Nauka To Lubię

Oficjalna strona Tomasza Rożka

Autor: Tomasz Rożek

Rosetta na orbicie komety!

Udało się! Europejska sonda Rosetta, po dekadzie i pokonaniu 6,4 mld kilometrów dotarła na orbitę komety 67p/Churyumov-Gerasimenko.

Udało się! Europejska sonda Rosetta, po dekadzie i pokonaniu 6,4 mld kilometrów dotarła na orbitę komety 67p/Churyumov-Gerasimenko. Tym samym rozpoczął się nowy okres w podboju kosmosu. Właśnie rozpoczęło się pierwsze badanie komety w przestrzeni kosmicznej. Od teraz przez kolejnych kilkanaście miesięcy Rosetta nie będzie odstępowała komety nawet na krok. Zbliży się z nią do Słońca, nie przestając badać.

Oto jak Rosetta dotarła do komety:

Do spotkania sondy i komety doszło nieco dalej niż znajduje się orbita Jowisza. Najpierw sonda będzie orbitowała wokół komety w odległości około 100 km. Jej pełny obrót będzie wtedy trwał 3-4 ziemskie dni. Z czasem Rosetta będzie jednak coraz bliżej swojego celu. Gdy ta odległość zmniejszy się do 10 km, w kierunku powierzchni komety wystrzelony zostanie lądownik Philae. Nastąpi to nie wcześniej niż w listopadzie tego roku.

Lądowanie na komecie:

Integralną częścią lądownika jest wybudowany w Polsce element, który pozwoli mu „zacumować” się do pędzącej komety. Z pierwszych pomiarów wynika, że temperatura na powierzchni komety wynosi minus 70 st C i jest o 30 st wyższa niż przypuszczano.

Brak komentarzy do Rosetta na orbicie komety!

Lanie wody

Dlaczego wylana na rozgrzaną blachę woda nie paruje? I dlaczego gorąca woda szybciej zamraża się niż zimna?
Czy o wodzie można napisać coś interesującego? Przeczytaj, a dowiesz się rzeczy, o których nie miałeś zielonego pojęcia.

Co się stanie, gdy wylejemy powiedzmy szklankę wody na mocno rozgrzaną metalową blachę? Np. taką w tradycyjnym piecu. Usłyszymy głośny syk i gwałtowne parowanie. To logiczne i oczekiwane. A teraz proszę na tą samą rozgrzaną blachę wylać wodę w małych ilościach. Np. strzepnąć wodę z mokrej dłoni, albo wypuścić wąski strumień wody ze strzykawki. Można by oczekiwać, że mała ilość wody na gorącej blasze wyparuje szybciej niż duża ilość. A tu niespodzianka. Woda w małych ilościach na gorącej powierzchni nie paruje. Wodne kulki po blasze poruszają się jak pszczoły na łące, bez zauważalnego ładu, to w te, to wewte. Czasami nawet podskakują.

Pułapka na parę

Co się więc dzieje?  Spadająca kropelka wody przy zetknięciu z gorąca blachą zaczyna parować, ale tylko nieznacznie. Paruje dolna część kropli, bo to ona bezpośrednio styka się z gorącą powierzchnią. W ten sposób powstała para tworzy pomiędzy blachą a kroplą coś w rodzaju poduszki. Woda nie styka się już bezpośrednio z blachą, tylko leży na izolującej parowej poduszce. To powoduje, że energia (temperatura) gorącej powierzchni nie jest przekazywana kropli. To niesamowite, bo grubość „parowej poduszki” wynosi znacznie mniej niż milimetr (od 0,1 do 0,2 mm). Jak to się dzieje, że tak cieniutka izolacja wystarczy, że tak mała ilość pary nie dopuści do „przedostania” się energii z gorącej blachy do małej kropelki wody? Gaz (a para wodna jest gazem) jest kiepskim przewodnikiem energii (temperatury). Przekaz energii z blachy przez poduszkę pary do kropli wody następuje, ale bardzo wolno. W końcu wrzucona na rozgrzaną blachę kropla wyparuje (zmniejszając się coraz bardziej, w którymś momencie zniknie) ale nastąpić to może dopiero po kilkudziesięciu sekundach, a nie jak można by się spodziewać – natychmiast. Co więcej, im powierzchnia blachy cieplejsza, tym dłużej trwa taki „kroplowy taniec”. Pozostaje jeszcze wyjaśnienie trzech kwestii. Dlaczego para spod kropli nie ucieknie na boki, dlaczego poduszka parowa nie tworzy się pod dużą ilością chluśniętej na blachę wody i dlaczego kropla na gorącej blasze tak gwałtownie się porusza. Para nie ucieknie bo kropla od spodu nie jest płaska, tylko wklęsła. Więcej pary mieści się w środku, niż na brzegach kropli. Gazowa poduszka powoduje, że pomiędzy rozgrzaną powierzchnią a kroplą nie ma tarcia. Gwałtowne ruchy kropli spowodowane są tym, że dolne warstwy kropli parują nie w sposób ciągły, tylko gwałtowny i nierównomierny ze wszystkich stron. I ostatnia sprawa, chluśnięta na blachę woda wyparuje, ale poduszka parowa wytworzy się tylko pod kropelkami, właśnie dlatego, że one od dołu nie są płaskie i tworzą coś w rodzaju pułapki na parę. Wszystko co dzieje się z kroplą wody na rozgrzanej blasze wyjaśnił w 1756 roku niemiecki lekarz i fizyk Johann Leidenfrost (stąd zjawisko Leidenfrosta).

Raz ciepło, raz zimno

Izolująca warstwa gazu wytwarza się nie tylko pomiędzy rozgrzaną powierzchnią a kroplą wody, tylko pomiędzy obiektami o sporej różnicy temperatur. Przykłady? Wylanie ciekłego azotu czy ciekłego tlenu na powierzchnię stołu w temperaturze pokojowej spowoduje, że te dwie ciecze nie wyparują od razu, tylko „skulkują się” i będą zachowywały się tak jak woda w niewielkich ilościach wylana na gorącą blachę. Ciekły azot ma temperaturę około minus 200 st. C. Teoretycznie włożona do niego dłoń (o temperaturze około + 37 st. C) powinna natychmiast ulec poważnemu odmrożeniu. Tymczasem, o ile rękę w azot wsadzi się na krótko, odmrożeń nie będzie. Dlaczego? Bo pomiędzy skórą a ciekłym azotem wytworzy się cienka warstwa gazowego azotu, który jest swego rodzaju izolacją. Ta izolacja nie jest doskonała, więc dłuższe przytrzymanie dłoni w ciekłym azocie może być niebezpieczne. W Internecie można znaleźć też filmiki na których eksperymentator wkłada palec do naczynia z ciekłym ołowiem. Temperatura tego metalu  w stanie ciekłym wynosi przynajmniej 327 st. C. A temperatura palca około 37 stopni. O ile palec jest mokry, jego włożenie w ołów na krótką chwilę nie będzie groźne. Skóra będzie chroniona przez cieniutką warstwę pary wodnej. To ostatnie doświadczenie nie należy chyba do najbezpieczniejszych, więc lepiej na własną – nomen omen rękę – go nie przeprowadzać.

Lody zawstydziły fizykę

Woda może naprawdę zaskakiwać. Nie tylko nas, ludzi nie zajmujących się nauką, ale nawet naukowców.

Erasto Mpemba, mieszkający w Tanzanii 13latek uwielbiał lody. Podgrzewał mleko, dosypywał cukru, dolewał sok owocowy, wszystko mieszał ze sobą i zamrażał.  By nie zepsuć zamrażarki, najpierw swoją miksturę schładzał w lodówce. Pewnego razu gorące mleko wsadził jednak, bez schładzania, od razu do zamrażarki. Gdy po jakimś czasie otworzył zamrażalnik, okazało się, że lody są już dawno zrobione. „Tak szybko?” – zdziwił się. Zrobił prosty eksperyment. Do dwóch takich samych pojemników wlał gorącą i zimną wodę i obydwa wstawił do zamrażarki. Woda gorąca zamroziła się szybciej. Był rok 1963. Gdy Erasto Mpemba zapytał dlaczego tak się dzieje swojego nauczyciela fizyki, ten go wyśmiał. Ta sama reakcja spotkała go rok później, już jako ucznia liceum. Pewnego dnia do szkoły Erasto przyjechał profesor Denis G. Osborne, fizyk z pobliskiego uniwersytetu. Po jego wykładzie (który dotyczył zupełnie innych zagadnień) Mpemba opowiedział o swoich dobrze już udokumentowanych obserwacjach. Koledzy z klasy zaczęli się śmiać, ale profesor Osborne obiecał sprawę zbadać (choć jak później przyznał nie wierzył licealiście).  Osborne przeprowadził kilka eksperymentów i… potwierdził obserwacje Erasta. W 1969 roku ukazała się profesjonalna praca obydwu panów (ucznia i nauczyciela) opisująca tzw. efekt Mpemby. Woda gorąca rzeczywiście szybciej się zamraża niż woda zimna. Nie pierwszy raz intuicja może wyprowadzić na manowce. Przecież ciepła ciecz, zanim się zamrozi powinna najpierw się schłodzić, podczas gdy ta która jest chłodna tego nie potrzebuje. Jak całą sprawę wytłumaczyć? W przeciwieństwie do opisanego wyżej zjawiska Leidenfrosta, tutaj naprawdę trudno o jednoznaczne wyjaśnienie. Od ukazania się publikacji powstało kilka teorii, ale żadna do końca nie jest satysfakcjonująca. Wiadomo że woda, która się gotowała jest mniej nasycona gazami. Ciecz z mniejszą ilością rozpuszczonych w niej gazów (a więc ta ciepła), zamarza szybciej. W czasie podgrzewania wody wytrącają się też sole mineralne (stąd osad na grzałce czajnika). A te obniżają temperaturę zamarzania. Dlatego zimą posypuje się chodniki i ulice solą. Innymi słowy, chłodna woda zamarza w niższej temperaturze niż ta, która była przegotowana. Do tego wszystkiego niektórzy wyliczają to, że na ściankach naczynia z ciepłą wodą osadza się szron (na ściankach zimnego tylko w śladowych ilościach), a to powoduje, że chłodzenie jest bardziej efektywne. Ciepła woda zacznie więc zamarzać od ścianek (i dna) naczynia, podczas gdy zimna od powierzchni. Ten pierwszy sposób jest znacznie bardziej efektywny. Poza tym ciepła woda paruje, a to w skrócie oznacza szybkie ochładzanie. Dlaczego? Do parowania potrzebna jest energia. Wychodząc z jeziora, wanny czy prysznica odczuwamy zimno tak długo aż nasza skóra się nie wysuszy. Dzieje się tak, bo parująca woda ochładza naszą skórę pobierając z niej energię. No i ostatnia sprawa. W „ciepłym naczyniu” wody do zamarznięcia jest mniej, bo część wyparowała. Woda zimna też paruje, ale bardzo, bardzo wolno.

Wiele pomysłów, ale żaden do końca nie tłumaczy efekt Mpemby. A może każde z tych wytłumaczeń jest w części prawdziwe? Tak czy inaczej nawet w czymś tak powszechnym jak woda, jest jeszcze sporo do odkrycia. I może kiedyś uda się zrozumieć, dlaczego na mrozie rury z ciepłą wodą pękają częściej niż rury z zimną. Dlaczego lodowisko lepiej się robi z ciepłej wody i dlaczego w czasie mrozu mycie samochodu ciepłą wodą szybko prowadzi do popękania lakieru na karoserii.

2 komentarze do Lanie wody

Ukryty świat

Patrząc na zdjęcia satelitarne najzimniejszego z ziemskich kontynentów, czyli Antarktydy, trudno się powstrzymać od stwierdzenia „lodowa pustynia”. Tymczasem gruba warstwa lodu skrywa nieznany świat. Ostatnio pod lodem odkryto nawet wulkan.

Wyobraźcie sobie zupełnie nieznany świat. Świat taki sam jak nasz, tak samo różnorodny. Na powierzchni porównywalnej z powierzchnią Europy są góry i jeziora. Są równiny i doliny. Są wąwozy, rwące rzeki, zatoczki i fiordy. Pod grubą na kilometr warstwą lodu znajduje się nawet aktywny wulkan. Tak przynajmniej twierdzą autorzy jednego z artykułów opublikowanych w „Nature Geoscience”. Ostatni raz eksplodował kilka tysięcy lat temu, ale sejsmolodzy nie mają wątpliwości, że mógłby wybuchnąć nawet jutro. Co by się wtedy stało? Trudno powiedzieć.

Ogień pod lodem

Wszystko zależy od wielkości wulkanu i siły eksplozji. Z badań prowadzonych z powierzchni samolotu wynika, że wokół wulkanu, w głębokim lodzie, znajdują się pozostałości po poprzedniej erupcji. Chodzi głównie o warstwę popiołów. Czy siła wybuchu mogłaby przetopić kilometrowej grubości warstwę lodu? Bez problemu. W mniej pesymistycznym scenariuszu lawa wylałaby się pod lód i zaczęłaby go topić od spodu. We wspomnianym już Nature Geoscience, kilka lat temu została wydrukowana praca dotycząca erupcji innego podlodowego wulkanu. Zdaniem badaczy miał on eksplodować około 2200 lat temu, a skutkiem tego wydarzenia było wyrwanie w grubej pokrywie lodowej dziury. Na zewnątrz, na wysokość ponad 10 kilometrów buchały kłęby pary, wylatywał popiół i kawałki skalne. Także w tym przypadku część badań prowadzono z pokładu samolotu na którym zainstalowany był radar. To na nich widać podlodowy obszar zalany lawą. Potężną eksplozję potwierdziły także analizy rdzeni lodowych.

A wracając do dopiero co odkrytego wulkanu. W czasie prowadzonych w 2010 r. i 2011 r. badań w północnej części Antarktydy uczeni zarejestrowali powtarzające się wstrząsy. Ich siła była niewielka, a częstotliwość drgań na tyle mała, że od razu wykluczono, że ich źródłem jest ruch płyt tektonicznych czy pęknięcia warstwy lodu. Badacze wydedukowali, że wstrząsy muszą być efektem ruchu magmy pod ziemską skorupą. Tym bardziej, że źródło wstrząsów (a właściwie drgnięć) znajduje się na głębokości około 30 kilometrów.

Stożek wulkaniczny, którego szczyt znajduje się kilometr pod powierzchnią lodu, nie jest jedyną strukturą geologiczną, którą ukrywają lody Antarktydy. Gdyby móc pod nie zajrzeć, gdyby pewnego dnia całkowicie zniknęły (pomijając fakt, że znacząco podniosłoby to poziom światowego oceanu), naszym oczom ukazałby się niezwykle różnorodny krajobraz.

bbc_gamburtsevsJeziora i rzeki

Na wschodnim krańcu Antarktydy znajduje się potężne pasmo Gór Gamburtsewa. Rozciąga się na długości ponad 1200 km, a najwyższy jego szczyt ma wysokość 3400 metrów. Przy założeniu, że nie pokrywa jej lód. Żaden z wierzchołków pasma nie wystaje ponad powierzchnię lodu. Ich najwyższy wierzchołek znajduje się 600 metrów pod lodem. Wiele wskazuje na to, że to właśnie na zboczach Gór Gamburtsewa, 30 milionów lat temu, zaczął powstawać lodowiec, który dzisiaj skuwa cały kontynent. Pod tym lodowcem znajduje się np. podlodowe jezioro Wostok. W zeszłym roku dowierciła się do niego ekipa rosyjskich naukowców. Wostok jest jednym z prawie 400 jezior, które znajdują się pod lodami Bieguna Południowego. Te jeziora zawierają płynną wodę. Jezioro Wostok znajduje się około 4 km pod pokrywą lodu. Długość jeziora wynosi 250 kilometrów, a szerokość około 50 km. Ten słodkowodny akwen ma głębokość kilkuset metrów. Co ciekawe, wody jeziora były odizolowane od świata zewnętrznego od przynajmniej 500 000 lat! Dlaczego podlodowe jeziora nie zamarzają? Bo grube warstwy lodu powodują spory wzrost ciśnienia. Wraz ze wzrostem ciśnienia, spada temperatura zamarzania woda. Od dołu woda często jest także podgrzewana przez ciepło geotermalne. W efekcie woda w jeziorach ma temperaturę kilku stopni poniżej zera. Co ciekawe kilka lat temu okazało się, że na Jeziorze Wostok występują niewielkie przypływy. Acha, i jeszcze jedno. Bardzo często podlodowe jeziora są zasilane wodami lodlodowych rzek. Na Antarktydzie jest ich zała sieć. Niektóre pojawiają się okresowo, inne płyną cały czas.

NASA-Goddard-IceBridge-BedMap-BedMap2-Antartcia-Visual-topography-map1W którą stronę zjedzie lód?

Kilka lat temu, na spotkaniu Amerykańskiej Unii Geofizycznej, grupa naukowców z Uniwersytetu Stanowego Ohio, USA ogłosiła, że opracowuje dokładną mapę Grenlandii. Szef tej grupy prof. Ken Jezek powiedział, że chciałby zobaczyć jak wygląda Grenlandia bez śniegu i lodu. Dzisiaj już mniej więcej wiadomo. Wyspa jest krainą górzystą, tak jak sąsiadujące z nią północno – wschodnie terytoria Kanady. Czy kiedykolwiek po tych górach będzie można spacerować? Kiedyś może tak. Badania podlodowego krajobrazu właśnie w kontekście zmian klimatu, mogą mieć całkiem praktyczne znaczenie. Inaczej będą się zachowywały ogromne bloki zamarzniętej wody, gdy leżą na płaskim terenie, a inaczej gdy są osadzone na stromym wzniesieniu. W tym drugim przypadku, można się spodziewać, że z powodu podwyższającej się wokół temperatury, w pewnym momencie ześlizgną się ze skał na których są osadzone. Tym bardziej, że część wody z topiących się lodów spływa szczelinami w dół i podcieka pomiędzy stały ląd i lodowe bloki. Badając topografię i struktura gruntu pod lodem, naukowcy mogą próbować przewidzieć, jak będą się w przyszłości zachowywały duże masy lodu.

Tekst ukazał się w tygodniku Gość Niedzielny

Brak komentarzy do Ukryty świat

Wahadła Foucaulta w Polsce

Wahadła Foucaulta w Polsce

Woda spływając tworzy wir. Nie tylko woda skręca w czasie ruchu. Także prądy powietrza, które tworzą wiry w atmosferze. Podobnie dzieje się np. z krążkiem uderzonym przez hokeistę, albo z kulą wystrzeloną z pistoletu.

To efekt Coriolisa, który występuje w obracających się układach odniesienia. Dobrze widać to na wahadle Foucault. W 1851 roku francuski fizyk i astronom Jean Foucault zaprezentował w Paryskim Obserwatorium Astronomicznym wahadło, które zmieniając płaszczyznę wahania dowodziło wirowania Ziemi wokół własnej osi.

O co chodzi? Gdy na długiej linie zawiesimy spory obciążnik i wahniemy nim, z czasem zauważymy, że zmienia on płaszczyznę wahania. Tak jak gdyby coś ją przesuwało. Najłatwiej to zauważyć rozstawiając wokół wahadła znaczniki, które z czasem będą się jeden po drugim przewracać. Dlaczego ma to świadczyć o ruchu wirowym Ziemi? Jeżeli wahadło jest odpowiednio długie, a jego obciążnik wystarczająco ciężki, wpływ otoczenia na ruchy wahadła są znikome. Z punktu widzenia kogoś, kto stoi na Ziemi, wahadło wyraźnie zmienia płaszczyznę wahania. Ruchu Ziemi nie widać, bo na niej stoimy, jesteśmy względem niej w spoczynku. Z innego punktu widzenia kogoś, kto znajduje się w innym układzie odniesienia sprawa wygląda jednak zupełnie inaczej. Tutaj płaszczyzna wahania jest cały czas taka sama.

Gdyby Ziemia była w spoczynku płaszczyzna wahania nie zmieniałaby się. Skoro płaszczyzna się zmienia, znaczy to, że Ziemia wiruje. Zresztą ruch wirowy nie jest jedynym. Ziemia krąży wokół Słońca z prędkością ponad 100 000 km/h, cały Układ Słoneczny krąży wokół centrum galaktyki z prędkością prawie miliona km/h, a galaktyka w której się znajdujemy porusza się z prędkością ponad 2 mln km/h.

Czytając ten tekst pokonałaś / pokonałeś kilkadziesiąt tysięcy kilometrów… siedząc cały czas w tym samym miejscu 🙂

 

Najdłuższe wahadło Foucaulta w Polsce znajduje się w krakowskim Kościele św. św. Piotra i Pawła. Demonstracje odbywają się w każdy czwartek.

Miejsce Miasto Długość (m) Masa (kg)
Kościół św. Piotra i Pawła Kraków 46,5 25
Centrum Nowoczesności Młyn Wiedzy Toruń 33,5 35
Wieża Radziejowskiego – dawna dzwonnica Frombork 28,5 46
Wieża Dzwonów na Zamku Książąt Pomorskich Szczecin 28,5 76
Wydział Matematyczno-Przyrodniczy Uniwersytetu Jana Kochanowskiego Kielce 27
Dziedziniec Politechniki Gdańskiej Gdańsk 26 64
Centrum Nauki Kopernik Warszawa 16 242
Wydział Fizyki, Astronomii i Informatyki Stosowanej Uniwersytetu Mikołaja Kopernika Toruń 16 29
Wydział Fizyki Uniwersytetu im. Adama Mickiewicza Poznań 10 52
Planetarium Śląskie Chorzów

źródło: Wikipedia

 

 

 

 

 

3 komentarze do Wahadła Foucaulta w Polsce

Trzy nieznane fakty o paleniu

Palenie zabija. To wie prawie każdy, poniżej trzy informacje, które jednak nie są powszechnie znane.

Palenie zabija. To wie prawie każdy, poniżej trzy informacje, które jednak nie są powszechnie znane.

 

Nie pal przy dzieciach !

Światowa Organizacji Zdrowia (WHO) opublikowała kilka lat temu pierwsze przeprowadzone na tak ogromną skalę badania dotyczące tzw. biernego palenia. Co roku z powodu wdychania dymu papierosowego umiera 600 tys. osób, które papierosów nie palą. Około 1/3 ofiar to dzieci.

Z badań wynika, że szczególnie narażone są małe dzieci, u których drastycznie rośnie ryzyko tzw. nagłej śmierci łóżeczkowej, astmy i zapalenia płuc. Ponadto dzieci, które są w sposób ciągły narażone na bierne palenie w swoich domach, rozwijają się znacznie wolniej niż ich rówieśnicy. Zarówno fizycznie jak i intelektualnie. Z badań wynika, że drugą najbardziej poszkodowaną grupą są kobiety. U nich ryzyko zachorowania będącego skutkiem palenia biernego jest o 50 proc. wyższe niż u mężczyzn. Eksperci WHO szacują, że na całym świecie 40 proc. dzieci, 33 proc. niepalących mężczyzn i 35 proc. niepalących kobiet jest narażonych na palenie bierne. Największy problem stanowi to dla Europejczyków i Azjatów. Najmniejszy dla Amerykanów. Badania na podstawie których sporządzono raport, przeprowadzono w 192 krajach świata.

 

Szybciej niż myślisz

Z badań opublikowanych w czasopiśmie „Chemical Research in Toxicology” wynika, że dym papierosowy po zaledwie kilku minutach może powodować uszkodzenia DNA, grożące rozwojem raka. Dotychczas myślano, że ten proces trwa latami. Amerykańscy naukowcy z Uniwersytetu Minnesoty w Minneapolis badali mutacje komórek krwi prowadzące do zmian nowotworowych spowodowanych paleniem papierosów. Badając kilkanaście osób odkryli, że maksymalne stężenie tzw. diol-epoksydy, związku powodującego mutacje DNA pojawia się w organizmie osoby palącej już po 15-30 minutach od wypalenia papierosa. – Te badania są wyjątkowe, gdyż jako pierwsze śledzą w ludzkim organizmie metaboliczne przemiany PAH pochodzącego wyłącznie z dymu papierosowego, bez zakłóceń z innych źródeł, jak powietrze czy dieta. Uzyskane przez nas wyniki powinny stanowić ostrzeżenie dla osób, które zastanawiają się nad rozpoczęciem palenia – powiedział dr Stephen Hech, szef grupy badawczej. Na całym świecie codziennie umiera ok. 3 tys. osób z powodu raka płuca. 90 proc. tych zgonów jest spowodowanych paleniem tytoniu. Palenie ma, oprócz raka płuc, związek z co najmniej 18 innymi nowotworami złośliwymi.

 

Papierosy a gender

Z badań wynika, że kobiety inaczej uzależniają się od papierosów niż mężczyźni. Ci ostatni palą dla zabicia czasu, można powiedzieć, że z nudy, kobiety znacznie częściej po to, by się uspokoić. A to nie jedyna różnica. Palący mężczyźni znacznie częściej niż palące kobiety, odczuwają z faktu palenia przyjemność. Kobiety zwykle za paleniem nie przepadają, ale robią to w pewnym sensie ze strachu. Np. przed tym, że jak rzucą papierosy, przytyją. Co zresztą często następuje zresztą znacznie częściej u kobiet niż u mężczyzn. Dlaczego i tutaj płeć ma znaczenie? Trzeba wrócić do motywacji. Kobiety palą gdy chcą się uspokoić. Drugim najbardziej popularnym „uspokajaczem” jest u płci pięknej jedzenie. Tymczasem odruch wzięcia papierosa do ust, zabija głód jedzenia. Innymi słowy, albo palisz, albo jesz. A jak jesz, często tyjesz.

Podsumowując, uzależnienie od nikotyny u kobiet jest uzależnieniem psychicznym, podczas gdy u mężczyzn znacznie częściej uzależnieniem całego organizmu. To powoduje, że terapie antynikotynowe dla kobiet i mężczyzn powinny być inne. Z badań wynika, że plastry nikotynowe nie działają na kobiety, mają jednak spory wpływ na zwyczaje panów. U kobiet w rzuceniu palenia mogą jednak pomóc elektroniczne papierosy, podczas gdy u mężczyzn, ich wpływ nie jest duży.

 

Tomasz Rożek

 

Brak komentarzy do Trzy nieznane fakty o paleniu

Ta opowieść dotyczy wszechświata…

Ta opowieść dotyczy wszechświata. Ta książka dotyczy wszechświata. Opisuję w niej to, co jest większe od człowieka. Począwszy od całego kosmosu, przez galaktyki, gwiazdy i planety, a na biologicznym życiu kończąc. Książka pt. KOSMOS, którą chcę Państwu przedstawić jest pełna moich fascynacji.

Ta opowieść dotyczy wszechświata. Ta książka dotyczy wszechświata. Opisuję w niej to, co jest większe od człowieka. Począwszy od całego kosmosu, przez galaktyki, gwiazdy i planety, a na biologicznym życiu kończąc.

wszechswiat_1

Książka KOSMOS, to pierwsza część trylogii. Drugą części, którą mam nadzieję zakończyć za kilka miesięcy, poświęcę człowiekowi, a w trzeciej, opiszę świat rzeczy małych. Bardzo małych, takich jak cząsteczki chemiczne, atomy i cząstki elementarne.

galaktyki_2

Te trzy książki będą dotyczyły wszechświata. Ale absolutnie nie będą jego kompletnym obrazem. Najwyżej wycinkiem tego co wiemy. A to co wiemy, jest wycinkiem tego co jest. Jak to wszystko pojąć? Jak to wszystko zrozumieć? Jak to sobie wyobrazić? Nie wiem czy to w ogóle możliwe. Otaczają nas rzeczy duże i małe. Niektóre są tak małe, że z trudem budujemy urządzenia, które umożliwiają nam ich podglądanie. Niektóre z tych urządzeń bardziej przypominają stację kosmiczną, niż mikroskop.

gwiazdy_3
Z kolei rzeczy duże, są tak duże, że stojąc na powierzchni Ziemi nie jesteśmy w stanie objąć ich ani wzrokiem, ani nawet wyobraźnią. A jednak istnieją. I co do tego nie ma wątpliwości. Zarówno światem w skali mikro, nano czy atto, jak i tym w skali mega, giga i tera rządzą te same zasady, działają tam dokładnie te same prawa fizyki. I te same siły. Te same, ale nie tak samo. I to kolejna fascynacja.

planety_4

Ta książka pełna jest moich fascynacji. Pełna intrygujących i zaskakujących opisów. Dla kogo przeznaczonych? Nie, nie tylko dla fizyków czy matematyków. Ale na pewno dla ludzi ciekawych świata. Niezależnie od wieku i wykształcenia. Dla tych którzy szczególnie interesują się tematem, dla tych, których udało mi się nim zainteresować, stworzyłem dodatkowe opisy na marginesach. Mniejszym drukiem podaję jeszcze więcej szczegółów i analogii. Dialogi, których w książce jest kilkadziesiąt to chyba najbardziej intuicyjny sposób na przekazywanie informacji. No i ramki. Tam zawarłem podsumowania, doświadczenia i dygresje. Najwięcej chyba czasu zajęło jednak dobranie interesujących zdjęć. Jeden obraz mówi więcej niż 1000 słów. Co ja mówię, niż 10 000 słów.

Ziemia_5

Rzeczy małe i duże powstały nie z przypadku, tylko z jakiegoś planu, jakiegoś projektu. Bez którejkolwiek z nich, konstrukcja całego wszechświata zawaliłaby się. Są jak zębatki zegara, który kiedyś został nakręcony i tyka do dzisiaj. Ten doskonale naoliwiony mechanizm jest dla nas wielką tajemnicą. Rozumiemy go w zaledwie małym wycinku. Czy kiedykolwiek poznamy w całości? Nie wiem, ale jestem pewien, że nigdy nie ustaniemy w próbach by to zrobić. A paliwem, które nas do tego napędza jest ciekawość. Coś, co powinniśmy pielęgnować u siebie ale przede wszystkim u dzieci. Bez ciekawości, zamienimy się w bezduszne istoty, którym bliżej będzie do robotów niż do ludzi.

Życie_6

>>> Zapraszam do lektury książki KOSMOS, wydanej przez wydawnictwo W.A.B. Książka jest do kupienia w księgarniach na terenie całego kraju. Można ją też kupić w wielu księgarniach internetowych. Na stronie www.NaukaToLubie.pl na bieżąco są zamieszczane informacje o terminach i miejscach spotkań autorskich.

Tomasz Rożek

 

6 komentarzy do Ta opowieść dotyczy wszechświata…

Czy życie pochodzi z kosmosu?

Desant ziemskiego życia na niektóre globy w Układzie Słonecznym wcale nie byłby skazany na niepowodzenie. Część z prostych, jednokomórkowych organizmów mogłaby bez kłopotu żyć na jowiszowych księżycach, na Marsie czy nawet Wenus.

Desant ziemskiego życia na niektóre globy w Układzie Słonecznym wcale nie byłby skazany na niepowodzenie. Część z prostych, jednokomórkowych organizmów mogłaby bez kłopotu żyć na jowiszowych księżycach, na Marsie czy nawet Wenus.

800px-Grand_prismatic_spring

 

 

 

 

 

 

 

 

 

Grand Prismatic Spring to największe gorące źródła w Parku Narodowym Yellowstone, USA. Woda w jeziorze na zdjęciu może mieć temperaturę do 90°C. Takie warunki życiu jednak nie przeszkadzają. Jaskrawe kolory na zdjęciu to właśnie „zasługa” termofili – lubiących wysoką temperaturę bakterii.

 

Człowiek nie docenia możliwości adaptacyjnych przyrody. Niedaleko od Chicago postanowiono wiele lat temu zasypać hutniczym żużlem jezioro Lake Calumet. W efekcie woda w małych zbiornikach wodnych stała się bardziej zasadowa niż woda utleniona. Podczas gdy czysta woda w skali pH (to powszechnie używana przez chemików miara kwasowości i zasadowości roztworów wodnych) ma wartość 7, woda utleniona około 12, tak w oczkach wodnych w okolicach dawnego Lake Calumet był roztwór o pH 12,8 ! U człowieka taka mocna zasada poparzyłaby skórę. Jakie było zdziwienie naukowców gdy po zbadaniu próbek pobranych z oczek, okazało się, że jest w nich życie. Małe organizmy żyją także w żrących jak kwas wodach rzeki Rio Tinto na południu Hiszpanii. Jej pH wynosi  2.

Żyjątka z Lake Calumet i z Rio Tinto należą do tej samej grupy tzw. ekstremofili, organizmów, które zadziwiają swoją zdolnością do życia w warunkach ekstremalnych. Naukowcom znane są bakterie, które zamieszkują geotermalne dna oceanów, gdzie temperatura przekracza 150 st. Celsjusza (tzw. termofile) i takie które rozmnażają się na odpadach promieniotwórczych. Niektóre są obojętne na promieniowanie ultrafioletowe, a inne na ciśnienie dochodzące aż do 250 atmosfer (barofile). Znane są też takie, które żyją w wodzie tak słonej, że nie zamarzającej nawet przy kilkudziesięciu stopniach poniżej zera (to halofile). W maleńkiej próbce wody ze śniegów Bieguna Południowego znaleziono od  200 do 5 tyś bakterii, mimo że temperatury dochodzące tam do minus 80 stopni Celsjusza nie są rzadkością !

Jak to się dzieje, że organizmy żywe adoptują się do warunków tak ekstremalnych, skoro mogłyby „wybrać” te znacznie przyjaźniejsze ? Każdy chce być oryginalny – nawet jednokomórkowiec. To nie tylko żart, ale i jedna z zasad przetrwania. W skrajnie nieprzyjaznych warunkach jest mniejsza konkurencja, a to zwiększa szansę na przeżycie. Te organizmy, które zdołają się przystosować, mogą liczyć na swoisty bonus. Na problem można spojrzeć także z innej strony. A może ekstremofile wcale nie musiały się  przystosowywać do niegościnnych (gdzieniegdzie) warunków na Ziemi? Może ekstremalne jednokomórkowce na Ziemię przywędrowały z miejsc, gdzie tak właśnie ekstremalnie się żyje ? W Układzie Słonecznym jest wiele miejsc, gdzie żyjące teraz na Ziemi ekstremofile bez trudy by sobie poradziły. Czy to znaczy, że pochodzą one właśnie stamtąd ?

Można się zastanawiać skąd wzięły się u nas tak nietypowe organizmy, ale można też korzystając z tego że już tutaj żyją dokładniej im się przyjrzeć. Naukowcy robią to bardzo chętnie, bo – wiadomo – badanie czegoś oryginalnego jest pasjonujące. Jedną z częściej w tym kontekście badanych bakterii jest Deinococcus radiodurans, jednokomórkowiec, niezwykle odporny na wysokie dawki promieniowania jonizującego. Przeżywa do 1,5 mln radów, podczas gdy większość organizmów żywych umiera przy 1 tyś. radów. Niezwykła odporność bakterii wynika z ciasno splecionego DNA. Dzięki temu naprawa popękanych jego kawałków trwa o wiele krócej. Poza tym bakteria ma aż cztery pełne kopie genomu. Raczej trudno sobie wyobrazić, że wszystkie one na raz ulegną uszkodzeniu w tym samy miejscu. Wiele prostych organizmów ma także niezwykłą zdolność tworzenia form przetrwalnikowych. Naukowcy znaleźli bakterie, które 250 milionów lat „przezimowały” wewnątrz kryształków soli. Znany jest też przypadek glonów Hemichloris antarctica, które wydają się być zupełnie niewrażliwe na wielokrotne zamrażanie i odmrażanie. Czy takie umiejętności nie są pomocne w przetrwaniu każdych warunków ?

Wraz z odkrywaniem nowych gatunków ekstremofili, poszerza się margines w którym istnieć może życie. Do niedawna nie obejmował nawet całej Ziemi. Uważano, że w tych najbardziej nieprzyjaznych jej częściach życia po prostu nie ma. Dziś wiadomo, że życie jest wszędzie i dostarczono dowodów na to, że w zasadzie mogłoby istnieć w wielu miejscach Układu Słonecznego. Na Marsie, w atmosferze Wenus czy na księżycach Jowisza.

1 komentarz do Czy życie pochodzi z kosmosu?

Nauka w służbie sztuki [+ głos Mony Lisy]

Posłuchaj jaki głos miała Mona Lisa!

To co ukryte jest najciekawsze. Ta zasada napędza całą naukę. W tym dążeniu do odkrywania tajemnic człowiek jest tak zdeterminowany, że nie cofnie się nawet przed bombardowaniem wiekowych egipskich malowideł protonami.

Czy można usłyszeć głos namalowanej przez Leonarda Mony Lisy? Tak! To co ukryte jest najciekawsze. Ta zasada napędza całą naukę. W tym dążeniu do odkrywania tajemnic człowiek jest tak zdeterminowany, że nie cofnie się przed niczym. Nawet przed bombardowaniem wiekowych egipskich malowideł wiązką rozpędzonych protonów.

Brzmi to być może groźnie, ale groźne nie jest. W Instytucie Problemów Jądrowych im. A. Sułtana w Świerku (IPJ), pod kierunkiem profesora Andrzeja Turosa kilka lat temu badane były stary egipskie malowidła. Fizycy chcieli się dowiedzieć jak wyglądały one w czasach gdy je tworzono. O tym, że starożytni Egipcjanie mieli do perfekcji opanowaną sztukę tworzenia fresków, nie trzeba chyba nikogo przekonywać. Ściany świątyń i grobowców zdobiły i nadal zdobią niesamowite wręcz malowidła. To dzięki nim można poznać wiele faktów z życia zarówno egipskich królów, jak i egipskiej biedoty. W niektórych grobowcach zachowały się historyjki jak żywcem ściągnięte z komiksów. Np. obrazkowa rozmowa trzech rzeźników zabijających wołu.
Nie tylko skala egipskich malowideł zadziwia, ale także dbałość o ich detale, a w tym o kolory. Już wiele tysięcy lat temu egipscy malarze byli niedoścignionymi specjalistami w komponowaniu farb i barwników. Wiedzieli nie tylko z jakiej substancji jaką barwę da się uzyskać, ale także jakie związki należy ze sobą mieszać, by uzyskać oczekiwany efekt. Niektóre bardzo skomplikowane metody produkcji barwników do dzisiaj zadziwiają naukowców. Niestety wiele czynników takich jak zanieczyszczenie środowiska, zmiany wilgotności i temperatury, ale przede wszystkim czas, spowodowały, że dzisiejsze kolory malowideł mogą być bardzo dalekie od oryginału. Czy dziś, mimo upływu tysięcy lat możliwa jest rekonstrukcja oryginalnej kolorystyki egipskich fresków ?

Egypt_King's_valley2

 

 

 

 

Ozyrys i Horus z grobowca w Dolinie Królów w Egipcie

 

Naukowcy do badania egipskich próbek wykorzystują metodę PIXE (Particle Induced X-ray Emission). Polega ona na bombardowaniu interesujących fragmentów malowidła wiązką rozpędzonych protonów. Dzięki niesionej przez te cząstki energii, atomy wchodzące w skład barwnika zostają wzbudzone. Gdy powracają do stanu podstawowego emitują charakterystyczne dla każdego pierwiastka promieniowanie. Obserwując je naukowcy wiedzą jakie pierwiastki wchodzą w skład badanego barwnika. Analizując natężenie badanego promieniowania mogą też stwierdzić ile było atomów danego pierwiastka w próbce. Na podstawie informacji o składzie i proporcjach poszczególnych składników, można próbować „zrekonstruować” skład starych egipskich barwników. Stąd już tylko krok do zrobienia ich i sprawdzenia jakie dawały kolory.

Dzięki analizie promieniowania X jakie wysyłają starożytne egipskie tynki, fizycy są w stanie powiedzieć jak wyglądały malowidła ukończone przed tysiącami lat. Ale fizyka, dla sztuki może zrobić znacznie więcej. Niedawno został gruntownie przebadany najbardziej chyba znany obraz znajdujący się w polskich muzeach. Chodzi o „Damę z gronostajem”, której autorem jest Leonardo da Vinci. Badania kamerą multispektralną pozwoliły na odkrycie – dosłownie – tego czego ludzkie oko nie może już dzisiaj zobaczyć. Przy okazji odkryto także elementy, których ludzki oko – w zamiarze artysty – nie miało oglądać.
Badania „Damy z gronostajem”, albo inaczej „Damy z łasiczką” trwają od bardzo dawna. Obraz jest fascynujący pod wieloma względami. Badaczy zaciekawiło np. to, ze modelka jest przedstawiona na całkowicie czarnym tle. Wykonane w 1993 roku w USA badania radiograficzne wykazały, że pod warstwą czarnej farby kryje się inny rysunek. Czy Leonarda nie było stać na płótna i zamalowywał starsze obrazy po to móc malować nowe ? A może nie chciało mi się dokończyć dzieła albo „panorama z pod spodu” nie udała się i gdy nadeszło zamówienie na kolejny obraz mistrz nie chciał niszczyć zakupionego już płótna ? Dzisiaj te wątpliwości trudno rozwiązać. Przeprowadzone badania odkryły jednak znacznie więcej tajemnic Cecylii Gallerani. To ją sportretował pod sam koniec XV wieku Leonardo da Vinci. Osobą zamawiającą obraz był książę Ludwik Sforza. Cecylia była jego kochanką.

640px-The_Lady_with_an_Ermine

 

 

 

 

 

 

 

Portret damy z gronostajem namalował około 1490 roku Leonardo da Vinci. Obraz znajduje się w zbiorach Muzeum Książąt Czartoryskich w Krakowie i jest jedynym dziełem Leonarda da Vinci w Polsce.

 

Urządzenie, którym posługiwano się analizując dzieło to tzw. kamera multispektralna. Potrafi z bardzo dużą dokładnością fotografować analizowane dzieło, także w niewidzialnej dla oka części widma. Oczywiście metoda jest bezinwazyjna, a więc nie powoduje uszkodzenia samego obrazu. Kamera multispektralna jest tak dokładna, że potrafi rozpoznać autentyczność dzieła po zostawionych na płótnie odciskach palców artysty, który je malował. A to nie wszystko. Można prześledzić retuszowanie obrazu a także to co pod dodatkowymi warstwami farby się znajduje. Innymi słowy w ten sposób można odkryć chyba najbardziej skrywane sekrety warsztatowe artysty. Można wskazać miejsca w których się pomylił i te w których próbował te pomyłki zatuszować. Dzięki odpowiedniemu oprogramowaniu możliwe jest trójwymiarowe zeskanowanie całego obrazu. Później warstwa po warstwie obraz analizować. W ten sposób bada się nie tylko powierzchnię dzieła ale także warstwy farby leżące pod nią.

Co udało się odkryć dzięki multispektralnej analizie „Damy z gronostajem” ? Przedstawiona na obrazie modelka miała na głowie założony czepek. Dzisiaj gołym okiem go już nie widać. Odkryto także, że Leonardo w pierwszej wersji obrazu inaczej zilustrował trzymane na ramionach Cecylii Gallerani zwierze. Badacze wskazali miejsce gdzie mistrz początkowo namalował łebek zwierzęcia, po to by zamalować go i umieścić w nieco innym miejscu. Tą samą metodą i przez ten sam zespół została przebadana w paryskim Luwrze Mona Lisa. Z wcześniejszej analizy obrazu wynikało, że Joconda … spodziewa się potomstwa.

Mona_Lisa,_by_Leonardo_da_Vinci,_from_C2RMF_retouched

 

 

 

 

 

 

Mona Lisa – obraz olejny namalowany w pierwszych latach XVI wieku przez Leonarda da Vinci. Obraz jest własnością rządu Francji i znajduje się w paryskim Luwrze.

 

Zespół kanadyjskich i francuskich uczonych dzięki wykorzystaniu specjalnego urządzenia laserowo – optycznego zeskanował obraz, a następnie cyfrowo usunął starą i zabrudzoną warstwę lakieru utrwalającego czyli tzw. werniksu. W tym momencie uczeni zobaczyli jak wyglądał obraz w chwili jego powstania. To wtedy właśnie zauważyli, ze Mona Lisa ma na ramiona narzuconą charakterystyczną pelerynę. Taki strój nosiły w XVI wieku tylko kobiety ciężarne. Dzisiaj tej charakterystycznej peleryny już gołym okiem nie widać. Jeszcze dalej w swojej dociekliwości posunęła się grupa kryminologów z Japonii. Dokładnie zmierzyli twarz i dłonie Jocondy. Na tej podstawie odtworzono kształt czaszki modelki oraz jej wzrost i orientacyjną wagę. Te informacje zostały wprowadzone do programu, który na co dzień służy kryminologom do generowania głosu w oparciu o informacje o wadze ciała, wieku czy trybie życia. Efekt ?

Tłumaczenie: Jestem Mona Lisa. Moja historia owiana jest tajemnicą. Niektórzy sądzą, że jestem Marią Magdaleną, inni że Giocondą, Izabelą d’Esta czy matką Leonarda DaVinci. Są i tacy którzy uważają, że jestem samym Leonardem. Jedyną rzeczą, którą można stwierdzić z całą pewnością jest to, że jestem kobietą o najbardziej tajemniczym uśmiechem na świecie.

Japońscy badacze głos Mony Lisy określili go jako „głęboki, ale nie gardłowy”. Inna grupa ekspertów – tym razem z Holandii – przeprowadziła komputerową analizę twarzy modelki. Użyła do tego oprogramowania, które służy do rozpoznawania nastroju i stanu psychicznego. Joconda była – zdaniem ekspertów – osobą szczęśliwą (w 83 procentach) choć trochę zdegustowaną (w 9 procentach), przestraszoną (w 6 proc.) i rozgniewaną (w 2 proc.) Czy coś można dodać ?

Mona Lisa żyła ponad 500 lat temu. Kto wie, czy już niedługo na takie badania okresowe nie zostanie skierowana Cecylia Gallerani z obrazu „Dama z gronostajem”. Może poznamy jej głos ? A faraonowie ? Trzeba przyznać, że tutaj też nie jesteśmy w tyle. Chcemy poznać kolory świata, który istniał tysiące lat temu. To, że kiedyś poznamy głosy przynajmniej niektórych królów starożytnego Egiptu, nie ulega żadnej wątpliwości. Już dzisiaj wiemy na co chorowali, jakie przeszli zabiegi i z jakiej diety korzystali. Tak naprawdę możemy powiedzieć o nich wszystko, bo istnieją świetnie zachowane mumie niektórych z nich. Pytanie tylko czy my to wszystko chcemy wiedzieć ?

Tomasz Rożek

Tekst ukazał się na gosc.pl

Brak komentarzy do Nauka w służbie sztuki [+ głos Mony Lisy]

Woda jest wszędzie

Po raz kolejny potwierdzono, że wody we wszechświecie jest bardzo dużo. Właśnie odkryto największy z dotychczas znanych jej zbiorników.

Po raz kolejny potwierdzono, że wody we wszechświecie jest bardzo dużo. Właśnie odkryto największy z dotychczas znanych jej zbiorników.

Odkrycie dotyczy ogromnego obłoku pary wodnej, jaki naukowcy z California Institute of Technology, USA odkryli wokół oddalonego od Ziemi o 12 miliardów lat świetlnych kwazaru. Kwazar to rodzaj galaktyki, która otacza obszar czarnej dziury.
Dokładne obliczenia wskazują, że gdyby całą tą parę wodną skroplić, byłoby jej 140 bilionów (tysięcy miliardów) razy więcej niż wody we wszystkich ziemskich oceanach. Masa odkrytego wśród gwiazd „zbiornika wody” wynosi 100 tysięcy razy więcej niż masa Słońca. – To kolejny dowód, że woda jest wszechobecna we wszechświecie – powiedział Matt Bradfort, naukowiec z NASA

lunasyssolar_europa01_02Popękany lód na powierzchni Europy – jednego z księżyców Jowisza.

Do wyboru: lód, woda i para

Naukowców nie dziwi sam fakt znalezienia wody, ale jej ilość. Cząsteczka wody (dwa atomy wodoru i jeden atom tlenu) jest stosunkowo prosta i występuje we Wszechświecie powszechnie. Bardzo często łączy się ją z obecnością życia. To spore uproszczenie. Faktem jest, że życie jakie znamy jest uzależnione od obecności wody. Ale sam fakt istnienia gdzieś wody nie oznacza istnienia tam życia. Po to by życie zakwitło, musi być spełnionych wiele różnych warunków.

Woda, którą znajdują badacze dalekiego kosmosu jest w stanie gazowym, a woda niezbędna do życia musi być w stanie ciekłym. Nawet jednak ciekła woda to nie gwarancja sukcesu (w poszukiwaniu życia), a jedynie wskazówka. Takich miejsc którym badacze się przyglądają, jest dzisiaj w Układzie Słonecznym przynajmniej kilka. Woda w Układzie Słonecznym może występować – tak jak na Ziemi – w trzech postaciach. Gazowej, ciekłej i stałej. I właściwie we wszystkich trzech, wszędzie jej pełno. Cząsteczki pary wodnej badacze odnajdują w atmosferach przynajmniej trzech planet Układu Słonecznego. Także w przestrzeni międzygwiezdnej.

Woda w stanie ciekłym występuje na pewno na Ziemi. Czasami na Marsie, najprawdopodobniej na księżycach Jowisza, ale także – jak wykazały ostatnie badania – na księżycach Saturna. A na jednym z nich – Enceladusie – z całą pewnością. Gdy kilka lat temu amerykańska sonda kosmiczna Cassini – Huygens przelatywała blisko tego księżyca, zrobiła serię zdjęć, na których było wyraźnie widać buchające na wysokość kilku kilometrów gejzery. Zdjęcia tego zjawiska były tak dokładne, że badacze z NASA zauważyli w buchających w przestrzeń pióropuszach nie tylko strugi wody, ale także kłęby pary i… kawałki lodu. Skąd lód ? Wydaje się, że powierzchnia Enceladusa, tak samo zresztą jak jowiszowego księżyca Europy, pokryta jest bardzo grubą (czasami na kilka kilometrów) warstwą lodu. Tam nie ma lądów czy wysp. Tam jest tylko zamarznięty ocean. Cały glob pokryty jest wodą.

Nie tylko u nas

Skoro cała powierzchnia księżyców Jowisza i Saturna pokryta jest bardzo grubym lodem, skąd energia gejzerów ? Skąd płynna woda pod lodem ? Niektóre globy żyją, są aktywne. Ich wnętrze jest potężnym reaktorem, potężnym źródłem ciepła. Tak właśnie jest w przypadku zarówno Europy, jak i Enceladusa. Swoją drogą ciekawe co musi się dziać pod kilkukilometrowym lodem, skoro woda, która wydrążyła sobie w nim lukę, wystrzeliwuje na wiele kilometrów w przestrzeń ?

Może nie morza, jeziora czy chociażby bajora, ale lekka rosa. Wodę znajduje się także na powierzchni naszego Księżyca. Zaskakujące odkrycie to działo indyjskiej sondy Chandrayaan-1, potwierdzone przez dwie amerykańskie misje (Deep Impact i Cassini). Płynnej wody być na Księżycu nie może, bo brak tam atmosfery.
Niejedna praca naukowa powstała tez na temat wody na Czerwonej Planecie. Wiadomo że jest na marsjańskich biegunach. Nie brakuje jednak danych, że woda, nawet w stanie ciekłym, pojawia się czasowo w różnych innych miejscach planety. Zdjęcia zrobione przez sondę Mars Global Surveyer ukazały na ścianach jednego z kraterów na południowej półkuli Marsa dwie podłużne rysy powstałe w ciągu siedmiu lat, prawdopodobnie w wyniku „erozyjnej działalności cieków wodnych”.

Z badań amerykańskiej sondy Messenger, która od 2004 roku bada Merkurego wynika, że woda jest także w atmosferze pierwszej od Słońca, gorącej planety. Co z innymi planetami z poza Układu Słonecznego ? Na nich też pewnie jest mnóstwo wody. Tylko jeszcze o tym nie wiemy.
Czasopisma naukowe coraz częściej informują też o obecności wody na planetach, które znajdują się poza Układem Słonecznym. Pierwszą egzoplanetą na jakiej znaleziono wodę (w roku 2008) była HD 189733b, która znajduje się 63 lata świetlne od nas. Ta planeta to tzw. gazowy gigant. Ogromna kula gorących i gęstych gazów z płynnym wnętrzem. Gdzie tutaj miałaby znajdować się woda ? Wszędzie – twierdzą badacze. Dzięki aparaturze wybudowanej w California Institute of Technology, USA udało się odkryć, że mająca prawie 1000 st. C atmosfera zawiera duże ilości pary wodnej.

Tomasz Rożek

 

A skąd woda wzięła się na Ziemi? Odpowiedź może się wydawać zaskakująca. Najpewniej przyleciała do nas z kometami.

 

Tekst ukazał się w tygodniku Gość Niedzielny

2 komentarze do Woda jest wszędzie

Ile waży elektron?


Elektron waży mało, bardzo mało. Ale teraz przynajmniej wiemy, jak mało. Pracującemu w Niemczech Polakowi udało się najdokładniej na świecie zważyć masę elektronu.


Elektron waży mało, bardzo mało. Ale teraz przynajmniej wiemy, jak mało. Pracującemu w Niemczech Polakowi udało się najdokładniej na świecie zważyć masę elektronu.


Elektron jest tzw. cząstką elementarną, czyli taką, której nie da się już podzielić na mniejsze kawałki. Jest dość powszechny i powstał zaraz po Wielkim Wybuchu. Każdy atom składa się z jądra atomowego, w którym znajdują się protony i neutrony (wyjątkiem jest jądro wodoru, w którym jest tylko jeden proton), krążących wokół elektronów. Pomijając szczególne sytuacje, elektronów krążących wokół jądra atomowego jest tyle samo, ile protonów znajdujących się w jego wnętrzu. To powoduje, że atomy są obojętne elektrycznie, w skrócie mówiąc – mają tyle samo ładunków elektrycznych dodatnich (niesionych przez protony), ile ujemnych (te są niesione przez elektrony). Proton i elektron wydają się w tej opowieści swoimi przeciwieństwami. Jeden niesie ładunek ujemny, drugi dodatni. Ale to tylko pozory. Protony i elektrony są cząstkami skrajnie różnymi. Powstały po Wielkim Wybuchu, ale w zupełnie inny sposób.

Protony (i neutrony zresztą też) należą do rodziny tzw. hadronów, czyli cząstek sklejonych z kwarków. Elektron nie jest hadronem, nie jest z niczego sklejony, jest niepodzielny. Elektron należy do grupy cząstek zwanych leptonami. Pomijając jednak te obco (i może nawet nieco groźnie) brzmiące nazwy, można powiedzieć, iż różnica pomiędzy elektronem i protonem nie polega tylko na tym, że jeden się dzieli, a drugi nie, oraz na tym, że należą do dwóch różnych rodzin. Elektron jest dużo, dużo mniejszy od protonu. O ile mniejszy?

Ile dokładnie?


Nikogo nie trzeba chyba przekonywać, że zmierzenie masy cząstki nie jest łatwe. Nie da się jej tak po prostu położyć na wadze, odczekać, aż szalki się ustabilizują, a następnie odczytać masę z podziałki. Pomijając fakt, że jakiekolwiek standardowe urządzenia nie wchodzą w ogóle w grę, ponieważ cząstki są w ciągłym ruchu. Szczególnie dotyczy to właśnie elektronów. Można by się zastanawiać, po co w ogóle komukolwiek precyzyjna wiedza o masie elektronu. Nie da się zrozumieć tego, co dzieje się we wnętrzu atomu, tego, jakie panują mechanizmy i oddziaływania, bez dokładnego pomiaru masy cząstek, które atom budują. Oczywiście te masy cząstek są znane, ale zespół fizyków z niemieckiego Instytutu Maxa Plancka w Heidelbergu stwierdził, że precyzja tego pomiaru jest niewystarczająca i trzeba ją poprawić. Pomiar masy, jakiego udało się dokonać, jest 13 razy bardziej precyzyjny niż te, którymi dysponowano dotychczas. Ile więc waży jeden elektron? Jest dokładnie 1836 razy lżejszy niż proton. Z kolei w jednym gramie mieści się 600 tryliardów protonów (tryliard to 1 i 21 zer). Jeszcze inaczej można powiedzieć, że masa atomowa elektronu wynosi ok. 0,000548579909067. 
Elektron jest najlżejszą cząstką, jaką udało się dotychczas fizykom precyzyjnie zważyć. Co prawda istnieją lżejsze cząstki od elektronów, ale ich masa nie jest znana, szacuje się jedynie jej wartość.

Jak zmierzono?


Bezpośredni pomiar masy elektronu jest absolutnie niemożliwy. Po to, by go zważyć, trzeba było posłużyć się pewnym trikiem. Wzięto atom węgla, w którym znajduje się 6 elektronów i „odczepiono” od niego 5 elektronów. W efekcie powstał tzw. jon, który miał jadro atomu węgla, ale wokół niego krążył tylko jeden elektron. Taki jon węgla zamknięto w urządzeniu zwanym pułapką Penninga. I dopiero tam zaczął się pomiar właściwy masy elektronu. Elektron (zresztą inne cząstki także) może się zachowywać jak niewielki magnesik. Manipulując złapanym w pułapkę jonem węgla, naukowcy mierzyli zachowanie elektronu, który krążył wokół jądra. Z tych pomiarów, przez zastosowanie wzorów, udało się precyzyjnie wyliczyć masę elektronu. Pomiary i badania trwały wiele miesięcy, a po ich zakończeniu wyniki eksperymentu znalazły się w pracy naukowej opublikowanej w prestiżowy czasopiśmie „Nature”. Jednym ze współautorów tej publikacji był pracujący w Niemczech Polak dr Jacek Zatorski. To on był odpowiedzialny za obliczeniową część eksperymentu.

Jak tam jest? 
Pusto


Mały elektron, większe protony i neutrony. Jak można sobie wyobrazić świat na poziomie pojedynczych atomów? Z całą pewnością inaczej, niż rysują go w podręcznikach. Przede wszystkim jądro atomowe wcale nie musi być kulką. Po drugie elektrony są znacząco mniejsze niż protony i neutrony, podczas gdy na modelach atomów w książkach są prawie takie same. Gdyby proton był wielkości jabłka, elektron byłby ziarenkiem słonecznika, a może większym ziarenkiem piasku. I jeszcze jedno. Atom to w większości pustka. Podobnie zresztą jak Układ Słoneczny. To dość udana anologia. Bo zarówno w atomie, jak i w naszym układzie planetarnym przeważająca większość masy zgromadzona jest w centrum.
99 proc. masy całego Układu Słonecznego to Słońce. Podobnie jest w atomie, gdzie jądro atomowe „zabiera” 99 proc., a czasami jeszcze więcej masy całego atomu. I jeszcze jedno: elektrony są nie tylko dużo, dużo lżejsze od jądra atomowego, ale tak samo jak w Układzie Słonecznym planety, krążą bardzo od niego daleko. Powracając do analogii z jabłkiem jako protonem i ziarenkiem piasku jako elektronem – w tej skali elektron krąży w odległości kilkudziesięciu, a może nawet 100 metrów od jądra atomowego. Atom to w większości pustka. •

Tomasz Rożek
tekst ukazał się w numerze 11/2014 tygodnika Gość Niedzielny

Czy można zobaczyć cząstkę elementarną?

3 komentarze do Ile waży elektron?


Rewelacyjny wynalazek polskiego maturzysty

19-letni Mariusz Bielaszka, uczeń ostatniej klasy Technikum Elektronicznego w Połańcu, wymyślił urządzenie, które może uratować życie wielu starszych ludzi. O jego wynalazek już biją się zagraniczne firmy – informuje „Metro”.

19-letni Mariusz Bielaszka, uczeń ostatniej klasy Technikum Elektronicznego w Połańcu, wymyślił urządzenie, które może uratować życie wielu starszych ludzi. O jego wynalazek już biją się zagraniczne firmy – informuje „Metro”.

Coraz więcej osób starszych znika w Polsce bez śladu – wynika z danych udostępnionych gazecie przez Fundację Itaka, która szuka zaginionych. Bardzo wiele przypadków zaginięć osób starszych ma związek z zaburzeniami pamięci powodowanymi demencją lub chorobą Alzheimera.

Do tego, by łatwiej było ich znaleźć służy opracowany przez Mariusza Wanted Clock. Urządzenie wygląda jak zegarek, ale ma wbudowany GPS, w środku znajduje się karta SIM. Jak to działa? – To bardzo proste. Wystarczy, aby osoba, którą chcemy monitorować, miała na ręku zegarek (programujemy współrzędne lokalizacyjne miejsca, którego nie powinna opuszczać), zaś druga osoba zwyczajny telefon. Kiedy chcemy dowiedzieć się, gdzie znajduje się dana osoba, wysyłamy sms na lokalizator, a po chwili otrzymujemy wiadomość zwrotną z bezpośrednim linkiem do mapy. Wystarczy minuta, żeby odnaleźć osobę, która go nosi. Moje urządzenie dodatkowo wzbogaciłem o funkcję przypominającą o zażyciu leków – opowiada mediom wynalazca.

Na pytanie skąd pomysł na skonstruowanie takiego urządzenia młody wynalazca odpowiedział w wywiadzie dla serwisu „Spinno.pl”:

Pomysł zrodził się z życia codziennego. W okresie zimowym starsza kobieta, chora na  Alzheimera, uciekła z domu spokojnej starości. Sam uczestniczyłem w poszukiwaniach zaginionej kobiety. Wówczas zrodziła się w mojej głowie idea urządzenia, które pozwoli  na szybką lokalizację osoby. W efekcie skonstruowałem zegarek wyglądem niczym odbiegający od tych, które sami używamy na co dzień – mówił Bielaszka.

Zegarek przypomni też o przyjmowaniu leków, a gdy wyślesz na niego SMS-a o określonej treści, sam oddzwoni i uruchomi system głośno mówiący (byś mógł zwrócić się do seniora) albo wbudowane diody zaczną emitować intensywne sygnały świetlne (funkcja ma się przydać w nocnych poszukiwaniach, gdy posiadacz zegarka zaginie).

Wynalazek zdobył już złoty medal i nagrodę specjalną na brukselskich Targach Wynalazczości „Brussels Innova”, wyróżnienie w polskim konkursie dla młodych naukowców E(x)plory 2014 i II miejsce na ogólnopolskiej Olimpiadzie Innowacji Technicznych. Na początku maja zegarek pojedzie na targi innowacji do Paryża, a parę dni później na konkurs INFOMatrix do Bukaresztu. Po maturze Mariusz chce rozpocząć studia na kierunku Automatyka i Robotyka na Akademii Górniczo-Hutniczej w Krakowie.

wt /Metro/spinno.pl

artykuł ukazał się na www.gosc.pl

Brak komentarzy do Rewelacyjny wynalazek polskiego maturzysty

Polskie miasta najbardziej zanieczyszczone w Europie!

Pyły i substancje chemiczne w powietrzu niszczą nasze zdrowie. Na ten problem zwrócili uwagę eksperci – uczestnicy naukowej konferencji „Zanieczyszczenie środowiska a choroby płuc i układu krążenia”.

Pyły i substancje chemiczne w powietrzu niszczą nasze zdrowie. Na ten problem zwrócili uwagę eksperci – uczestnicy naukowej konferencji „Zanieczyszczenie środowiska a choroby płuc i układu krążenia”.

Piotr Dąbrowiecki z Wojskowego Uniwersytetu Medycznego wyjaśnił, że przede wszystkim zanieczyszczenie powietrza powoduje reakcję zapalną układu oddechowego. To prowadzi do astmy, alergii i Przewlekłej Obturacyjnej Choroby Płuc.

Kardiolog doktor Adam Stańczyk zwracał uwagę, że pyły i chemiczne substancje w powietrzu niszczą śródbłonek. Jest to warstwa komórek, która wyścieła wszystkie naczynia w organizmie i odpowiada za ich prawidłowe funkcjonowanie, na przykład regulację ciśnienia podczas stresu. Zwiększa ryzyko chorób serca i udarów mózgu.

Doktor Artur Badyda z Politechniki Warszawskiej wskazywał, że powietrze zanieczyszczają nie tylko kominy zakładów przemysłowych, spaliny samochodowe, ale przede wszystkim indywidualne gospodarstwa domowe. Największy problem to spalenie w piecach odpadów i śmieci, co powoduje powstawanie substancji toksycznych.

Z badań Europejskiej Agencji Środowiska wynika, że wśród 10 najbardziej zanieczyszczonych miast Europy – a 4 leżą w Bułgarii, a 6 – w Polsce. Są to Kraków, Nowy Sącz, Gliwice, Zabrze, Sosnowiec i Katowice.

Informacja pochodzi z serwisu naukowego Polskiego Radia

 

 Smog nas zabija – Nauka. To lubię.

1 komentarz do Polskie miasta najbardziej zanieczyszczone w Europie!

Konkurs! Woda z kosmosu

Czy Waszym zdaniem będzie potrzeba i czy kiedykolwiek będziemy mieli techniczne możliwości, by uzupełniać braki wody na Ziemi wodą „ściąganą” z kosmosu?

W kolejnej – ostatniej – odsłonie Megaodkryć (już w niedzielę, 13 grudnia o 22.00) ekipa National Geographic Channel sprawdzi gdzie naukowcy szukają rozwiązań problemów z deficytem wody pitnej. Ja w swoim wczorajszym tekście dość odważnie podpowiedziałem jako jeden z kierunków kosmos. 

A teraz pytanie konkursowe:

>>> Czy Waszym zdaniem będzie potrzeba i czy kiedykolwiek będziemy mieli techniczne możliwości, by uzupełniać braki wody na Ziemi wodą „ściąganą” z kosmosu?

Odpowiedzi wpisujcie proszę w komentarzach pod tym tekstem. Trzy najlepsze odpowiedzi zostaną nagrodzone moją najnowszą książką „Człowiek” (no chyba, że ktoś woli poprzednią „Kosmos”). Jeżeli takie będzie życzenie wygranego, chętnie napiszę imienną dedykację. 

Człowiek okłądki_II

 Regulamin konkursu:  http://naukatolubie.pl/regulamin-konkursu/

14 komentarzy do Konkurs! Woda z kosmosu

Konkurs o energii

W badanie i wdrażanie którego rodzaju energii powinniśmy w Polsce inwestować najwięcej środków i wysiłku. Uzasadnijcie proszę Waszą odpowiedź.

W odcinku  „Ekstremalna energia”, który w serii Megaodkrycia, National Geographic Channel pokaże o godzinie 22.00 w niedzielę 6 grudnia, naukowcy z kilku wiodących światowych ośrodków naukowych opowiedzą, gdzie szukają realnej alternatywy dla pozyskiwania energii z węgla, ropy i gazu. Będzie o ujarzmianiu huraganów, promieni Słońca, o geotermii, fuzji wodorowej i kilku innych pomysłach na „czystą” energię.

A teraz pytanie:

>>> Napiszcie w badanie i wdrażanie którego rodzaju energii powinniśmy w Polsce inwestować najwięcej środków i wysiłku. Uzasadnijcie proszę Waszą odpowiedź.  

Odpowiedzi wpisujcie proszę w komentarzach pod tym tekstem. Trzy najlepsze odpowiedzi zostaną nagrodzone moją najnowszą książką „Człowiek” (no chyba, że ktoś woli poprzednią „Kosmos”). Jeżeli takie będzie życzenie wygranego, chętnie napiszę imienną dedykację. 

Człowiek okłądki_II

 Regulamin konkursu:  http://naukatolubie.pl/regulamin-konkursu/

15 komentarzy do Konkurs o energii

Type on the field below and hit Enter/Return to search