładkę książki, która zmieniła sposób w jaki postrzegamy świat. Pamiętamy rozkład ilustracji na poszczególnych stronach i kolor grzbietu.

Rozmowy z naukowcami o książkach przypominają mi się za każdym razem, gdy muszę swoim dzieciom zabraniać czytania książek. Czy dobrze robię? Uczniowie w 7 klasie mają w tygodniu 38 godzin lekcji. To prawie tyle ile etat dorosłego człowieka. Ja w ich wieku miałem w tygodniu o około 10 godzin mniej! Po powrocie do domu, dzieci muszą odrobić zadania domowe i przygotować się do sprawdzianów i kartkówek na kolejne dni. Ich plecaki są tak ciężkie, że około czwartku słyszę, że bolą je już plecy. Gdy kolejny dzień wracają o 15:30, znowu po ośmiu lekcjach, wyglądają nie jak dzieci, tylko jak cyborgi. Nie mają nawet siły na to, żeby pobiegać. Czy w Ministerstwie Edukacji naprawdę nie ma nikogo kto wie, że taki wysiłek jest ponad dziecięce możliwości? Gdy chcą psychicznie odpocząć, gdy chcą zrobić coś innego niż nauka i przeglądanie zeszytów – przynajmniej moje dzieci – biorą do ręki książkę. Tyle tylko, że w trakcie tygodnia wybór jest prosty. Jak będą czytały, nie zdążą się nauczyć na sprawdzian. Albo będą rozwijały pasje, albo będą – często tylko pamięciowo – przyswajały szkolne informacje. W takim trybie nie ma czasu na naukę instrumentu, na kółka zainteresowań czy pójście do muzeum. W takim trybie nie ma czasu na zabawę. Naprawdę nie wiecie państwo z Ministerstwa, że zabawa rozwija? W takim trybie z trudem udaje się znaleźć czas na dodatkowy angielski. Ale tylko wtedy, gdy obiad będzie zjedzony w biegu, niemalże na stojąco.

Czego oczekujemy od młodego człowieka? Tego, żeby umiał czy tego, żeby rozumiał? Tego, żeby ciekawość dodawała mu skrzydeł, czy tego, żeby plecak pokrzywił mu kręgosłup? Chcemy tworzyć armię zmęczonych robotów czy nowoczesne społeczeństwo ciekawych świata ludzi, którzy z pasją budują rakiety, badają geny, piszą wiersze i odkrywają nowe lądy? Czy ktokolwiek w Ministerstwie Edukacji zadaje sobie takie pytania? Robimy krzywdę naszym dzieciom.

Tomasz Rożek

 

Tekst ukazał się w tygodniku Gość Niedzielny

26 komentarzy do Robimy krzywdę naszym dzieciom

Karmienie piersią zmniejsza ryzyko cukrzycy

Karmienie dziecka piersią przez ponad sześć miesięcy niemal o połowę obniża u kobiety ryzyko zachorowania na cukrzycę typu 2 – wykazało trwające 30 lat badanie, które publikuje pismo “JAMA Internal Medicine”.

Karmienie dziecka piersią przez ponad sześć miesięcy niemal o połowę obniża u kobiety ryzyko zachorowania na cukrzycę typu 2 – wykazało trwające 30 lat badanie, które publikuje pismo “JAMA Internal Medicine”.

„Zaobserwowaliśmy bardzo silną zależność między okresem, w którym kobieta karmi piersią, a spadkiem ryzyka rozwoju cukrzycy, nawet po uwzględnieniu wszystkich możliwych czynników ryzyka” – skomentowała kierująca badaniami dr Erica P. Gunderson z Kaiser Permanente Division of Research w Oakland (Kalifornia, USA).

Jej zespół przeanalizował dane zebrane wśród 1238 kobiet, uczestniczek badania na temat czynników ryzyka rozwoju choroby wieńcowej – Coronary Artery Risk Development in Young Adults (CARDIA). W momencie włączenia do niego panie były w wieku od 18. do 30 lat i żadna z nich nie miała cukrzycy. W ciągu kolejnych 30 lat, kiedy śledzono stan ich zdrowia, każda kobieta urodziła co najmniej jedno dziecko oraz była poddawana badaniom w kierunku cukrzycy (do siedmiu razy w ciągu całego badania). Uczestniczki udzielały też informacji na temat stylu życia – w tym diety i aktywności fizycznej oraz na temat okresu, w którym karmiły piersią swoje dziecko. W analizie uwzględniono czynniki ryzyka zachorowania na cukrzycę występujące u nich przed ciążą, takie jak otyłość, poziom glukozy na czczo, styl życia, historia występowania cukrzycy w rodzinie, a także zaburzenia metabolizmu podczas ciąży.

Kobiety, które karmiły piersią przez ponad sześć miesięcy były o 47 proc. mniej narażone na rozwój cukrzycy typu 2 w późniejszych latach, w porównaniu z tymi, które nie karmiły wcale. U pań karmiących sześć miesięcy lub krócej spadek ryzyka był mniejszy – o 25 proc.

Długofalowe korzyści z karmienia piersią były widoczne zarówno u kobiet rasy białej, jak i czarnej, niezależnie od tego, czy wystąpiła u nich cukrzyca ciążowa (która zwiększa ryzyko zachorowania na cukrzycę typu 2 w przyszłości). U kobiet rasy czarnej trzykrotnie częściej rozwijała się cukrzyca w ciągu 30 lat badania, jednocześnie rzadziej karmiły one piersią niż kobiety rasy białej.

„Częstość zachorowania na cukrzycę spadała stopniowo wraz z wydłużaniem się okresu karmienia piersią, niezależnie od rasy, wystąpienia cukrzycy ciążowej, stylu życia, rozmiarów ciała i innych metabolicznych czynników ryzyka ocenianych przed ciążą, co sugeruje biologiczny charakter mechanizmu leżącego u podłoża tej zależności” – skomentowała dr Gunderson.

Naukowcy uważają, że może chodzić m.in. o wpływ hormonów produkowanych podczas laktacji na komórki trzustki, które wydzielają insulinę i w ten sposób regulują poziom glukozy we krwi.

Wiedzieliśmy od dłuższego czasu, że karmienie piersią daje wiele korzyści zarówno matce, jak i dzieciom” – przypomniała niebiorąca udziału w badaniu Tracy Flanagan, dyrektor oddziału ds. zdrowia kobiet w Kaiser Permanente Northern California.

Badania wskazują na przykład, że kobiety, które karmiły dziecko piersią są mniej zagrożone zachorowaniem na raka piersi, z kolei dzieci karmione mlekiem mamy są w przyszłości mniej narażone na alergie i astmę, choroby serca, nadciśnienie, otyłość i inne zaburzenia metabolizmu.

W opinii Flanagan wyniki najnowszego badania dostarczają kolejnego argumentu, dla którego „lekarze, pielęgniarki, a także szpitale i decydenci, powinni wspierać kobiety w tym, by karmiły piersią tak długo, jak to możliwe”. (PAP)

Brak komentarzy do Karmienie piersią zmniejsza ryzyko cukrzycy

RNA w 3D

Już 1 mln razy badacze i osoby z całego świata wykorzystały RNAComposer – publicznie dostępny, skuteczny poznański system do modelowania struktury 3D RNA. A to nie jedyny polski sukces w badaniach nad wyznaczaniem struktury RNA.

Już 1 mln razy badacze i osoby z całego świata wykorzystały RNAComposer – publicznie dostępny, skuteczny poznański system do modelowania struktury 3D RNA. A to nie jedyny polski sukces w badaniach nad wyznaczaniem struktury RNA.

RNA to cząsteczki kwasu rybonukleinowego. Bez nich komórka nie mogłaby produkować białek – cząsteczek, które są istotne dla budowy i funkcjonowania komórek. Rodzajów RNA jest sporo i pełnią one w komórce różne funkcje.

I tak np. matrycowe RNA są pośrednikami, dzięki którym z DNA daje się wyciągnąć informacje – przepis na białka. Z rybosomowych RNA zbudowane są rybosomy – komórkowe centra produkcji białek. A transferowe RNA mają przynosić do tych centrów odpowiednie aminokwasy – jednostki budulcowe białek.

Model struktury 3D RNA wirusa Zika wygenerowany przez RNAComposer na podstawie sekwencji. Obecnie struktura ta jest już określona eksperymentalnie i jest zdeponowana w bazie struktur PDB. Źródło: Marta Szachniuk

 

Cząsteczkę RNA tworzy zwykle nić składająca się z połączonych ze sobą reszt nukleotydowych (w skrócie: A, C, G, U). Nawet jeśli rozszyfruje się ich kolejność w łańcuchu RNA, czyli określi sekwencję, nie jest pewne, jak cała cząsteczka układa się w przestrzeni. Bo cząsteczki RNA – w przeciwieństwie do kabla od słuchawek wrzuconych do plecaka – nie zwijają się w przypadkowe supły. Istnieją pewne reguły, które pozwalają przewidzieć, jaki kształt przybierze dana cząsteczka. W rozwikłaniu tego zagadnienia pomocne okazują się komputerowe metody do przewidywania struktur 3D RNA.

Dr hab. Marta Szachniuk wspólnie z zespołem prof. Ryszarda Adamiaka z Instytutu Chemii Bioorganicznej PAN w Poznaniu opracowała darmowy, publicznie dostępny system RNAComposer. Do systemu wprowadza się sekwencję RNA (lub informację o oddziaływaniach między resztami nukleotydowymi, czyli tzw. strukturę drugorzędową), a on w ciągu kilku/kilkunastu sekund oblicza i prezentuje trójwymiarowy model cząsteczki. Program sprawnie radzi sobie zarówno z krótkimi, jak i bardzo długimi łańcuchami cząsteczek RNA o skomplikowanej architekturze. – Wielu naukowców z całego świata używa programu RNAComposer, żeby uzyskiwać pierwsze wyobrażenie tego, jak wyglądać może w 3D cząsteczka, którą badają. Nasz system od 2012 r. wykonał już 1 mln predykcji” – opowiada dr hab. Marta Szachniuk.

To nie jest jedyny system informatyczny do predykcji struktury 3D RNA. Takich automatycznych systemów jest kilka. Poza tym przewidywaniem struktur RNA zajmują się zespoły badawcze wspomagające się badaniami eksperymentalnymi.

Aby porównać skuteczność różnych metod wyznaczania kształtu RNA w przestrzeni 3D, od 2010 roku organizowany jest konkurs RNA-Puzzles. Chodzi w nim o to, by mając zadaną sekwencję RNA, jak najdokładniej wyznaczyć strukturę cząsteczki. Modele przewidziane przez uczestników konkursu porównywane są następnie z wynikami eksperymentów chemicznych i biologicznych prowadzących do określenia struktury. Konkurs organizowany jest obecnie w dwóch kategoriach: serwerów, które automatycznie generują wyniki, oraz w kategorii predykcji ludzkich, gdzie modele powstają w wyniku integracji obliczeń komputerowych i eksperymentów laboratoryjnych. „Jesteśmy najlepsi w kategorii automatycznych systemów do predykcji 3D RNA” – podkreśla dr Szachniuk.

System RNAComposer powstał dzięki temu, że od dekady zespół z ECBiG skrzętnie gromadził ogromną bazę danych dotyczących RNA. W bazie RNA FRABASE zebrano informacje z ogromnej liczby eksperymentów. Takich, z których można było wyciągnąć wnioski o strukturze przestrzennej molekuł RNA. Baza ta jest ciągle aktualizowana i każdy może z niej bezpłatnie skorzystać. „To popularne narzędzie. Wiemy nawet, że na zagranicznych uczelniach korzystają z niej np. studenci w ramach badań i studiów przygotowujących do zawodu bioinformatyka czy biologa” – opowiada dr Szachniuk. Baza ta pomaga m.in. wyszukiwać czy w różnych cząsteczkach powtarzają się jakieś konkretne przestrzenne wzorce.

Polska na światowej mapie badań nad strukturą RNA jest widoczna także dzięki badaniom innych zespołów. Ważną postacią jest tu m.in. prof. Ryszard Kierzek z Instytutu Chemii Bioorganicznej PAN w Poznaniu. Jego prace pozwoliły określić termodynamiczne reguły fałdowania RNA. Nowatorskimi badaniami nad wyznaczaniem struktury RNA zajmuje się również zespół prof. Janusza Bujnickiego z Międzynarodowego Instytutu Biologii Molekularnej i Komórkowej w Warszawie.

PAP – Nauka w Polsce

1 komentarz do RNA w 3D

Fajerwerki – gra świateł

Podobno czarny proch wymyślili Chińczycy. Nie po to jednak by używać go na polu walki, ale by się nim bawić. Jak ? Budując sztuczne ognie.

Pierwsze fajerwerki budowano by odstraszać złe duchy. Spalano suszone łodygi bambusowe by wydawały charakterystyczne trzaski. Później wypełniano je różnymi substancjami. Rozrywka zaczęła się wraz z rozwojem chemii. A właściwie nie tyle rozwojem ile świadomością. Odkrywano coraz to nowe substancje czy związki, których wcześniej nikt nie podejrzewał o wybuchowe konotacje. Dziś wiele z nich znaleźć można w petardach, bombkach czy rakietach. W Polsce pokazy sztucznych ogni odbyły się po raz pierwszy w 1918 r., kilka dni po ogłoszeniu niepodległości. Trwały wtedy zaledwie 3 minuty. Pierwsze znane pokazy sztucznych ogni zorganizowano na dworze cesarskim w Chinach w roku 468 p.n.e.

>>> Więcej naukowych ciekawostek na FB.com/NaukaToLubie

To wszystko fizyka …

Wybuchające na niebie sztuczne ognie to jedna z lepszych ilustracji tzw. zasady zachowania pędu. To dokładnie ta sama reguła, która tłumaczy dlaczego wyskakując z pokładu łódki na brzeg czy molo powodujemy, że łódka zaczyna odpływać. No właśnie, dlaczego ? Bo – jak powiedziałby fizyk – w układzie w którym nie działają siły zewnętrzne, pęd układu musi zostać zachowany. Oczywiście w wyżej opisanym przykładzie z łódką i jej pasażerem działają siły zewnętrzne – siły oporu, ale są one małe i można je pominąć. Tak więc jeżeli pasażer łódki wskakuje z jej pokładu na molo – łódka zaczyna się poruszać w przeciwnym kierunku. Można by powiedzieć, że ruch łódki równoważy ruch jej pasażera. Im z większym impetem wyskoczy on z łódki, tym szybciej sama łódka zacznie odpływać w przeciwnym kierunku. Co to wszystko ma wspólnego z fajerwerkami ? Człowiek płynący na łódce to układ składający się z dwóch elementów. Petarda rozrywana nad naszymi głowami, to układ składający się z setek a może nawet tysięcy elementów. Ilość nie gra jednak tutaj roli. Fizyka pozostaje taka sama. Każdy wybuch jest w pewnym sensie symetryczny. Jeżeli kawałek petardy leci w prawo, inny musi – dla równowagi – lecieć w lewo. Jeden do przodu, to inny do tyłu. W efekcie malujące się na ciemnym niebie wzory mają kształty kul, okręgów czy palm. Zawsze są jednak symetryczne. Zawsze takie, że gdyby potrafić cofnąć czas, wszystkie te ogniste stróżki spotkałyby się w punkcie znajdującym się dokładnie w środku, pomiędzy nimi.

… czy może chemia ?

Najczęściej występującą barwą na pokazach sztucznych ogni jest pomarańcz i czerwień. Pojawiają się też inne kolory. Skąd się biorą ? Wszystko zależy od tego z czego zrobiona, a właściwie z dodatkiem czego zrobiona jest petarda. Jej zasadnicza część to środek wybuchowy, ale czar tkwi w szczegółach. I tak, za często występujący pomarańcz i czerwień odpowiedzialny jest dodany do materiału wybuchowego wapń i bar. Inny pierwiastek – stront powoduje, że eksplozja ma kolor żółty, z kolei związki boru i antymon, że zielony. Ale to dopiero początek kolorowej tablicy Mendelejewa. Bo płomienie może barwić także rubid – na kolor żółto fioletowy, cez na kolor fioletowo-niebieski i bar na kolor biały. Potas spowoduje, że niebo stanie się liliowe, a miedź, że niebieskie. W produkcji fajerwerków wszystkie chwyty są dozwolone – o ile wykonuje je specjalista pirotechnik. Bo o efekt toczy się gra. Tak więc mieszanie poszczególnych związków jest nie tyle wskazane, ile wręcz pożądane. Jedno jest pewne. Specjalista spowoduje, że w czasie pokazu na niebie będzie można podziwiać więcej barw niż w łuku tęczy. Będą się pojawiały dokładnie w tym momencie, w którym chce je przedstawić twórca sztucznych ogni. Niebo z liliowego, przez zielony może stać się krwisto czerwone, aż na końcu spłonie intensywnym pomarańczem. A wszystko wg wyliczonego co do ułamka sekundy scenariusza. Ale czy na pewno tylko o kolory chodzi ? Co z dymem ? Co z hukiem ?

>>> Więcej naukowych ciekawostek na FB.com/NaukaToLubie

To sztuka!

Prawdziwy mistrz dba nie tylko o efekty wizualne, ale także dźwiękowe w czasie pokazu fajerwerków.  Żeby petarda zdrowo nadymiła trzeba zaopatrzyć się w zapas chloranu potasu, laktozę i barwniki – w zależności od oczekiwanego koloru dymu. Petardy błyskowe będą wypełnione magnezem, a hukowe i świszczące będą zawierały duże ilości nadchloranów i soli sodu i potasu. Można też wyprodukować mieszaninę iskrzącą, a wtedy przyda się węgiel drzewny albo oświetlającą. W praktyce – szczególnie w ładunkach profesjonalnych – różnego rodzaju mieszanki stosuje się razem. Nie wszystkie, w jednym worku, ale ułożone w odpowiedniej kolejności.

Można zapytać jak zadbać o chronologię w czasie trwającej ułamki sekund eksplozji ? To jest właśnie sztuka. Ładunek pirotechniczny wygląda trochę jak cebula. Składa się z wielu warstw. Petarda najpierw musi wznieść się w powietrze. Ani nie za wysoko, ani za nisko. W pierwszym wypadku efekt wizualny będzie marny, a w drugim – gdy wybuchnie zbyt blisko widzów – może dojść do tragedii. Prawdziwa magia zaczyna się, gdy ładunek jest już wysoko nad głowami. Poszczególne warstwy zapalają się od siebie i w zaplanowanej wcześniej kolejności wybuchają. Widz z zapartym tchem podziwia gęste kule rozrastającego się we wszystkich kierunkach różnokolorowego ognia, albo błysk i kilka opadających w bezwładzie długich ognistych języków. Gdy wszystko wydaję się być skończone, nagle pojawiają się migoczące gwiazdki, albo wirujące wokół własnych osi ogniste bombki. Po nich jest ciemność i cisza. Do następnej eksplozji, innej niż poprzednia. Innej niż wszystkie poprzednie.

Sztuczne ognie można sprowadzić do chemii materiałów wybuchowych. Można też powiedzieć, że są wręcz encyklopedycznym przykładem znanej każdemu fizykowi zasady zachowania pędu. Ale tak naprawdę sztuczne ognie to czary.

Kolory sztucznych ogni:

karminowy: lit, bar i sód

szkarłatny: bar 

czerwono-żółty: wapń i bar

żółty: stront, śladowe ilości sodu i wapnia

biały: cynk i bar

szmaragdowy: miedź i tal

niebiesko-zielony: związki fosforu ze śladowymi ilościami kwasu siarkowego lub kwasu borowego, związki miedzi

jaskrawy zielony: antymon

żółto-zielony: bar i molibden

lazurowy: ołów, selen i bizmut

jasnoniebieski: arszenik

fioletowy/liliowy: niektóre związki potasu z dodatkiem sodu i litu

purpurowy: potas, rubid i cez

2 komentarze do Fajerwerki – gra świateł

Pożary widziane z kosmosu

W Kalifornii od kilku tygodni szaleją pożary. Serwisy telewizyjne czy internetowe pełne są apokaliptycznych zdjęć, ale ja postanowiłem pokazać wam zdjęcia z kosmosu. Są straszne i… hipnotyzujące.

W Kalifornii od kilku tygodni szaleją pożary. Serwisy telewizyjne czy internetowe pełne są apokaliptycznych zdjęć, ale ja postanowiłem pokazać wam zdjęcia z kosmosu. Są straszne i… hipnotyzujące.

 

Pożary zniszczyły albo niszczą setki tysięcy hektarów lasu. W sumie z domów ewakuowano kilkaset tysięcy ludzi. Ogień dotarł już do Los Angeles, płonie dzielnica Bel Air na terenie której znajduje się kampus znanego na całym świecie Uniwersytetu Kalifornijskiego.

Pożary w tej części Stanów to żadna nowość, ale tegoroczne są szczególnie groźne, bo towarzyszy im suchy i gorący wiatr fenowy, który wieje w porywach z prędkością do 130 km/h. Taki wiatr w południowej Kalifornii wieje od października do marca, z północnego wschodu, od strony gór Sierra Nevada.

Wiatrem fenowym jest np. nasz wiatr halny, czyli ciepły, suchy i porywisty wiatr, wiejący ku dolinom. Taki wiatr powstaje na skutek różnic ciśnienia pomiędzy jedną a drugą stroną grzbietu górskiego. Po nawietrznej stronie grzbietu powietrze unosi się ochładzając oraz pozbywając się pary wodnej. Po stronie zawietrznej powietrze opada ocieplając się.

A wracając do pożarów w Kalifornii. W tym roku są one tak dotkliwe także dlatego, że wczesną wiosną w Kalifornii spadły wyjątkowo obfite deszcze. To spowodowało szybki wzrost niskiej roślinności porastającej zbocza. Od marca jest tam jednak susza. NASA szacuje, że mamy właśnie do czynienia z okresem dziesięciu najsuchszych miesięcy w historii Południowej Kalifornii. Od 10 miesięcy nie spadła tam nawet jedna kropla wody. Ta niska, bujna na wiosnę, ale teraz wysuszona na proch roślinność stała się doskonałą pożywką dla pożarów.

Dzisiaj w Kalifornii szaleje sześć dużych pożarów i kilka mniejszych. Spaliło się kilkaset domów i setki tysięcy hektarów lasu. Straty liczone są w setkach miliardów dolarów.

Zdjęcia w większości zostały zrobione przez spektroradiometr obrazu (MODIS) na pokładzie satelity NASA oraz Multi Spectral Imager (MSI) z satelity Sentinel-2 Europejskiej Agencji Kosmicznej.

A photo taken from the International Space Station and moved on social media by astronaut Randy Bresnik shows smoke rising from wildfire burning in Southern California, U.S., December 6, 2017. Courtesy @AstroKomrade/NASA/Handout via REUTERS ATTENTION EDITORS – THIS IMAGE HAS BEEN SUPPLIED BY A THIRD PARTY. – RC11C90C8420

Przy okazji, zapraszam do subskrypcji mojego kanału na YT ( youtube.com/NaukaToLubie ) i polubienia fanpaga na Facebooku ( facebook.com/NaukaToLubie )

Brak komentarzy do Pożary widziane z kosmosu

Mechanizm samobójczego naśladownictwa

Czyli inaczej efekt Wertera jest znany od wielu lat. Media powinny z wielką powściągliwością pisać o zbrodniach, aktach terroryzmu i samobójstwach. Inaczej biorą na siebie ciężar odpowiedzialności za naśladowców. 

Czyli inaczej efekt Wertera jest znany od wielu lat. Media powinny z wielką powściągliwością pisać o zbrodniach, aktach terroryzmu i samobójstwach. Inaczej biorą na siebie ciężar odpowiedzialności za naśladowców. 

Gdy w mediach pojawia się dużo relacji dotyczących samobójstwa, gdy z tematu robi się główną informację dnia, gdy osoby znane gratulują samobójcy odwagi i determinacji, wzrasta prawdopodobieństwo kolejnych tragedii. Niewiele rzeczy tak jasno jak efekt Wertera ilustruje ogromną odpowiedzialność mediów i pracujących w nich dziennikarzy. Ta odpowiedzialność leży także na naszych barkach. To przecież my linkujemy, komentujemy i udostępniających treści, za które jesteśmy odpowiedzialni.  Światowa Organizacja Zdrowia kilka lat temu stworzyła nawet dokument z wytycznymi dla dziennikarzy jak pisać o samobójstwach, tak, żeby nie prowokować naśladowców.

Statystycznie rzecz ujmując, wzrost samobójstw następujący kilka, kilkanaście dni od nagłośnienia analogicznej tragedii. Z badań wynika, że szczególnie wyraźnie jest widoczny, gdy samobójstwo popełni znana osoba (np. gwiazda filmowa), lub gdy czyn osoby popełniającej samobójstwo jest usprawiedliwiany. Efekt Wertera zauważono także w stosunku do terroryzmu. Czym więcej informacji a aktach terroru, tym częściej się one zdarzają. Gdy przeanalizowano ponad 60 tysięcy zamachów terrorystycznych jakie miały miejsce na całym świecie w latach 1970 – 2002 i skorelowano je z częstotliwością oraz długością ukazujących się na ich temat materiałów prasowych, odkryto, że każde dodatkowe doniesienie o zamachu terrorystycznym zwiększało prawdopodobieństwo zamachów w kolejnym tygodniu o od kilku do kilkunastu procent.

Człowiekiem, który wprowadził do literatury określenie „efekt Wertera” był amerykański socjolog David Philips. Swoje badania prowadził w latach 70tych XX wieku. Już wtedy zauważono, że efekt jest wzmacniany gdy opisy śmierci podaje się ze szczegółami. Gdy samobójca umiera długo i w cierpieniu, gdy upublicznia się wizerunek zrozpaczonych krewnych samobójcy, gdy publikuje się list w których samobójca wyjaśnia swoje motywy i gdy te motywy poddaje się w mediach analizie. Psychologowie twierdzą, że w tym jest tak duży „potencjał identyfikacyjny”, że osoby o słabszej osobowości, osoby, które już wcześniej rozważały samobójstwo są tymi informacjami wręcz popychane do tragicznych czynów.

Obszerną rozmowę na temat efektu Wertera, kilka lat temu (w 2011 roku) opublikował portal Polityka.pl

– Jak to działa? – pytała w wywiadzie Joanna Cieśla.

(prof. Bartosz Łoza – kierownik Kliniki Psychiatrii Warszawskiego Uniwersytetu Medycznego.): Większość z nas bez głębszej refleksji wchłania papkę newsową, którą przekazują nam media, zwłaszcza te szybkie, operujące skrótami. Działa tu mechanizm modelowania – mamy podaną całą gotową historię – o prawdziwym człowieku, prawdziwym życiu, prawdziwych decyzjach, z początkiem i końcem. Nie musimy wkładać żadnego wysiłku w to, żeby ją śledzić, siedzimy w fotelu, a ona jest nam opowiadana. Staje się szczególnie wiarygodna dzięki wykorzystaniu takich technik jak nakręcone drżącą ręką filmy przysłane przez widzów, relacje i amatorskie zdjęcia internautów. To wszystko potwierdza, że to prawda, nie jakaś kreacja. 

Następnie prof. Bartosz Łoza wyjaśnia na czym polega owo modelowanie. Mówi, że osoby z podobnymi problemami co samobójca, rozważające już wcześniej tragiczne w skutkach kroki, dochodzą do wniosku, że skoro samobójca się zabił, one także mogą to zrobić.

– Informacja o zbrodni sprawia, że wszyscy stajemy się gorsi? – pytała Joanna Cieśla z Polityki.

– Niestety. Nie chcę zabrzmieć jak kaznodzieja, ale zło będzie rodzić zło. Wyjaśnia to nie tylko mechanizm modelowania, ale i teoria analizy transakcyjnej amerykańskiego psychoanalityka Erica Berne. Zgodnie z nią nasze emocje, moralność zależą od „głasków”, którymi nieustannie się wymieniamy z innymi ludźmi. Dobry głask to pochwała, zły głask – gdy ktoś na mnie burknął w autobusie. Mogę odburknąć – wtedy oddam negatywny głask. To taka waluta emocjonalna. Nasze portfele są pełne tej waluty, którą przez całe życie wymieniamy się z innymi ludźmi – odpowiada prof. Łoza.

W kolejnych częściach wywiadu profesor tłumaczy, że w tak destrukcyjny sposób działają na nas przede wszystkim informacje prawdziwe. Stąd często emitowane filmy w których dochodzi do strzelanin czy innych zbrodni nie mają wpływu na wzrost przestępczości. Natomiast relacjonowanie zbrodni czy tragedii, które rzeczywiście miały miejsce, szczególnie, gdy te relacje są bardzo emocjonalne, mogą nakłaniać do samobójczych kroków.

Efekt Wertera swoją nazwę zawdzięcza imieniu głównego bohatera napisanej przez Goethego powieści „Cierpienia młodego Wertera”. Po jej wydaniu (w 1774 roku) bodaj po raz pierwszy zauważono tzw. mechanizm samobójczego naśladownictwa.

Historia nieszczęśliwie zakochanego Wertera, który ostatecznie popełnił samobójstwo, pchnęła tysiące młodych ludzi nie tylko w Niemczech ale i w wielu innych krajach Europy do odebrania sobie życia.

3 komentarze do Mechanizm samobójczego naśladownictwa

Ukryta komnata

Ukryta komnata, promienie kosmiczne i piramidy. Nie, to nie jest streszczenie taniego filmu science-fiction. Streszczenie tekstu z Nature

To podobno pierwsze znalezisko w piramidzie Cheopsa od XIX. I to od razu z grubej rury. Magazyn Nature napisał, że w jednym z najbardziej monumentalnych grobowców odkryto tajemniczą komnatę. Jej długość jest szacowana na kilkadziesiąt metrów, a o tym, że w ogóle istnieje dowiedziano się dzięki analizie… promieni kosmicznych. Jak tego dokonano?

Czerwoną strzałką zaznaczyłem odkrytą komnatę 

Składnikiem  strumienia cząstek, które docierają do nas z kosmosu są miony. A ściślej mówiąc, miony powstają jako cząstki wtórne w wyniku rozpadu mezonów w wyższych warstwach ziemskiej atmosfery. Miony mają cechy elektronów, ale są ponad 200 razy od nich cięższe. Strumień mionów jest dość duży, bo w każdej sekundzie, przez metr kwadratowy powierzchni Ziemi przelatuje ich prawie 200. Miony nie omijają także nas, ale nie są dla nas groźne. Od jakiegoś czasu fizycy nauczyli się je wykorzystywać praktycznie.

 

Wiadomo ile mionów leci na nasze głowy. Jeżeli na ich drodze postawimy przeszkodę, część z nich, w niej ugrzęźnie. Im gęstsza ta przeszkoda, tym ugrzęźnie ich więcej. Ustawiając w odpowiedni sposób detektory mionów, jesteśmy w stanie wykonać trójwymiarowy obraz skanowanego obiektu. Zasada działania tego pomiaru jest identyczna co działania tomografu komputerowego. Jest źródło promieniowania (promienie Roentgena, zwane promieniami X) i są detektory. Robiąc odpowiednio dużo pomiarów pod różnymi kątami, jesteśmy w stanie z dużą precyzją określić kształt, budowę i strukturę tych części ludzkiego ciała, które dla oka lekarza są zakryte.

>>> Więcej naukowych informacji na FB.com/NaukaToLubie.

W przypadku piramidy Cheopsa w Gizie nie było lekarzy, tylko fizycy i archeologowie, nie było promieni X, tylko kosmiczne miony. Nie było tomografu medycznego, tylko zmyślny system detektorów. Ale udało się dokonać tego samego. Znaleziono obiekt, a właściwie pustą przestrzeń, która wcześniej była przed wzrokiem badaczy zakryta.

Nie wiadomo czym jest tajemnicza komnata. Rozdzielczość tej metody jest zbyt mała, by stwierdzić czy znajdują się w niej jakieś obiekty. Może więc być pusta. Ale może też być pełna skarbów. Pusta przestrzeń znajduje się nad tzw. Wielką Galerią, czyli korytarzem prowadzącym do Komory Królewskiej. Nie wiadomo też, czy komnata (pusta przestrzeń) była zamurowana na etapie budowy piramidy, czy ktokolwiek po jej wybudowaniu do niej zaglądał. Piramida Cheopsa powstała w okresie tzw. Starego Państwa, czyli około 2560 roku p.n.e. Budowano ją zaledwie przez 20 lat. Jak na metody i technologie jakimi wtedy dysponowano, to tempo ekspresowe.

>>> Więcej naukowych informacji na FB.com/NaukaToLubie.

7 komentarzy do Ukryta komnata

Nagroda za mikroskop

Nagroda Nobla z chemii zostałą przyznana za technikę, która zrewolucjonizowała biochemię. Mowa o mikroskopii krioelektronowej, dzięki której można obserwować i to w trzech wymiarach cząsteczki np. białek, bez uszkadzania ich.

Nagroda Nobla z chemii zostałą przyznana za technikę, która zrewolucjonizowała biochemię. Mowa o mikroskopii krioelektronowej, dzięki której można obserwować i to w trzech wymiarach cząsteczki np. białek.

Jacques Dubochet, Joachim Frank, Richard Henderson

„for developing cryo-electron microscopy for the high-resolution structure determination of biomolecules in solution”

Co niezwykle ważne, dzięki nagrodzonej metodzie, jesteśmy w stanie zobrazować nieuszkodzoną cząsteczkę białka w jej „naturalnym” środowisku. Uszkodzone białko nie niesie dla nas interesującej informacji. Nie jesteśmy w stanie zobaczyć jak ono reaguje, jak łączy się z innymi cząsteczkami, w skrócie, jak ono funkcjonuje w swoim naturalnym środowisku (a nie na przysłowiowym szkiełku) czyli we wnętrzu żywej komórki czy we wnętrzu poszczególnych organelli komórki. Białka to cegiełki z których wybudowane jest życie. Przy czym analogia do cegły i budynku nie jest wystarczająca. Białka nie są pasywnymi elementami naszego ciała. Białka (jako hormony) regulują czynności a nawet modyfikują struktury tkanek (tkanek, które też są zbudowane z białek). Bez poznania białek, tego jak są zbudowane, jak funkcjonują, jak łączą się w większe kompleksy, nie ma najmniejszej szansy żeby zrozumieć życie.

Trzej panowie Jacques Dubochet (Szwajcaria), Joachim Frank (USA), Richard Henderson (Wielka Brytania) stworzyli metodę by w skuteczny sposób białka badać. Nie w środowisku sztucznym, ale naturalnym. Bo tylko złapane w akcji białko daje nam się poznać. Tylko wtedy widzimy jak rzeczywiście funkcjonuje cały mechanizm, w którym bierze ono udział. Jak białko podglądnąć tak, by rzeczywiście zobaczyć jak ono funkcjonuje? Zamrozić. Ale bardzo szybko, po to by nie zdążył przebiec proces krystalizacji. Zamrażanie – jeżeli zostanie odpowiednio przeprowadzone – niczego nie uszkadza i niczego nie fałszuje. Mrożąc kolejne próbki, jesteśmy w stanie zrobić video, klatka po klatce pokazujące procesy, które przebiegają niezwykle szybko. Złożenie tych klatek w jedną całość umożliwia nie tylko prześledzenie procesu tak jak gdyby było się jego naocznym świadkiem, ale także przyjrzenie się poszczególnym jego aktom z różnej perspektywy. I tak w trójwymiarze można zobaczyć splatanie i rozplatanie długich nici białkowych. Można zobaczyć łączenie się mniejszych białek w większe kompleksy czy np. działanie receptorów białkowych.

– Te metody były przełomowe w medycynie molekularnej. Dzięki nim nie tylko możemy patrzyć na narządy i komórki. Możemy zejść głębiej, możemy śledzić jak wyglądają i działają pojedyncze cząsteczki w szczegółach, o jakim jeszcze niedawno nam się nie śniło. – powiedział Joachim Frank, jeden z laureatów tegorocznego Nobla z chemii, w rozmowie telefonicznej którą zaaranżowano w trakcie ogłaszania werdyktu.

Na zdjęciu głównym model wirusa zapalenia mózgu otrzymany dzięki technice mikroskopii krioelektronowej.

1 komentarz do Nagroda za mikroskop

Nobel z fizyki za fale

Prace nad wykrywaniem i analizą fal grawitacyjnych musiały kiedyś zostać uhonorowane Nagrodą Nobla. No i stało się.

Kosmiczny detektor, kosmiczne zagadnienie. W świecie fizyków i kosmologów po raz kolejny będzie mówiło się o falach grawitacyjnych. Kilkanaście dni temu dzięki pracy kolaboracji LIGO/VIRGO zmarszczki przestrzeni były w czołówkach serwisów na całym świecie. Dzisiaj też będą. Z powodu Nagrody Nobla z fizyki.

Rainer Weiss, Barry C. Barich, Kip S. Thorne

„for decisive contributions to the LIGO detector and the observation of gravitational waves”

waves-101-1222750-1600x1200

Fale grawitacyjne to kompletny odlot. Człowiekiem który sprawę rozumiał, ba, który ją wymyślił, a w zasadzie wyliczył był nie kto inny tylko Albert Einstein (swoją drogą powinien dostać nagrodę za odkrycie najbardziej nieintuicyjnych zjawisk we wszechświecie). Z napisanej przez niego 100 lat temu Ogólnej Teorii Względności wynika, że ruch obiektów obdarzonych masą,  jest źródłem rozchodzących się w przestrzeni fal grawitacyjnych (lub inaczej – choć nie mniej abstrakcyjnie – zaburzeń czasoprzestrzennych). Jak to sobie wyobrazić? No właśnie tu jest problem. Bardzo niedoskonała analogia to powstające na powierzchni wody kręgi, gdy wrzuci się do niej kamień. W przypadku fal grawitacyjnych zamiast wody jest przestrzeń, a zamiast kamienia poruszające się obiekty. Czym większa masa i czym szybszy ruch, tym łatwiej zmarszczki przestrzeni powinny być zauważalne. Rejestrując największe fale grawitacyjne, tak jak gdybyśmy bezpośrednio obserwowali największe kosmiczne kataklizmy: zderzenia gwiazd neutronowych, czarnych dziur czy wybuchy supernowych. Trzeba przyznać, że perspektywa kusząca gdyby nie to… że fale grawitacyjne to niezwykle subtelne zjawiska. Nawet te największe, bardziej będą przypominały lekkie muśnięcia piórkiem niż trzęsienie ziemi. W książce „Zmarszczki na kosmicznym morzu” (Ripples on a Cosmic Sea: The Search for Gravitational Waves) australijski fizyk, prof. David Blair, poszukiwanie fal grawitacyjnych porównuje do nasłuchiwania wibracji wywołanych przez pukanie do drzwi z odległości dziesięciu tysięcy kilometrów. Detektory zdolne wykryć fale grawitacyjne powinny być zdolne zarejestrować wstrząsy sejsmiczne wywołane przez upadek szpilki po drugiej stronie naszej planety. Czy to w ogóle jest możliwe? Tak! Od 2002 roku działa w USA Laser Interferometer Gravitational Wave Observatory w skrócie LIGO czyli Laserowe Obserwatorium Interferometryczne Fal Grawitacyjnych. Zanim budowa ruszyła, pierwszy szef laboratorium prof. Barry Barrish na dorocznym posiedzeniu AAAS (American Association for the Advancement of Science) oświadczył, że pomimo wielu trudności nadszedł w końcu czas na zrobienie czegoś, co można nazwać prawdzią nauką (swoją drogą, odważne słowa na zjeździe najlepszych naukowców na świecie).

>>> Więcej naukowych informacji na FB.com/NaukaToLubie

This_visualization_shows_what_Einstein_envisioned

Symulacja łączenia się czarnych dziur – jedno ze zjawisk, które wytwarza najsilniejsze fale grawitacyjne

Z falami grawitacyjnymi jest jednak ten problem, że przez dziesięciolecia, mimo prób, nikomu nie udało się ich znaleźć. Gdyby komuś zaświtała w głowie myśl, że być może w ogóle ich nie ma, spieszę donieść, że gdyby tak było naprawdę, runąłby fundament współczesnej fizyki – Ogólna Teoria Względności, a kosmologię trzeba byłoby przepisać od początku. Dzisiaj głośno mówi się, że fale grawitacyjne zostały przez LIGO zarejestrowane. Panuje raczej atmosfera lekkiego podniecenia i oczekiwania na to, co stanie się za chwilę. Potwierdzenie istnienia fal grawitacyjnych nie będzie kolejnym odkryciem, które ktoś odfajkuje na długiej liście spraw do załatwienia.  Zobaczymy otaczający nas wszechświat z całkowicie innej perspektywy.

Jako pierwszy falowe zmiany pola grawitacyjnego, w latach 60 XX wieku próbował zarejestrować amerykański fizyk Jaseph Weber. Budowane przez niego aluminiowe cylindry obłożone detektorami nie zostały jednak wprawione w drgania. Co prawda Weber twierdził, że złapał zmarszczki wszechświata, ale tego wyniku nie udało się potwierdzić. Dalsze poszukiwania trwały bez powodzenia, aż do 1974 roku, gdy dwóch radioastronomów z Uniwersytetu w Princeton (Joseph Taylor i Russel Hulse) obserwując krążące wokół siebie gwiazdy (PSR1913+16) stwierdziło, że układ powoli traci swoją energię, tak jak gdyby wysyłał … fale grawitacyjne. Mimo, że samych fal nie zaobserwowano, za pośrednie potwierdzenie ich istnienia autorzy dostali w 1993 roku Nagrodę Nobla. Uzasadnienie Komitetu Noblowskiego brzmiało: „za odkrycie nowego typu pulsara, odkrycie, które otwiera nowe możliwości badania grawitacji”.

>>> Więcej naukowych informacji na FB.com/NaukaToLubie

virgoviewInstalacja, która z lotu ptaka wygląda jak wielka litera L, to dwie rury o długości 4 km każda, stykające się końcami pod kątem prostym. Choć całość przypomina przepompownię czy oczyszczalnię ścieków jest jednym z najbardziej skomplikowanych urządzeń kiedykolwiek wybudowanych przez człowieka. Każde z ramion tworzy betonowa rura o średnicy 2 metrów. W jej wnętrzu – jak w bunkrze – znajduje się druga ze stali nierdzewnej, która jest granicą pomiędzy światem zewnętrznym a bardzo wysoką próżnią. Z miejsca w którym rury się stykają, „na skrzyżowaniu”, dokładnie w tym samym momencie wysyłane są wiązki lasera. Ich celem są zwierciadła umieszczone na końcu każdej z rur. 2000px-Ligo.svgOdbijane przez zwierciadła tam i z powrotem około 100 razy promienie, wpadają z powrotem do centralnego laboratorium i tam zostają do siebie porównane. Dzięki zjawisku interferencji możliwe jest wyliczenie z wielką dokładnością różnicy przebytych przez obydwie wiązki światła dróg. A drogi te powinny być identyczne, no chyba że… chyba że w czasie pomiaru przez Ziemie – podobnie jak fala na powierzchni wody – przejdzie fala grawitacyjna. Wtedy jedno z ramion będzie nieco dłuższe, a efekt natychmiast zostanie wychwycony w czasie porównania dwóch wiązek. Tyle tylko, że nawet największe zaburzenia zmienią długość ramion o mniej niż jedną tysięczną część średnicy protonu (!). To mniej więcej tak, jak gdyby mierzyć zmiany średnicy Drogi Mlecznej (którą ocenia się na ok. 100 tys. lat świetlnych) z dokładnością do jednego metra. Czy jesteśmy w stanie tak subtelne efekty w ogóle zarejestrować ? Lustra na końcach każdego z korytarzy (tuneli) mogą zadrgać (chociażby dlatego, że przeleciał nad nimi samolot, albo w okolicy przejechał ciężki samochód). By tego typu efekty nie miały wpływu na pomiar zdecydowano się na budowę nie jednej, ale dwóch instalacji, w Handford w stanie Waszyngton i w Livingston w stanie Luizjana. Są identyczne, choć oddalone od siebie o ponad 3 tys. kilometrów. Ich ramiona maja takie same wymiary i maja takie same układy optyczne. Nawet gdy w jednym LIGO zwierciadło nieoczekiwanie zadrga, niemożliwe by to samo w tej samej chwili stało się ze zwierciadłem bliźniaczej instalacji. Zupełnie jednak inaczej będzie gdy przez Ziemię przejdzie z prędkością światła fala grawitacyjna. Zmiany jakie wywoła zajdą w dokładnie tej samej chwili w obydwu ośrodkach.

>>> Więcej naukowych informacji na FB.com/NaukaToLubie

A kończąc, pozwólcie na ton nieco nostalgiczny. Wszechświat jest areną niezliczonych kataklizmów a dramatyczne katastrofy, to naturalny cykl jego życia. To nic, że od tysięcy lat na naszym niebie królują te same gwiazdozbiory. W skali kosmicznej taki okres czasu to nic nieznacząca chwila, a nawet w czasie jej trwania widoczne były wybuchy gwiazd. Z bodaj największego kataklizmu – Wielkiego Wybuchu – „wykluło” się to co dzisiaj nazywamy kosmosem. Obserwatoria grawitacyjne (np. takie jak LIGO) otworzą oczy na inne wielkie katastrofy, i to nie tylko te które będą, ale także te które były. Już prawie słychać zgrzyt przekręcanego klucza w drzwiach. Już za chwilę się otworzą. Najpierw przez wąską szparę, a później coraz wyraźniej i coraz śmielej będziemy obserwowali wszechświat przez nieznane dotychczas okulary. Ocenia się, że to co widzą „zwykłe” teleskopy (tzw. materia świecąca) to mniej niż 10% całej masy Wszechświata. A gdzie pozostałe 90% ? Na to pytanie nie znaleziono dotychczas odpowiedzi. Tzw. ciemna materia powinna być wszędzie, a nie widać jej nigdzie. Przypisuje się jej niezwykłe właściwości, łączy się ją z nie mniej tajemniczą ciemną energią. Czy LIGO, pomoże w rozwiązaniu tej intrygującej zagadki? Czy będzie pierwszym teleskopem, przez który będzie widać ciemną materię? Jeżeli obserwatoria grawitacyjne będą w stanie „zobaczyć” obiekty, które można obserwować także w świetle widzialnym (np. wybuch supernowej), a nie będą widziały ani grama ciemnej materii, to zagadka staje się jeszcze bardziej tajemnicza. Bo albo ta materia nie podlega prawom grawitacji, albo nie ma żadnej ciemnej materii. Konsekwencje obydwu tych scenariuszy są trudne do przewidzenia. Czy teraz rozumiecie dlaczego odkrycie fal grawitacyjnych jest tak ważne? 

9 komentarzy do Nobel z fizyki za fale

Nobel za biologiczny zegar

Ciekawa koincydencja. W dniach w których zmieniamy czas letni na zimowy, Komitet Nagrody Nobla ogłosił, że tegorocznymi laureatami z dziedziny fizjologii i medycyny są badacze, którzy zrozumieli jak działa nasz biologiczny zegar.

Ciekawa koincydencja. W dniach w których zmieniamy czas letni na zimowy, Komitet Nagrody Nobla ogłosił, że tegorocznymi laureatami z dziedziny fizjologii i medycyny są badacze, którzy zrozumieli jak działa nasz biologiczny zegar.

Jeffrey C. Hall, Michael Rosbash and Michael W. Young

for their discoveries of molecular mechanisms controlling the circadian rhythm

Ta nagroda w pewnym sensie łączy medycynę, a właściwie fizjologię z astronomią. Czasami chyba zapominamy, że życie nie funkcjonuje w oderwaniu od otoczenia. Podział szkolnych zajęć na przedmioty (biologia, fizyka, chemia,…)  nie pomaga zrozumieć złożoności tego świata. Jak to się dzieje, że czujemy się senni gdy zapada zmrok? Jak to się dzieje, że inne zwierzęta budzą się wtedy gdy zachodzi słońce? Co dzieje się w naszym organizmie gdy za krótko śpimy? I wtedy gdy podróżując samolotem, zmieniając strefy czasowe nasz biologiczny zegar totalnie się pogubi? Na te pytania bardzo długo nie było konkretnej odpowiedzi. Teraz już jest. I to – co może zadziwiać – udało się je uzyskać m.in dzięki badaniom muszek owocówek. Swoją drogą, tym małym niepozornym owadom, ktoś powinien wystawić chyba pomnik. Niewiele jest organizmów żywych, które bardziej przysłużyły się nauce. I to wielu dziecinom równocześnie. No ale to inny temat.

A wracając do pór dnia i nocy. Pór niższej temperatury i wyższej. Pór odpoczynku i aktywności. Te pory są skutkiem obrotu Ziemi wokół własnej osi. Mieliśmy (my czyli ziemskie życie) grubo ponad 3 miliardy lat na dostosowanie się do tego cyklu. Więcej, wzrastaliśmy, ewoluowaliśmy w świecie który jest cykliczny. Różnych cykli mamy wiele, ale ten który bodaj ma n nas największy wpływ to właśnie cykl dnia i nocy. Nawet najbardziej prymitywne bakterie mają biologiczny zegar. Działa na tyle dobrze, że my mamy go w zasadzie w niezmienionej wersji.

W zegarze o którym mowa nie chodzi tylko o to żeby wiedzieć kiedy mamy się położyć do łóżka. W zasadzie – w przypadku ludzi – to jest tylko skutek uboczny. Biologiczny zegar taktuje tym wszystkim co w naszym ciele dzieje się poza naszą świadomością. Metabolizmem, temperaturą ciała, produkcją i wydzielaniem hormonów a także aktywnością seksualną, cyklami życiowymi czy nawet poczuciem głodu i sytości. Tegoroczni laureaci Nagrody Nobla zostali uhonorowani za opisanie tego jak ten skomplikowany system działa.

Już kilkaset lat temu zauważono, że rośliny pozbawione dostępu światła zachowują się tak, jak gdyby to światło cały czas okresowo do nich docierało. Tak jak gdyby kiedyś nastawiony (nakręcony) zegar teraz tykał i działał niezależnie od tego czy światło pada na liście czy też nie. Podobnie zachowują się zwierzęta, w tym ludzie. To dlatego mamy kłopoty z zaśnięciem i koncentracją gdy szybko zmienimy strefę czasową. Tych kłopotów by nie było, gdyby nasz wewnętrzny zegar automatycznie dostosowywał się do pory dnia i nocy.

W latach 70tych XX wieku zaczęto poszukiwać źródeł (mechanizmu) tego biologicznego zegara. Najpierw – a jakże – u muszek owocówek. Poszukiwano i znaleziono – w największym skrócie – mechanizmy w którym w zależności od pory dnia (natężenia światła) produkowane są specyficzne białka (nazwane PER). Te gromadzą się w ciągu nocy, a rozpadają się w ciągu dnia. Badacze odkryli u muszek gen, który gdy zostanie uszkodzony zaburza rytm dobowy. Gen został wyizolowany dopiero w połowie lat 80tych XX wieku. To w nim był przepis na produkcję wspomnianego wcześniej białka PER. Tego, które gromadzi się w ciagu nocy a rozpada w ciagu dnia. Dziesięć lat później, w połowie lat 90tych odkryto drugi gen kodujący „zegarowe” białko. I gen i białko nazwano TIM. Białka TIM i PER łączą się z sobą wtedy gdy noc przechodzi w dzień. To sygnał żeby komórka wstrzymała produkcję biała PER. Mamy wiec produkcję białka i wiemy co powoduje że wstrzymywana jest jego produkcja. A jaki czynnik powoduje, że produkcja PER znowu rusza z kopyta? Skąd komórka wie, że dzień zamienia się w noc? Pod koniec lat 90tych odkryto trzeci gen odpowiedzialny za tykanie biologicznego zegara. gen DBT. I tak zamyka się 24godzinny cykl.

Zegar tyka nawet wtedy gdy przez jakiś czas organizm odcięty jest od światła. Z czasem, zegar się jednak rozregulowuje. U roślin ten okres swego rodzaju bezwładności wynosi kilka dni. U człowieka od 2-3 dni (stąd niektórzy są w stanie dość łatwo przestawiać się na pracę w nocy) do kilkudziesięciu (dlatego istnieją osoby, które nie są w stanie przyzwyczaić się do zmiany czasu o godzinę). Gdy zegar się zatrze, nie staje w miejscu, tylko zaczyna odmierzać czas nieprawidłowo. Np.  u niektórych wydłużając dobę dwukrotnie a u innych skracając o kilka godzin. Wiemy to, bo kilku śmiałków w ramach eksperymentu zamknęło się w kompletnych ciemnościach na czas od kilkunastu do kilkudziesięciu dni. W naszym przypadku sercem zegara nie jest jednak pojedyncza komórka, tylko szyszynka, czyli ta cześć mózgu, która „widzi” czy jest dzień czy noc. To ona daje sygnał, który jest podchwytywany przez miliardy drobnych zegarków już na poziomie komórkowym. Gdyby tykały jak zegarki ze wskazówkami, wydawalibyśmy dźwięki jak zakład zegarmistrza.

2 komentarze do Nobel za biologiczny zegar

Type on the field below and hit Enter/Return to search