Nauka To Lubię

Oficjalna strona Tomasza Rożka

Kategoria: Aktualności

NASA nie zmienia horoskopu!!!

Ta wiadomość przeorała dzisiejsze internety. NASA zmienia znaki zodiaku. Co za bzdura! Astrologia nie jest żadną nauką, a NASA nie zajmuje się gusłami. Wiara w magiczną moc dnia, w którym się urodziło, jest kompletną bzdurą.

Ta wiadomość przeorała dzisiejsze internety. NASA zmienia znaki zodiaku. Co za bzdura! Astrologia nie jest żadną nauką, a NASA nie zajmuje się gusłami. Wiara w magiczną moc dnia, w którym się urodziło, jest kompletną bzdurą.

>>> Więcej naukowych informacji na FB.com/NaukaToLubie.

O zmianie znaków zodiaku słyszę regularnie od kilku już lat. Tak jak gdyby „znak zodiaku” to było coś, co ma swoje miejsce albo coś, co da się precyzyjnie określić. Tak nie jest, choć kiedyś tak było. Astronomia i astrologia były jak dwie siostry bliźniaczki. Dorastały razem i uczyły się razem. Z tą tylko różnicą, że jedna z sióstr była pilną uczennicą, która czasami musiała iść pod prąd swojej epoki, a druga była wygodna i pragmatyczna. Druga siostra, Astrologia, była konformistką. W efekcie Astronomia i Astrologia rozeszły się ponad dwa tysiące lat temu. Astronomia szła naprzód, a astrologia stała w miejscu.

Dwie latarki 

>>> Więcej naukowych informacji na FB.com/NaukaToLubie.

Układ Słoneczny znajduje się w galaktyce Drogi Mlecznej, w jednej z jej odnóg, zwanych Ramieniem Oriona. Choć kosmos to głównie pustka, zdarzają się w nim niewielkie (w porównaniu z tą pustką) wyspy materii. Są nimi właśnie galaktyki. Jesteśmy otoczeni gwiazdami. Są daleko, ale nie aż tak, by nie były widoczne. Na niebie w pogodną noc można zobaczyć kilka tysięcy świetlnych punktów. Wyobraźnia człowieka już tysiące lat temu te punkty pogrupowała w kształty, czyli konstelacje. Jedną z najbardziej znanych jest Wielki Wóz (część gwiazdozbioru Wielkiej Niedźwiedzicy), który składa się z siedmiu gwiazd.  Gwiazdozbiory to grupa gwiazd, które nie są ze sobą nijak związane, ich bliskość jest pozorna, zajmują po prostu określony obszar sfery niebieskiej. Jak to rozumieć? Wyobraźmy sobie dwie latarki zapalone w ciemną noc. Tak ciemną, że innych elementów krajobrazu nie byłoby widać. Nie jesteśmy w stanie ocenić, która latarka jest bliżej, a która dalej.  Tym bardziej że latarka bliższa może świecić słabszym światłem, a ta dalsza może być potężnym reflektorem. Tak właśnie jest z gwiazdami. Na oko wszystkie gwiazdy nocnego nieba są w takiej samej odległości od nas. Niektóre z nich układają się w figury, postacie, a nawet całe sceny. Trzeba do tego sporej wyobraźni, ale tej nigdy ludziom nie brakowało. I tak niebo dla starożytnych było teatrem, sceną, na której w różnych częściach roku pojawiały się mityczne stwory, zwierzęta, herosi i bóstwa.

12 czy 13? 

>>> Więcej naukowych informacji na FB.com/NaukaToLubie.

Dla obserwatorów nieba szczególne znaczenie odgrywały gwiazdozbiory znajdujące się w tzw. zodiaku, a więc w pasie nieba, po którym poruszają się Słońce, Księżyc i inne planety. W starożytnej Babilonii czy Asyrii wyobrażano sobie, że gwiazdozbiory leżące na zodiaku są śladami na drodze, po której porusza się nasza dzienna gwiazda. Że dzielą tę drogę na etapy, a każdy z tych etapów jest w jakimś sensie charakterystyczny. Gwiazdozbiorów leżących w zodiaku jest 13 i tutaj pojawia się pierwszy problem. Znaków zodiaku jest 12. Ten brakujący to Wężownik. Ale o tym za chwilę. 12 gwiazdozbiorów w zodiaku podzieliło rok na 12 części. Chciałoby się napisać: na „równe części”, ale… gwiazdozbiory są różnej wielkości. Z kalendarza wynika, że okresy odpowiadające poszczególnym znakom zodiaku są mniej więcej równe. Tymczasem… Słońce przez gwiazdozbiór Panny przechodzi 42 dni, a przez Skorpiona tylko 6 dni. Na dodatek granice między gwiazdozbiorami są czysto umowne. Trudno rozstrzygnąć, czy Słońce jest wciąż na tle gwiazdozbioru Skorpiona czy już Strzelca. Okresy, gdy Słońce przechodzi przez kolejne gwiazdozbiory (choć jest to ruch pozorny, bo to Ziemia się obraca i dlatego widzimy Słońce na różnym tle), są uzależnione od tego, jak zostaną wyznaczone granice między nimi. W wyniku dosyć pokrętnego podziału Słońce jest w znaku Panny przez 30 dni, choć w rzeczywistości powinno być przez wspomniane 42, a w Skorpionie przez 29 dni, choć w rzeczywistości na tle tego gwiazdozbioru znajduje się tylko 6 dni. Od czego więc zależeć mają cechy człowieka? Od rzeczywistego znaku zodiaku, w którym było Słońce w dniu urodzenia, czy od znaku uznanego zwyczajowo? To ważne pytanie, bo z tablic astronomicznych wynika, że Słońce przechodzi na tle gwiazdozbioru Panny od 16 września do 30 października. Astrologowie uważają jednak, że Słońce jest w Pannie od 23 sierpnia do 22 września. Ktoś, kto urodził się, powiedzmy, 25 sierpnia, kalendarzowo (astrologicznie) jest więc Panną, ale Słońce w dniu jego urodzin było w znaku Lwa. Nawet przyjmując, że dzień urodzin ma jakiekolwiek znaczenie, przeważająca większość z tych, którzy czytają horoskopy, czyta nie ten, który powinna.

Wężownik wyleciał 

>>> Więcej naukowych informacji na FB.com/NaukaToLubie.

Dokładne granice między gwiazdozbiorami (nie tylko tymi z zodiaku) ustalono dopiero w 1928 r. w czasie kongresu generalnego Międzynarodowej Unii Astronomicznej. Teraz – można by pomyśleć – skończą się nieporozumienia. Przeciwnie. Dopiero od tego momentu widać, jak bardzo astrologia oddaliła się od astronomii. Astronomia idzie naprzód, a astrologia stoi w miejscu. Mimo znanych i ustalonych raz na zawsze granic astrolodzy nie zdecydowali się skorygować okresów, w jakich Słońce znajduje się na tle poszczególnych gwiazdozbiorów w zodiaku. Co więcej, w wyniku prac astronomów z Unii Astronomicznej do gwiazdozbiorów zodiakalnych powinna być zaliczona kolejna, 13. konstelacja Wężownika. Słońce wchodzi w jej „obszar” 30 listopada, a opuszcza go 17 grudnia. W astrologicznych znakach zodiaku po Wężowniku nie ma nawet śladu. A to dlatego, że starożytni, Wężownika nie widzieli. Gwiazdy z których „się składa” za słabo świecą. Ale jest jeszcze jeden powód bałaganu. Obrót Ziemi wokół własnej osi zajmuje jej dobę. Dlatego mamy dzień i noc. Na to nakłada się trwający rok bieg Ziemi wokół Słońca, którego skutkiem są pory roku. Ale Ziemia ma przynajmniej jeszcze jeden rodzaj ruchu regularnego, powtarzalnego. Oś Ziemi zatacza w przestrzeni koła, a pełny jej obrót zajmuje około 26 tys. lat i zwany jest rokiem platońskim. Wirującą Ziemię można porównać do wirującego zabawkowego bąka. I tak jak bąk nie wiruje w pozycji „pionowej”, tak samo oś obrotu Ziemi jest nachylona i zatacza w przestrzeni koła. Ten ruch to tzw. precesja. Ziemska precesja jest wynikiem przyciągania przez inne planety Układu Słonecznego, a także przez oddziaływanie grawitacyjne samego Słońca i Księżyca.

Zabawa dla naiwnych 

>>> Więcej naukowych informacji na FB.com/NaukaToLubie.

Ten dodatkowy ruch powoduje, że – co prawda powoli – zmienia się „widok” nocnego nieba. Nie są to zmiany duże, ale w ciągu setek lat… Gwiazdozbiory były znane przynajmniej 2–3 tys. lat przed Chrystusem. Od tamtego czasu naprawdę wiele się zmieniło. 2 tys. lat temu Słońce w dniu równonocy wiosennej wchodziło w gwiazdozbiór Barana (chodzi o wiosnę na półkuli północnej, ta na półkuli południowej jest przesunięta o pół roku). Dzisiaj jest w gwiazdozbiorze Ryb. Za około 600 lat w pierwszym dniu wiosny Słońce będzie w gwiazdozbiorze Wodnika. Co na to astrologia? Nic. Nie bierze w ogóle pod uwagę faktu precesji Ziemi. Tak jak gdyby nasza wiedza zatrzymała się kilka tysięcy lat temu. Równonoc wiosenna następuje z 20 na 21 marca. I właśnie wtedy według astrologów Słońce wchodzi w gwiazdozbiór Barana. W rzeczywistości znajdzie się w nim dopiero 29 dni później. W magiczną moc dnia urodzenia wierzy sporo osób. W telewizjach kablowych funkcjonują całe kanały, w których wróżki i wróżbici odczytują przyszłość ze szklanych kul, z kart czy z gwiazd. Horoskopy publikuje wiele gazet, a niektóre z nich z okazji Nowego Roku dołączają do swoich tytułów całe wkładki temu poświęcone. Gdy prowadzono badania nad sprawdzalnością horoskopów, okazywało się, że sprawdzają się one w takiej samej mierze zarówno wtedy, gdy czyta się horoskop swój, jak i wtedy, gdy zapoznaje się z przeznaczonym dla kogoś innego. Cała sztuka pisania horoskopów nie polega bowiem na tym, żeby cokolwiek przepowiedzieć, tylko na tym, by pasowało wszystkim i w każdej sytuacji. Gwiazdy, planety czy komety nie mają nic do tego.

A co z NASA? Cóż, agencja kosmiczna co jakiś przypomina, że astrologia to nie nauka cytując to, co napisałem powyżej. O niezauważonym gwiazdozbiorze, o precesji czy o nieregularnych granicach pomiędzy gwiazdozbiorami. Tylko tyle i aż tyle.

>>> Więcej naukowych informacji na FB.com/NaukaToLubie.

Brak komentarzy do NASA nie zmienia horoskopu!!!

„Ziemia” w sąsiedztwie

Jest skalista, jest bliziutko nas i ma wielkość podobną do wielkości Ziemi. Co jednak najważniejsze, znajduje się w tzw. strefie życia, czyli ani nie za blisko, ani nie za daleko od swojej gwiazdy. Właśnie odkryto nową planetę.

Jest skalista, jest bliziutko nas i ma wielkość podobną do wielkości Ziemi. Co jednak najważniejsze, znajduje się w tzw. strefie życia, czyli ani nie za blisko, ani nie za daleko od swojej gwiazdy. Właśnie odkryto nową planetę.

>>> Więcej naukowych informacji na FB.com/NaukaToLubie.

Planeta krąży wokół czerwonego karła Proxima Centauri, czyli gwiazdy, która jest naszą najbliższą gwiazdową sąsiadką. Na odkrytej planecie woda może być w stanie ciekłym. Proxima b została złapana dzięki obserwacjom prowadzonym w Chile. Krąży wokół swojej gwiazdy macierzystej nieco ponad 11 ziemskich dni. Tak jak wspomniałem Proxima Centauri jest naszą najbliższą sąsiadką, a to oznacza, że planeta, która wokół niej krąży jest najbliższą nam planetą pozasłoneczną. Czy jest na niej życie? Tego nie wiadomo i trudno nawet powiedzieć w jaki sposób moglibyśmy się tego dowiedzieć. Bardzo dokładne obserwacje mogą nam udzielić inf. o składzie atmosfery albo nawet związków na powierzchni planety, ale na przelot na Proxima b będzie trzeba jeszcze poczekać. Gwiazda i planeta oddalone sa od nas o około 4 lata świetlne, czyli około 38 bilionów kilometrów.

>>> Więcej naukowych informacji na FB.com/NaukaToLubie.

Dla tych, którzy gwiazdę i planetę będą próbowali wypatrzyć na nocnym niebie, także nienajlepsza wiadomość. Obserwacja pozasłonecznych planet jest ekstremalnie trudna nawet przez profesjonalne teleskopy nie mówiąc już o amatorskich. Gołym okiem wcale nie da się ich zobaczyć. Niestety gołym okiem nie widać nawet gwiazdy Proxima Centauri. Jest czerwonym karłem, który świeci za słabym światłem. – Po raz pierwszy zaczęliśmy podejrzewać, że wokół tej [Proxima Centauri] gwiazdy krąży planeta już w 2013 roku. Od tamtego czasu obserwowaliśmy gwiazdę kilkoma różnymi teleskopami – powiedział Guillem Anglada-Escude, szef zespołu astronomów zaangażowanych w projekt badawczy Pale Red Dot.

Masa odkrytej planety to 1,3 masy Ziemi. Planeta krąży wokół swojego słońca w odległości 7 mln kilometrów, a to wielokrotnie mniej niż odległość Ziemia – Słońce. To znacznie mniej niż odległość Słońce – Merkury. Proxima Centauri jest jednak inną gwiazdą niż ta nasza. Świeci słabym światłem i dlatego mimo małej odległości gwiazda – planeta, na powierzchni tej drugiej może znajdować się woda w stanie ciekłym.

>>> Więcej naukowych informacji na FB.com/NaukaToLubie.

Teraz, te Proxima b będzie głównym celem obserwacji tych astronomów, którzy będą poszukiwali życia na obcych planetach. Jeżeli kiedykolwiek (a to na pewno nastąpi) zorganizujemy międzygwiezdną misję, na pewno pierwszym jej celem będzie właśnie nowo odkryta planeta.

Tomasz Rożek

Brak komentarzy do „Ziemia” w sąsiedztwie

Obłoki srebrzyste coraz częstsze [galeria]

Pojawiają się coraz częściej więc jest okazja żeby je obserwować. Właśnie teraz! Obłoki srebrzyste, najwyżej „powieszone” chmury w naszej atmosferze.

Pojawiają się coraz częściej więc jest okazja żeby je obserwować. Właśnie teraz! Obłoki srebrzyste, najwyżej „powieszone” chmury w naszej atmosferze.


Estonia, Kuresoo, @Martin Koitmäe

W Polsce najlepszym okresem do ich obserwowania jest środek roku, czyli miesiące czerwiec i lipiec. Obłoki srebrzyste znajdują się w mezosferze, czyli na wysokości do 85 km nad naszymi głowami, praktycznie na granicy ziemskiej atmosfery i kosmosu. Z powierzchni Ziemi wyglądają jak bardzo subtelna mgiełka. I rzeczywiście z rzadką mgłą mają wiele do czynienia, bo składają się z ogromnej ilość maleńkich kryształków lodu. Wielkość tych kryształków nie przekracza milionowych części milimetra. Obłoki srebrzyste widać około północy. Niebo jest już wtedy ciemne, ale Słońce, które w czasie przesilenia letniego znajduje się „płytko” poniżej linii horyzontu oświetla obiekty znajdujące się w wysokich partiach atmosfery. Np. ogromne chmury maleńkich kryształków lodu. Te na tle ciemnogranatowego nieba srebrzą się. – Wysokość na której chmury się znajdują sprawia, że mogą one odbijać światło słoneczne, co powoduje wrażenie, jakby świeciły własnym światłem – mówi James Russell z Uniwersytetu w Hampton.

>>> Więcej naukowych informacji na FB.com/NaukaToLubie.

450px-Noctilucent_clouds_over_saimaa
Finlandia, Jezioro Saimaa, @Mika Yrjölä

Zdaniem badaczy z Uniwersytetu w Hampton zjawisko srebrzących się obłoków występuje coraz częściej i można je obserwować z coraz niższych szerokości geograficznych. Co ciekawe, zdaniem naukowców, wiąże się to ze spadkiem temperatury na szczycie mezosfery, w której powstaje zjawisko. Teraz zespół badaczy chce sprawdzić czy ma to jakiś związek z aktywnością Słońca. Co chmury mają wspólnego z naszą gwiazdą? Mogą mieć bardzo dużo. Słońce jest źródłem nie tylko światła, ale także naładowanych elektrycznie cząstek (np. protonów), które z dużą prędkością poruszają się w przestrzeni kosmicznej. Co prawda przeważająca ich większość zostaje zatrzymana przez ziemskie pole magnetyczne, zdarza się jednak że niewielka ich część przedostaje się do atmosfery. Tam w wyższych jej partiach w wyniku tego zjawiska mogą powstawać chmury. Intuicja podpowiada więc, że czym wyższa aktywność Słońca, tym więcej powinno pojawiać się obłoków. Intuicja może jednak zawodzić. Jak się wydaje, powstawanie obłoków srebrzystych ma związek z niską temperaturą wysokich warstw atmosfery. Niższa temperatura pojawia się jednak, gdy aktywność Słońca spada. – Kiedy zbliża się minimum aktywności słonecznej możemy oczekiwać, że mniej energii będzie dostarczane do planety, a co za tym idzie pojawi się tendencja ochłodzenia – dodał Russel.

>>> Więcej naukowych informacji na FB.com/NaukaToLubie.

Coloured-crosshatc_1411905i
Finlandia, @webodysseum.com

Co ma wpływ na częstotliwość i miejsce pojawiania się obłoków srebrzystych? Dzisiaj trudno powiedzieć. I nie chodzi tylko o to, by zrozumieć widowiskowe, ale w sumie dość rzadkie zjawisko atmosferyczne. Chodzi o to, by zrozumieć całą atmosferę

Tomasz Rożek

>>> Więcej naukowych informacji na FB.com/NaukaToLubie.

nocti-pano
Kanada, miasto Edmonton, @Hayley Dunning

 

Noctilucent-cloud-11
Z pokładu samolotu, @webodysseum.com

Brak komentarzy do Obłoki srebrzyste coraz częstsze [galeria]

O wycince Puszczy słów kilka

Ten spór trwa od kilku miesięcy. Dużo w nim emocji, znacznie mniej faktów. Ekolodzy, opierając się na opinii naukowców, biją na alarm, a rząd (ministerstwo środowiska) właśnie zezwoliło na zwiększenie limitów wycinki drzew w Puszczy Białowieskiej. Komu wierzyć? O co w tym chodzi?

Ten spór trwa od kilku miesięcy. Dużo w nim emocji, znacznie mniej faktów. Ekolodzy, opierając się na opinii naukowców, biją na alarm, a rząd (ministerstwo środowiska) właśnie zezwolił na zwiększenie limitów wycinki drzew w Puszczy Białowieskiej. Komu wierzyć? O co w tym chodzi? 

>>> Więcej naukowych informacji na FB.com/NaukaToLubie.

O polityce tutaj nie piszę. Ale co zrobić jak czasami polityki nie da się ominąć? Spór o najstarszy w Europie fragment lasu pierwotnego musi wzbudzać emocje. Te są tym większe, że na różnicę zdań pomiędzy Zielonymi i Ministerstwem Środowiska nakłada się spór czysto polityczny. Emocjom nie ma się jednak co dziwić, w końcu puszcza to ogromna wartość przyrodnicza i kawał polskiej historii. Są w niej miejsca, które nigdy nie zostały poddane – pośrednio ani bezpośrednio – modyfikacjom ze strony człowieka. Reszta puszczy to niemal w całości las naturalny, czyli obszar, w którym człowiek gospodaruje, ale w sposób mocno ograniczony.

Puszcza polskich królów 

To w sumie bardzo niewielki teren. Po polskiej stronie granicy znajduje się 42 proc. obszaru puszczy (około 50 km z południa na północ, 55 km ze wschodu na zachód), reszta leży na Białorusi. Choć w puszczy znajdują się miejsca, w których las ma charakter pierwotny, i takie, gdzie ma charakter naturalny, w części wpływ gospodarki leśnej jest widoczny. Ta ingerencja w las to nie tylko wynalazek współczesności, ale wynik nasadzeń drzew przed I wojną światową, w okresie międzywojennym i w latach powojennych.

To wtedy puszcza została „wzbogacona” o gatunki drzew, które naturalnie w niej występowały dużo rzadziej, głównie świerki. Dzisiaj sadzone są inne gatunki, co ma przywrócić puszczy jej naturalny charakter. Miejsce drzew „obcych” zajmują dęby, lipy, klony i wiązy. Po raz pierwszy o Puszczy Białowieskiej można przeczytać w opisie polowania, na które w 1409 roku wybrał się Władysław Jagiełło, by zdobyć żywność dla rycerzy wyruszających na wojnę przeciwko zakonowi krzyżackiemu. Solone mięso w beczkach spławiano do Płocka.

>>> Więcej naukowych informacji na FB.com/NaukaToLubie.

Z niepotwierdzonych źródeł wynika także, że w czasie tego polowania wyłapywano dzikie konie (tarpany), które następnie służyły jako konie bojowe. Puszcza Białowieska (choć oczywiście w zupełnie innym niż dzisiaj kształcie) podlega ochronie co najmniej od 600 lat. Była terenem myśliwskim do wyłącznego użytku królów polskich i książąt litewskich. Każda czynność (łowienie ryb, zakładanie barci, koszenie łąk), z wchodzeniem do puszczy włącznie, była regulowana nadawanymi przez króla (konkretnym osobom, ewentualnie osadom) pozwoleniami. Nawet najznamienitsi polscy dostojnicy nie mogli liczyć na stałe zezwolenie na polowanie w puszczy, od czasu do czasu dostawali jednorazowy „przydział”. Za zabicie zwierzęcia bez pozwolenia groziła kara śmierci.

Równie restrykcyjnie podchodzono do wyrębu drzew. W całym XVI wieku wydano tylko dwa pozwolenia: w 1521 roku król Zygmunt I Stary pozwolił Cerkwi w Szereszewie na wyrąb drzew na potrzeby własne, a w 1537 roku królowa Bona pozwoliła na to Kościołowi w tej samej miejscowości. Przez następnych kilkaset lat nowe pozwolenia na wyrąb były nadawane sporadycznie. Paradoksalnie puszczę bardziej cenił rosyjski carat niż polscy komuniści. Zaborcy traktowali ją jako miejsce rozmnażania się zwierząt i teren myśliwski. Dzięki dokarmianiu, zwierzyny w puszczy było za dużo, czego efektem było drastyczne zahamowanie wzrostu drzew liściastych.

721px-Canis_lupus_laying

Wilk

Zwierzęta zjadały młode pędy. Przed I wojną światową po raz pierwszy na masową skalę zalesiano puszczę świerkami. Stopniowa poprawa ochrony puszczy zaczyna się dopiero po 1989 roku. Projekt utworzenia Parku Narodowego Puszczy Białowieskiej pojawia się w 1994 roku, choć już 15 lat wcześniej została ona wpisana przez UNESCO na Światową Listę Rezerwatów Biosfery. Dzisiaj z 860 km kw. puszczy około 300 km kw. to lasy naturalne i zbliżone do naturalnych. A w nich drzewa, których nigdzie indziej w Europie nie znajdziemy. To kwestia nie tylko estetyki, ani tym bardziej potencjału gospodarczego (150-letnie drzewo kiepsko nadaje się na deski).

Stare drzewo znajdujące się w lesie pierwotnym jest nośnikiem genów, które są oryginalne i charakterystyczne dla tego regionu świata i są wynikiem naturalnej selekcji. A to ogromnie istotne. Posadzenie drzewa tego samego gatunku nie zastąpi tego skarbu. Liście obydwu drzew będą pewnie miały ten sam kształt, ale pula genowa będzie inna. W puszczy od dziesięcioleci prowadzone są badania i obserwacje, których wartość jest bezcenna.

Leśnicy leczą puszczę 

Najstarszy nienaruszony las, gatunki zwierząt i roślin występujące tylko w tym miejscu, w końcu oryginalne geny. O co w takim razie jest awantura? O przyszłość. Leśnicy chcieli zwiększyć ilość ścinanych w puszczy drzew. Ekolodzy twierdzili (i dalej twierdzą), że to zaledwie wstęp do masowej wycinki w najstarszym lesie w Europie. Wycinki, która spowoduje straty przyrodnicze nie do odrobienia. Z kolei leśnicy przekonują, że zwiększona wycinka to konieczność, po to, by… puszcza przetrwała. Ekologom i leśnikom – przynajmniej w deklaracjach – chodzi o to samo, o zachowanie bezcennego dziedzictwa przyrodniczego.

>>> Więcej naukowych informacji na FB.com/NaukaToLubie.

Problem polega jednak na tym, że obie grupy uważają, iż aby osiągnąć ten cel, trzeba podjąć dokładnie odwrotne kroki. Jedni postulują: „Ręce precz od puszczy”, drudzy przekonują, że bez pomocy człowieka puszcza, a przynajmniej jej część, zostanie bezpowrotnie zniszczona. Dlaczego? Bo zmiany klimatu, a konkretnie rosnące temperatury średnioroczne, oraz odwodnienie powodują osłabienie niektórych gatunków drzew. Najbardziej podatne na niekorzystne zmiany są świerki.

596px-Europäische_Sumpfschildkröte_Emys_orbicularis

Żółw błotny jest bardzo rzadkim elementem fauny Puszczy By Böhringer Friedrich

Osłabione stają się łatwym celem dla leśnych owadów, np. korników. Biorąc pod uwagę nadreprezentację świerków w niektórych częściach puszczy (wynikającą ze sztucznego nasadzania), na niektórych obszarach ilość chorych drzew jest spora. Leśnicy chcą chronić zdrowe drzewa, wycinając chore. Nadleśnictwa (Białowieża, Hajnówka i Browsk) mają dziesięcioletni przydział (plan) na wycinkę drzew. Ten plan określa Ministerstwo Środowiska i jest w nim ustalona łączna masa drewna, jaka może być wycięta w ciągu 10 lat. Zwykle każdego roku wycina się 10 proc. dziesięcioletniego przydziału. Taki podział nie jest jednak obligatoryjny. Nadleśnictwo może podjąć decyzję, że w którymś roku ilość wyciętych drzew będzie większa, ale za to w kolejnych latach trzeba będzie wycinać mniej. Dzisiaj obowiązujące przydziały zostały określone na lata 2012–2021. Decyzją nadleśnictwa w trzech pierwszych latach obowiązywania planu (2012–2015) wycięto jednak prawie 90 proc. drzew przewidzianych do wycięcia przez 10 lat. Skąd to przyspieszenie? W opublikowanym na stronie internetowej Lasów Państwowych dokumencie pt. „Puszcza Białowieska potrzebuje ratunku”, sygnowanym przez Regionalną Dyrekcję Lasów Państwowych w Białymstoku, znalazło się stwierdzenie, że nadleśnictwo prowadziło „cięcia sanitarne mające na celu opanowanie gradacji kornika drukarza”.

Leśnicy uważają, że w puszczy panuje klęska kornika, która zagraża dalszemu istnieniu drzewostanów świerkowych, stanowiących na terenie Nadleśnictwa Białowieża ponad 30 proc. powierzchni leśnej (w całej puszczy ok. 10 proc). „Jedyną znaną naukom leśnym i skuteczną metodą walki z kornikiem i ograniczania jego gradacji jest usuwanie drzew zasiedlonych, by ograniczyć rozprzestrzenianie się szkodników” – piszą autorzy dokumentu.

Naukowcy bronią drzew

To, że korniki „siedzą” w puszczy, nie jest przedmiotem sporu. Tyle tylko, że nie wszyscy – tak jak leśnicy – uważają, że drzewa zjadane przez korniki trzeba usuwać. 17 naukowców napisało list zatytułowany „Dlaczego martwe świerki są potrzebne w Puszczy Białowieskiej”. Tego głosu nie można zlekceważyć, gdyż autorzy dokumentu to eksperci z takich dziedzin jak leśnictwo, biologia, agroekologia, entomologia i zoologia, przedstawiciele 14 polskich uczelni i instytucji badawczych.

>>> Więcej naukowych informacji na FB.com/NaukaToLubie.

Naukowcy w sposób jednoznaczny i przystępny tłumaczą, dlaczego usuwanie chorych drzew jest błędem. „Opanowane przez korniki świerki zamierają, ustępując miejsca drzewom liściastym, wymagającym dużej ilości światła i lepiej dostosowanym do aktualnych warunków środowiska. Naturalny proces zmiany struktury gatunkowej lasu jest długotrwały, jednak na żadnym z jego etapów nie ma zagrożenia dla trwałości leśnego ekosystemu” – uważają. Nie ukrywają też, że tam, gdzie świerków jest dużo, masowe ich wymieranie może sprawiać wrażenie klęski. Powołują się na przykład Beskidów, które wiele lat temu w sposób sztuczny zostały zalesione świerkami i sosnami. Badacze przestrzegają jednak przed chodzeniem drogą na skróty, szczególnie w Puszczy Białowieskiej (czyli przed wycięciem drzew, zaoraniem terenu i posadzeniem sadzonek drzew liściastych).

By Konrad KurzaczPimkee-mail: konrad.kurzacz@gmail.com - Praca własna, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=2065137

Mozaikowy układ zbiorowisk leśnych w Białowieskim Parku Narodowym. Na pierwszym planie widoczny ols z udziałem świerka. By Konrad KurzaczPimke

Argumentują bowiem (powołując się na badania), że „dynamika gradacji kornika niewiele się różni na terenach, gdzie wszelkimi dostępnymi środkami prowadzono walkę z kornikiem, i na terenach, gdzie takich działań nie prowadzono. Usuwanie zaatakowanych przez kornika lub zamarłych z innych przyczyn drzew nie stanowi skutecznej metody zatrzymania gradacji kornika i zamierania świerków, lecz może przynieść skutek przeciwny”. Dlaczego usuwanie chorych drzew zamiast sytuację poprawić, może ją pogorszyć? Badacze piszą, że w przypadku Puszczy Białowieskiej nie da się wyciąć wszystkich zaatakowanych drzew. Tymczasem umierające albo martwe drzewo „przyciąga” chrząszcze, które żywią się kornikami (chrząszcza wabi feromon, zapach wytwarzany przez samce korników w chwili opanowywania drzewa). Zdaniem autorów listu najskuteczniejszą metodą walki z kornikami jest pozostawienie lasu w spokoju.

„Duża koncentracja zamierających świerków opanowanych przez korniki staje się miejscem intensywnego namnażania się drapieżnych chrząszczy, a także innych drapieżnych i pasożytniczych owadów, które z takich miejsc rozprzestrzeniają się na kolejne obszary w poszukiwaniu swoich ofiar” – piszą autorzy tekstu. Choć przejściowo, ze względów estetycznych, niektóre fragmenty puszczy będą wyglądały nieatrakcyjnie, natura poradzi sobie ze szkodnikami.

Będzie awantura

Od wielu miesięcy na niezliczonych forach i stronach internetowych trwa awantura. Uzasadniona! Ministerstwo Środowiska nie przedstawia przekonywujących dowodów na to, że ma rację, z kolei leśnicy posługują się półprawdami. Ekolodzy – wręcz przeciwnie. Pokazują badania, cytują autorytety. I co? I nic, bo minister środowiska Jan Szyszko właśnie zatwierdził zwiększenie wycinku drzew w Puszczy. Zwiększone limity zakładają pozyskanie ponad 180 tysięcy metrów sześciennych drewna w ciągu najbliższych 10 lat. To prawie 5 razy więcej niż zakładał dotychczasowy plan.

>>> Więcej naukowych informacji na FB.com/NaukaToLubie.

Czy minister Szyszko nie zna badań, które mówią o tym, że wycinka nie polepsza, a wręcz może pogorszyć sytuację? Pomijam fakt, że grozi nam międzynarodowy skandal. Szkoda mi ostatniego w Europie, a może na całej północnej półkuli nizinnego lasu strefy umiarkowanej z całym jego bogactwem. Puszcza to nie tylko wysokie drzewa i duże zwierzęta (np. żubry), to bogactwo przyrody porównywalne do Wielkiej Rafy Koralowej!

Epipogium_aphyllum_plants

Krytycznie zagrożony wyginięciem w Polsce storzan bezlistny By BerndH

Organizacje ekologiczne biją na alarm, a leśnicy – nie negując tego, o czym piszą naukowcy – przypominają, że ich obowiązują przepisy i procedury zobowiązujące do przeciwdziałania takim zjawiskom jak plaga korników, że ich nadrzędnym celem jest troska o zachowanie trwałości lasów. Z tym ostatnim można by dyskutować, Lasy Państwowe to „firma” przynosząca ogromne zyski. Te pieniądze nie są inwestowane w ochronę lasów, tylko przelewane do budżetu państwa.

Leśnicy przypominają przy okazji, że na obszarach, na których świerków jest dużo, bez interwencji człowieka las z powodu umierania tych drzew będzie martwy. To prawda, ale… świerki, o których mowa, są w puszczy elementem sztucznym. Podatność Puszczy Białowieskiej na korniki jest skutkiem działalności człowieka przed dziesiątkami lat. Wycinanie tych drzew wcale nie spowoduje, że problem zniknie. To popełnianie tego samego błędu, czyli ingerencja w las.

Profesorze Janie Szyszko, nie idź tą drogą!

 

 

24 komentarze do O wycince Puszczy słów kilka

Świat między 44 zerami

W 2013 roku, na maturze z języka polskiego, uczniowie analizowali wstęp do mojej książki „Nauka po prostu. Wywiady z wybitnymi”. Rozwiązałem test maturalny stworzony do mojego tekstu i zdobyłem… około 70 proc. punktów. Dlaczego nie 100 proc? Części pytań nie zrozumiałem, część moich odpowiedzi nie trafiła w klucz. W skrócie z tekstu który sam zrozumiałem rozumiem ok. 70 proc. Nie świadczy to chyba o mnie najlepiej. Dzisiaj – nie tylko maturzystom – ten tekst przypominam.

W 2013 roku, na maturze z języka polskiego, uczniowie analizowali wstęp do mojej książki  „Nauka po prostu. Wywiady z wybitnymi”. Rozwiązałem test maturalny stworzony do mojego tekstu i zdobyłem… około 70 proc. punktów. Dlaczego nie 100 proc? Części pytań nie zrozumiałem, część moich odpowiedzi nie trafiła w klucz. W skrócie z tekstu który sam zrozumiałem rozumiem ok. 70 proc. Nie świadczy to chyba o mnie najlepiej. Dzisiaj – nie tylko maturzystom – ten tekst przypominam.

**************

Świat między 44 zerami

Widzialny Wszechświat ma rozmiar kilkunastu miliardów lat świetlnych. To około 1026 (1 z 26 zerami) metra. Z kolei najmniejsze struktury, których istnienia jesteśmy pewni, to budujące między innymi protony i neutrony kwarki. Mają rozmiar kilku attometrów, czyli 10-18 metra. Najmniejsze i największe obserwowane przez człowieka obiekty dzielą od siebie aż 44 rzędy wielkości! Kwarki są o 100 000 000 000 000 000 000 000 000 000 000 000 000 000 000 razy mniejsze od największego obiektu dociekań naukowców. Nasz świat mieści się w tych 44 zerach. Są w nim cząstki elementarne, żywe organizmy i ich DNA, Ziemia i inne planety. Są gwiazdy, galaktyki i gromady galaktyk. A gdzieś w środku jest człowiek. Jedyna znana istota, która chce wiedzieć i chce to wszystko zrozumieć.

Świat, ten zamknięty „między 44 zerami”, jest skonstruowany według uniwersalnych reguł. Człowiek ich nie tworzy, najwyżej odkrywa i nazywa. Na razie znamy je wycinkowo, choć chcielibyśmy oczywiście ogarniać w całości. Marzy nam się też, by w pełni je wykorzystywać. Nanotechnolodzy chcieliby tworzyć komputery oparte na węglu i projektować cząsteczki leków atom po atomie. Na razie jednak nie wiedzą jak. Biotechnolodzy chcą nadawać żywym organizmom dowolne cechy, chcą hodować tkanki, a może nawet całe organy, z jednej tylko komórki. Inni chcą poznać tajemnice mózgu (by skuteczniej się z nim komunikować), początków materii (by znaleźć źródło niewyczerpywalnej energii) czy klimatu (by zapobiegać ekstremalnym zjawiskom pogodowym).

Odkrywamy coraz więcej i nieustannie jesteśmy zaskakiwani złożonością świata, w którym żyjemy. Odkrywamy coraz więcej, a ciągle tyle pozostaje do poznania i zrozumienia. Horyzont poznania wcale się nie przybliża, gorzej … można odnieść wrażenie, że się oddala.  Nie przeszkadza nam to jednak marzyć.

Świat przyszłości, świat czasów, w których jeżeli wszystkie reguły zostaną poznane (czy to w ogóle kiedykolwiek nastąpi?), będzie światem dostosowanym przez człowieka do człowieka – tylko czy w ostatecznym rachunku dla człowieka. To wizja bardzo odległa, ale przecież zmierzamy ku niej od zawsze. Zaglądamy za horyzont zdarzeń w poszukiwaniu mechanizmów, które za tym wszystkim stoją, bo chcemy je wykorzystywać po swojemu, albo inaczej, na swój użytek. Coraz częściej zresztą nam się to udaje. Tymi mechanizmami, trybami i zębatkami są naukowe prawa przyrody. Nauczyliśmy się kontrolować reakcje jądrowe i dlatego potrafimy korzystać z energii atomowej. Wybudowaliśmy urządzenia, które odczytują niektóre intencje mózgu i dlatego możemy pomagać osobom niepełnosprawnym. W końcu dzięki poznaniu właściwości materii w skali mikro budujemy komputery, a zrozumienie sposobu zapisu informacji w naszym DNA już niedługo zaowocuje terapiami genowymi. To wszystko, te niewątpliwe osiągnięcia ludzkiego intelektu, nie zmieniają jednak faktu, że do poznania wszystkich reguł rządzących przyrodą (a może jest tylko jedna reguła uniwersalna, która stosuje się do wszystkiego?) sporo nam jeszcze brakuje. Czy w związku z tym warto zaprzątać sobie głowę refleksją nad przyszłością? Nad kierunkiem i tempem rozwoju nauki? Może lepiej upajać się wizją świata ułożonego, oswojonego, dostosowanego? Wizją świata przyszłości. Powód jest – jak sądzę – jeden. Uczymy się przez eksperyment. Rozwój sam się nie dzieje, a bez prób i bez błędów nie ma postępu. No właśnie – błędów. O te najłatwiej w pośpiechu. Świat rozwija się dzisiaj szybciej niż kiedykolwiek wcześniej, szybciej niż refleksja nad nim. Nie ma tygodnia bez spektakularnego odkrycia, bez przesunięcia granicy poznania. Wszystko dzieje się tak szybko, że słowo drukowane już dawno przestało nadążać. Wypiera je słowo wyświetlane na ekranie. Już nawet nie komputera stojącego na biurku, ale coraz częściej telefonu komórkowego, albo czegoś co telefonem jest tylko przy okazji.

Nasz świat jest pędzącym pociągiem, w którym siedzimy i patrzymy za okno. Wszystko jest zamazane. Nie widać szczegółów, nie ma czasu na analizę detali. Pędzimy do przodu. To wspaniałe… ale trzeba uważać. W przeszłości na przykład w czasie wojen i rewolucji zdarzało się, że gdy historia przyspieszała brakowało czasu na refleksję. Rzeczy działy się tak szybko, że konsekwencje czynów i decyzji czasami uświadamiano sobie zbyt późno. Wchodząc więc w erę „nano” czy „cyber” warto byłoby zdawać sobie sprawę ze wszystkich ewentualnych konsekwencji. Dopiero ta wiedza pozwala na w pełni świadome funkcjonowanie w dzisiejszym świecie. Skąd ją czerpać? Najlepiej u źródła.

Na początku XXI wieku żyjemy w świecie nieustannie kształtowanym, wręcz kreowanym przez naukę i technologię. W każdej epoce życie jednostki w jakimś stopniu zależało od postępu cywilizacji, ale nigdy nie zależało aż tak bardzo jak obecnie. Miasto bez prądu czy komunikacja bez Internetu nie istnieją. Nie potrafimy żyć bez prądu, Internetu, telefonu komórkowego i komputera. I nie chodzi o naszą wygodę czy przyzwyczajenia, ale o przetrwanie. Bez sieci komputerowej i komórkowej nie działają systemy sterujące pracą elektrowni, oczyszczalni ścieków, uzdatniania wody czy komunikacji (metro, tramwaje, koleje). Niedługo nie będzie istniała elektronika bez nanotechnologii i medycyna bez biotechnologii, a może nawet cybernetyki. Coraz częściej osobom chorym i niepełnosprawnym pomaga się wszczepiając zaawansowane technologiczne implanty i protezy. Niektórym to ratuje życie, innym ułatwia i czyni znośniejszym. Ale wszystkich w pewnym sensie uzależnia od technologii.

Być może z powodu wspomnianego uzależnienia naszego świata od osiągnięć naukowych, może dosłownego rozumienia słowa „demokracja”, a może z powodu asekuranckiej postawy polityków, coraz częściej od nie-specjalistów wymaga się zajmowania stanowiska w sprawach bezpośrednio związanych z nauką. Nigdy wcześniej tak nie było. W niektórych krajach to w referendach ważą się losy biotechnologii i energetyki. W innych pyta się obywateli o status ludzkiego embriona albo o moment, w którym można przerwać ludzkie życie. Tam gdzie formalnie plebiscytu nie ma, rządzący i tak przed podjęciem jakiejkolwiek decyzji przyglądają się słupkom sondaży. Zdanie naukowców, specjalistów zdaje się mieć mniejszą wartość niż opinie elektoratu, często manipulowanego przez sprawnych lobbystów.

W interesie wszystkich jest, by każdy obywatel, a nie tylko osoba z wykształceniem kierunkowym, mógł zabrać świadomy głos w toczących się dzisiaj na wielu frontach debatach z naukowym tłem. Gdy w każdych kolejnych wyborach frekwencja jest coraz niższa, mówi się o zagrożeniu demokracji. Zagrożeniem jest także to, że tak niewiele osób zdaje sobie sprawę z kierunków naszego rozwoju, z szans jakie przed nami stoją i z zagrożeń z nimi związanych. Jeden z moich rozmówców stwierdził, że naukowcy powinni uprawiać naukę, politycy powinni na nią dawać pieniądze, a społeczeństwo powinno kontrolować i jednych i drugich.  Gdy rządzący przed wieloma laty Niemcami kanclerz Gerhard Schroeder poszukiwał oszczędności i chciał obciąć nakłady na naukę, został powszechnie skrytykowany. W mediach pojawiały się nawet sondaże społeczne, z których wynikało, że Niemcy nie chcą w ten sposób oszczędzać. Nasi sąsiedzi zdają sobie po prostu sprawę z tego, że inwestowanie w naukę oznacza rozwój. Społeczeństwo może pośrednio – przez wybieranych polityków – wpływać na kierunek rozwoju nauki. O ile ma wiedzę, która umożliwia podjęcie świadomej decyzji. U nas nakłady na naukę czy nowe technologie nigdy nie były tematem debaty publicznej. Ani w czasie kampanii wyborczych, ani poza nimi. Dlaczego tak się dzieje? W powszechnym odczuciu polski naukowiec to ktoś zamknięty w hermetycznym laboratorium. Ktoś całkowicie oderwany od dnia codziennego. Przyjęło się u nas myśleć, że nauka ma swego rodzaju autonomię, jest niezależna od rzeczywistości. Niestety niebezpieczną konsekwencją takiej opinii jest przekonanie, że uprawianie nauki to sztuka dla sztuki. Trudno sobie wyobrazić większy absurd. Życie nie biegnie innym torem niż najnowsze osiągnięcia i technologie. Przeciwnie. Te obydwie dziedziny są ze sobą ściśle związane. Ale – i znowu wracamy do tego samego – skąd mamy o tym wiedzieć? Jak mamy wpływać na szybkość i kierunek zmian, skoro nie mamy o nich większego pojęcia? Warto wiedzieć więcej. I warto zajrzeć do źródeł.

Tomasz Rożek

 

Brak komentarzy do Świat między 44 zerami

Dzieciątko kręci pogodą

Wyobraź sobie wiatry, które od tysięcy, może setek tysięcy lat wieją tysiące kilometrów stąd. Wyobraź sobie dzień, w którym przestają wiać i w efekcie tego… zakwitają kwiaty w Dolinie Śmierci. Bzdury? Nie, szczera prawda.

Wyobraź sobie wiatry, które od tysięcy, może setek tysięcy lat wieją tysiące kilometrów stąd. Wyobraź sobie dzień, w którym przestają wiać i w efekcie tego… zakwitają kwiaty w Dolinie Śmierci. Bzdury? Nie, szczera prawda. 

>>> Więcej naukowych informacji na FB.com/NaukaToLubie. 

Te wiatry to passaty wiejące na południowym Pacyfiku. Wieją ze wschodu, czyli od południowych wybrzeży Ameryki Południowej, na zachód, czyli w kierunku Australii, Filipin i Indonezji. Czasami jednak zdarza się, że passaty milkną albo wieją znacznie słabiej. Dzieje się to pod koniec roku, w okolicach świąt Bożego Narodzenia. To zjawisko (osłabienie passatów) zostało nazwane El Niño, czyli po hiszpańsku „dzieciątko, chłopczyk”.

Nie tylko pogoda 

Passaty wiejące w kierunku zachodnim są tak silne, że poziom morza u wybrzeży Indonezji jest o kilkadziesiąt centymetrów wyższy niż u wybrzeży Ameryki Południowej. To jednak nie wyższy poziom wody wpływa na pogodę, tylko fakt, że wiatry powodują przepływ ogromnych mas ciepłej wody. W ich miejsce pojawia się lodowata woda z dna oceanu. Póki wieją passaty, woda u zachodnich wybrzeży Ameryki Południowej jest zimna, ale u wybrzeży Australii i Indonezji – ciepła. To uruchamia całą kaskadę zjawisk pogodowych. Na przykład deszczy, które padają tam, gdzie woda jest ciepła. Z kolei tam, gdzie jest ona zimna, panuje suchy klimat. Gdy jednak pojawia się zjawisko El Niño, i wiatry słabną, masy ciepłej wody nie zostają zepchnięte na zachód. W efekcie u wybrzeży Ameryki Południowej jest za ciepło, a u wybrzeży Indonezji – za zimno. W Ameryce zaczynają padać deszcze (choć miało być sucho), a w Azji Południowo-Wschodniej i północnej Australii pojawiają się susze, choć miało padać. Te zmiany spowodowały, że w ostatnich dniach, jak alpejska łąka, zakwitła amerykańska Dolina Śmierci.  Najsuchsze, najgorętsze i najbardziej zasolone miejsce w całej Ameryce Północnej. Dolina zakwitła, bo w czasie ostatnich miesięcy przeszły nad nią silne deszcze. Swoją drogą, czy to nie inspirujące, że nasiona z których w każdej chwili wyrasta życie są powszechne nawet w tak nieprzyjaznych miejscach jak Dolina Śmierci?

>>> Więcej naukowych informacji na FB.com/NaukaToLubie.

Osobnym wątkiem związanym z anomalią El Niño jest ten dotyczący przyrody. Naturalny prąd oceaniczny niesie wody chłodne, które są bogate w składniki odżywcze. Rozwija się morskie życie, a wraz z nim populacja ptaków u wybrzeży Ameryki. Z kolei odchody ptaków użyźniają pola. Bez tego użyźniania, na polach niewiele wyrośnie. Zjawisko El Niño, gdyby trwało kilka miesięcy, jest w stanie wykończyć – i tak biedne – gospodarki takich krajów jak Peru czy Chile.

Wróćmy jednak do pogody. Ziemia to system naczyń połączonych. Wody oceanów mieszają się ze sobą, ogromne masy powietrza nie znają granic państw czy kontynentów. Anomalia, szczególnie tak duża jak El Niño, musi mieć konsekwencje na całym globie. Jakie one są? Cóż, nie mamy ich pełnej świadomości, ale wiemy o tych najważniejszych.

Nie mamy pojęcia 

Osłabienie czy wstrzymanie passatów powoduje pojawienie się czasami katastrofalnych deszczy w Ameryce Południowej. W poprzednich latach, gdy pojawiało się Dzieciątko w takich krajach jak Ekwador czy Peru, ilość opadów była aż 10-krotnie wyższa niż wtedy, gdy El Niño nie było. Wyższe opady (teraz śnieżyce) pojawiają się także w Ameryce Północnej. Susze w Azji Południowo-Wschodniej i północnej Australii są przyczyną pożarów, które nawiedzają tamtejsze lasy od kilku miesięcy. Ogromne ilości dymu dostają się do atmosfery, a to ma wpływ na zdrowie ludzi. Znacznie silniejsze i częstsze są huragany na Pacyfiku, ale za to spokojniej jest na Atlantyku. Zwiększone opady pojawiają się w Afryce Północno-Wschodniej i w krajach Półwyspu Arabskiego. Z kolei susze panują na południu Afryki. A co z Europą? Nie ma jednoznacznych dowodów, ale przypuszcza się, że efektem długo trwającego El Niño są ciepłe zimy przerywane krótkimi i gwałtownymi okresami siarczystych mrozów. Tak było na przełomie lat 1982 i 1983 oraz 1997 i 1998. Wówczas także występowało zjawisko Dzieciątka. Tegoroczne El Niño jest jednak rekordowe. Tak silne i długotrwałe nie było od początku pomiarów, a więc od 1950 roku. Za kilka tygodni minie rok, odkąd passaty zwolniły. Zwykle działo się to najwyżej na kilka tygodni w okresie Bożego Narodzenia. Zazwyczaj El Niño występowało mniej więcej co dekadę. W ostatnich latach jest częstsze, dłuższe i gwałtowniejsze. – Zjawisko to wkracza na nowe obszary. Nasza planeta zmieniła się drastycznie ze względu na generalną tendencję ocieplania wód oceanicznych, utratę lodu arktycznego, a także ponad miliona kilometrów kwadratowych letniej pokrywy lodowej na półkuli północnej – powiedział sekretarz generalny Światowej Organizacji Meteorologicznej (WMO) Michel Jarraud. – Choć właśnie padły rekordy, El Niño zamierza jeszcze bardziej podkręcić temperaturę – dodał. Pozostaje odpowiedzieć na ostatnie pytanie. Co jest źródłem tego zjawiska meteorologicznego? Dlaczego w ostatnich latach obserwujemy je częściej? Na obydwa te pytania istnieje tylko jedna uczciwa odpowiedź. Nie mamy bladego pojęcia!

>>> Więcej naukowych informacji na FB.com/NaukaToLubie.

3 komentarze do Dzieciątko kręci pogodą

Nie wyrzucaj baterii!

Każdy powinien wiedzieć, że zużytych baterii czy akumulatorów nie wolno wyrzucać do śmieci komunalnych, tylko trzeba zanosić do specjalnie przygotowanych pojemników. Ale czy wiemy dlaczego należy tak postępować?

Każdy powinien wiedzieć, że zużytych baterii czy akumulatorów nie wolno wyrzucać do śmieci komunalnych, tylko trzeba zanosić do specjalnie przygotowanych pojemników. Ale czy wiemy dlaczego należy tak postępować?

Rocznie zużywamy prawie 300 milionów baterii. 90 proc. z nich to baterie jednorazowe. Zwykle gdy przestają działać, po prostu je wyrzucamy. W ten sposób do środowiska naturalnego trafiają tak trujące związki i pierwiastki jak ołów, kadm, nikiel, rtęć, lit i mangan. To czynniki silnie trujące. Wpływają negatywnie nie tylko na człowieka, ale na całe środowisko.

>>> Więcej naukowych informacji na FB.com/NaukaToLubie

Z wielu szkodliwych substancji czy pierwiastków z których zbudowane są wyrzucane baterie, najgorszy wpływ na zdrowie i życie człowieka mają ołów, kadm i rtęć.

Ołów – jest pierwiastkiem trującym. Związki ołowiu mają negatywny wpływ na praktycznie wszystkie komórki i narządy. Jest szczególnie niebezpieczny dla dzieci i młodzieży.

Kadm – jest jeszcze bardziej toksyczny niż ołów. Niezależnie od tego w jaki sposób dostanie się do organizmu, jest magazynowany w wątrobie, nerkach, trzustce i płucach. Jest źródłem anemii.

Rtęć – związki tego pierwiastka są silnie trujące i mają dewastujący wpływ na ośrodkowy układ nerwowy. Szalony Kapelusznik, to jedna z postaci występującej w Alicji z Krainy Czarów. Kapelusznicy często cierpieli na choroby psychiczne, bo w procesie uzyskiwania filcu były używane związki rtęci.

Jedynym sposobem na zneutralizowanie zagrożenia jest utylizacja zużytych baterii w wyspecjalizowanych zakładach przeróbki odpadów niebezpiecznych. Tam stosowana jest albo metoda mechaniczna, czyli w skrócie mówiąc rozdrabnianie baterii i oddzielanie od siebie poszczególnych ich części, albo metoda termiczna, która polega na wytapianiu szkodliwych metali w temperaturze około 1400 st C. Trzecia jest metoda hydrometalurgiczna, która polega na chemicznym przetworzeniu baterii. Traktując je kwasami lub zasadami, wytapia się metale czy związki, które są szkodliwe.  Proces recyklingu odbywa się w warunkach kontrolowanych, a odpowiednie zabezpieczenia nie pozwalają by niebezpieczne związki trafiły do środowiska naturalnego.

>>> Więcej naukowych informacji na FB.com/NaukaToLubie

Niezależnie od stosowanej metody, takie metale jak kadm, ołów, rtęć, nikiel czy lit, mogą być ponownie użyte.

PS. Zdaję sobie sprawę z tego, że tym wpisem absolutnie nie wyczerpuję tematu recyclingu baterii. Kiedyś napiszę o tym więcej. Po prostu dzisiaj wymieniałem dzieciom baterie w aparacie fotograficznym i zdałem sobie sprawę z tego jak dużo baterii zużywamy. Swoją drogą, coraz częściej myślę, że osoba (firma), która wymyśli sposób na wydajne i „zdrowe” dla środowiska magazynowanie energii elektrycznej, będzie autorem jednego z największych wynalazków wszech czasów.

9 komentarzy do Nie wyrzucaj baterii!

Burza w sercu

Zakochanie to biochemia, genetyka i cała masa czynników które moglibyśmy nazwać „naukowymi”. Zakochane mózgu bada się najbardziej zaawansowanymi technikami jakie zna medycyna.

Połowa lutego to czas w którym o miłości i zakochaniu mówi się szczególnie często. Oczywiście za sprawą dnia świętego Walentego (czyli Walentynek), który w pop-kulturze jest szczególnie czczony przez zakochanych. Nieczęsto wspomina się o tym, że święty Walenty jest także patronem psychicznie chorych (epilepsję do niedawna nazywano chorobą Św. Walentego), a szkoda. Z naukowego punktu widzenia to co dzieje się w chwili zakochania ma sporo wspólnego z czystym szaleństwem. I rzeczywiście, u osób zakochanych obserwuje się mocne ukrwienie tej części mózgu, która jest odpowiedzialna za zachowania obsesyjne.

Kurierzy w mózgu

To nie tak, że o zakochaniu wiemy wszystko, to nie tak, że to co dzieje się w sercu, mózgu czy brzuchu zakochanego, potrafimy wyrazić równaniami fizycznymi czy reakcjami biochemicznymi. Wciąż sporo w tym tajemnicy. Dlaczego zakochujemy się w tej, a nie w innej osobie? Dlaczego czasami zauroczenie zamienia się w trwające dziesiątki lat głęboki i szczere uczucie, a czasami mija jak śnieg wiosną? Tego nie wiemy. Pozostaje operowanie danymi statystycznymi, uśrednieniami i szacunkami.

>>> Więcej naukowych informacji na FB.com/NaukaToLubie

Z biochemicznego punktu widzenia za stan zakochania, który czasami porównuje się do stanu odurzenia jakimiś środkami, odpowiedzialne są przynajmniej trzy neurotransmitery (neuroprzekaźniki). To związki chemiczne, których cząsteczki działają trochę jak kurierzy w firmie, czyli przenoszą informacje z miejsca na miejsce. I tak jak w dużym wieżowcu kurierzy kursują pomiędzy biurkami, pokojami, korytarzami, piętrami czy nawet budynkami, tak w mózgu, linia startowa dla cząsteczki neuroprzekaźnika to dendryt, a meta to akson. Dendryty i aksony to „wypustki” komórek nerwowych. Impulsy elektryczne są przenoszone po zewnętrznej powierzchni komórki nerwowej, ale to neurotransmitery przenoszą informacje pomiędzy sąsiadującymi komórkami. W praktyce, impuls elektryczny (sygnał fizyczny) na zakończeniu każdej wypustki jest „tłumaczony” na sygnał chemiczny przenoszony przez neurotransmitery do kolejnej wypustki. Tam z powrotem chemia „zamienia się” w fizykę i w kolejnej komórce impuls elektryczny wędruje dalej. Neurotransmiterów jest bardzo dużo, ale w procesie zakochania uaktywniają się głównie trzy. Dopamina, serotonina i oksytocyna. Ta pierwsza pobudza te same części mózgu, które są pobudzane przez niektóre narkotyki. Powoduje, że świat wydaje się być bezproblemowy i piękny. Dopamina zmusza do aktywności, do działania. W skrócie… zakochany nie jest w stanie usiedzieć na miejscu. Potrzebuje swojego bodźca. Głosu, obrazu, zapachu osoby w której się zakochał. Ten bodziec uwalnia w mózgu nową porcję dopaminy. To dlatego zakochani zerkają na siebie ukradkiem.

Podczas gdy dopamina nas pobudza, drugi neuroprzekaźnik, serotonina, nas uspokaja. W końcu jest też oksytocyna. Ona pomaga nam nawiązywać relacje z drugą osobą. I dotyczy to nie tylko zakochanych. Oksytocyna jest uwalniana u matki np. podczas ssania piersi przez jej dziecko. Oksytocyna czyni nas bardziej uległymi, bardziej skorymi do współpracy i współodczuwania oraz ufnymi. Ale także bardziej szczodrymi (prezenty!) i zazdrosnymi.

Wieczna tajemnica?

Trzy wspomniane wyżej neuroprzekaźniki powodują, że świat wydaje się być różowy, bezproblemowy a osoba w którą jesteśmy zapatrzeni wydaje się nie mieć wad. Tym bardziej, że przytłumiona jest ta racjonalna część mózgu. Oczywiście nie u wszystkich działa to w ten sam sposób. Generalnie jednak, to mężczyźni szybciej się zakochują i szybciej odkochują. Kobiety są bardziej zrównoważone w tym względzie. Z czego to wynika? Teorii jest kilka, ale jedna z nich (tzw. teoria inwestycji rodzicielskiej) mówi, że skoro panie ponoszą większy biologiczny ciężar wydania na świat potomstwa, zostały obdarzone cechami, które proces zakochania się jakoś racjonalizują. To jak gdyby mieć w mózgu dodatkowe hamulce. Zgodnie z tą teorią, mężczyźni nie muszą mieć tych hamulców, bo… w sumie nie ponoszą odpowiedzialności biologicznej za przelotne romanse.

>>> Więcej naukowych informacji na FB.com/NaukaToLubie

Na koniec jeszcze garść wyników badań statystycznych. Nie jest prawdą, że w miłości przeciwieństwa się przyciągają. Prawdą za to jest, że mężczyźni znacznie większą wagę przywiązują do wyglądu kobiety niż kobiety do wyglądu mężczyzny. Z jednym wyjątkiem, zarówno płeć piękna, jak i brzydka za bardziej atrakcyjne uważa osoby z dużymi oczami. Może dlatego panie optycznie powiększają sobie oczy makijażem? A może osoby zakochane wydaję się być atrakcyjniejsze, bo w okresie zauroczenia mają rozszerzone źrenice?

Zakochanie to biochemia, genetyka i cała masa czynników które moglibyśmy nazwać „naukowymi”. Zakochane mózgu bada się najbardziej zaawansowanymi technikami jakie zna medycyna. Dzięki rezonansowi magnetycznemu jesteśmy w stanie odróżnić zakochanie od pożądania. To kwestia dokładnej obserwacji tzw. pola brzusznego nakrywki, które wchodzi w skład tzw. układu nagrody. Rumieniące się policzki (uczucie gorąca włącza system chłodzenia), pocące się dłonie, drżący głos… ale to wciąż za mało, by zrozumieć to co dzieje się w głowie zakochanego. Czy kiedykolwiek zrozumiemy? Mam nadzieję że nie. Mam nadzieję, że miłość i zakochanie pozostaną przynajmniej trochę tajemnicze.

>>> Więcej naukowych informacji na FB.com/NaukaToLubie

Tekst ukazał się w tygodniku Gość Niedzielny

Brak komentarzy do Burza w sercu

(wszech)Świat się marszczy !!!

Lada dzień gruchnie wiadomość na którą czekamy od kilku dziesięcioleci. Wszechświat, przestrzeń marszczy się. W LIGO podobno odkryto fale grawitacyjne.

Kosmiczny detektor, kosmiczne zagadnienie. W świecie fizyków i kosmologów od kilku dni nie mówi się o niczym innym niż fale grawitacyjne, które miał podobno wykryć LIGO. O co chodzi?

>>> Więcej naukowych informacji na FB.com/NaukaToLubie

waves-101-1222750-1600x1200

Fale grawitacyjne to kompletny odlot. Człowiekiem który sprawę rozumiał, ba, który ją wymyślił, a w zasadzie wyliczył był nie kto inny tylko Albert Einstein (swoją drogą powinien dostać nagrodę za odkrycie najbardziej nieintuicyjnych zjawisk we wszechświecie). Z napisanej przez niego 100 lat temu Ogólnej Teorii Względności wynika, że ruch obiektów obdarzonych masą,  jest źródłem rozchodzących się w przestrzeni fal grawitacyjnych (lub inaczej – choć nie mniej abstrakcyjnie – zaburzeń czasoprzestrzennych). Jak to sobie wyobrazić? No właśnie tu jest problem. Bardzo niedoskonała analogia to powstające na powierzchni wody kręgi, gdy wrzuci się do niej kamień. W przypadku fal grawitacyjnych zamiast wody jest przestrzeń, a zamiast kamienia poruszające się obiekty. Czym większa masa i czym szybszy ruch, tym łatwiej zmarszczki przestrzeni powinny być zauważalne. Rejestrując największe fale grawitacyjne, tak jak gdybyśmy bezpośrednio obserwowali największe kosmiczne kataklizmy: zderzenia gwiazd neutronowych, czarnych dziur czy wybuchy supernowych. Trzeba przyznać, że perspektywa kusząca gdyby nie to… że fale grawitacyjne to niezwykle subtelne zjawiska. Nawet te największe, bardziej będą przypominały lekkie muśnięcia piórkiem niż trzęsienie ziemi. W książce „Zmarszczki na kosmicznym morzu” (Ripples on a Cosmic Sea: The Search for Gravitational Waves) australijski fizyk, prof. David Blair, poszukiwanie fal grawitacyjnych porównuje do nasłuchiwania wibracji wywołanych przez pukanie do drzwi z odległości dziesięciu tysięcy kilometrów. Detektory zdolne wykryć fale grawitacyjne powinny być zdolne zarejestrować wstrząsy sejsmiczne wywołane przez upadek szpilki po drugiej stronie naszej planety. Czy to w ogóle jest możliwe? Tak! Od 2002 roku działa w USA Laser Interferometer Gravitational Wave Observatory w skrócie LIGO czyli Laserowe Obserwatorium Interferometryczne Fal Grawitacyjnych. Zanim budowa ruszyła, pierwszy szef laboratorium prof. Barry Barrish na dorocznym posiedzeniu AAAS (American Association for the Advancement of Science) oświadczył, że pomimo wielu trudności nadszedł w końcu czas na zrobienie czegoś, co można nazwać prawdzią nauką (swoją drogą, odważne słowa na zjeździe najlepszych naukowców na świecie).

>>> Więcej naukowych informacji na FB.com/NaukaToLubie

This_visualization_shows_what_Einstein_envisioned

Symulacja łączenia się czarnych dziur – jedno ze zjawisk, które wytwarza najsilniejsze fale grawitacyjne

Z falami grawitacyjnymi jest jednak ten problem, że przez dziesięciolecia, mimo prób, nikomu nie udało się ich znaleźć. Gdyby komuś zaświtała w głowie myśl, że być może w ogóle ich nie ma, spieszę donieść, że gdyby tak było naprawdę, runąłby fundament współczesnej fizyki – Ogólna Teoria Względności, a kosmologię trzeba byłoby przepisać od początku. Dzisiaj głośno mówi się, że fale grawitacyjne zostały przez LIGO zarejestrowane. Panuje raczej atmosfera lekkiego podniecenia i oczekiwania na to, co stanie się za chwilę. Potwierdzenie istnienia fal grawitacyjnych nie będzie kolejnym odkryciem, które ktoś odfajkuje na długiej liście spraw do załatwienia.  Zobaczymy otaczający nas wszechświat z całkowicie innej perspektywy.

Jako pierwszy falowe zmiany pola grawitacyjnego, w latach 60 XX wieku próbował zarejestrować amerykański fizyk Jaseph Weber. Budowane przez niego aluminiowe cylindry obłożone detektorami nie zostały jednak wprawione w drgania. Co prawda Weber twierdził, że złapał zmarszczki wszechświata, ale tego wyniku nie udało się potwierdzić. Dalsze poszukiwania trwały bez powodzenia, aż do 1974 roku, gdy dwóch radioastronomów z Uniwersytetu w Princeton (Joseph Taylor i Russel Hulse) obserwując krążące wokół siebie gwiazdy (PSR1913+16) stwierdziło, że układ powoli traci swoją energię, tak jak gdyby wysyłał … fale grawitacyjne. Mimo, że samych fal nie zaobserwowano, za pośrednie potwierdzenie ich istnienia autorzy dostali w 1993 roku Nagrodę Nobla. Uzasadnienie Komitetu Noblowskiego brzmiało: „za odkrycie nowego typu pulsara, odkrycie, które otwiera nowe możliwości badania grawitacji”.

>>> Więcej naukowych informacji na FB.com/NaukaToLubie

virgoviewInstalacja, która z lotu ptaka wygląda jak wielka litera L, to dwie rury o długości 4 km każda, stykające się końcami pod kątem prostym. Choć całość przypomina przepompownię czy oczyszczalnię ścieków jest jednym z najbardziej skomplikowanych urządzeń kiedykolwiek wybudowanych przez człowieka. Każde z ramion tworzy betonowa rura o średnicy 2 metrów. W jej wnętrzu – jak w bunkrze – znajduje się druga ze stali nierdzewnej, która jest granicą pomiędzy światem zewnętrznym a bardzo wysoką próżnią. Z miejsca w którym rury się stykają, „na skrzyżowaniu”, dokładnie w tym samym momencie wysyłane są wiązki lasera. Ich celem są zwierciadła umieszczone na końcu każdej z rur. 2000px-Ligo.svgOdbijane przez zwierciadła tam i z powrotem około 100 razy promienie, wpadają z powrotem do centralnego laboratorium i tam zostają do siebie porównane. Dzięki zjawisku interferencji możliwe jest wyliczenie z wielką dokładnością różnicy przebytych przez obydwie wiązki światła dróg. A drogi te powinny być identyczne, no chyba że… chyba że w czasie pomiaru przez Ziemie – podobnie jak fala na powierzchni wody – przejdzie fala grawitacyjna. Wtedy jedno z ramion będzie nieco dłuższe, a efekt natychmiast zostanie wychwycony w czasie porównania dwóch wiązek. Tyle tylko, że nawet największe zaburzenia zmienią długość ramion o mniej niż jedną tysięczną część średnicy protonu (!). To mniej więcej tak, jak gdyby mierzyć zmiany średnicy Drogi Mlecznej (którą ocenia się na ok. 100 tys. lat świetlnych) z dokładnością do jednego metra. Czy jesteśmy w stanie tak subtelne efekty w ogóle zarejestrować ? Lustra na końcach każdego z korytarzy (tuneli) mogą zadrgać (chociażby dlatego, że przeleciał nad nimi samolot, albo w okolicy przejechał ciężki samochód). By tego typu efekty nie miały wpływu na pomiar zdecydowano się na budowę nie jednej, ale dwóch instalacji, w Handford w stanie Waszyngton i w Livingston w stanie Luizjana. Są identyczne, choć oddalone od siebie o ponad 3 tys. kilometrów. Ich ramiona maja takie same wymiary i maja takie same układy optyczne. Nawet gdy w jednym LIGO zwierciadło nieoczekiwanie zadrga, niemożliwe by to samo w tej samej chwili stało się ze zwierciadłem bliźniaczej instalacji. Zupełnie jednak inaczej będzie gdy przez Ziemię przejdzie z prędkością światła fala grawitacyjna. Zmiany jakie wywoła zajdą w dokładnie tej samej chwili w obydwu ośrodkach.

>>> Więcej naukowych informacji na FB.com/NaukaToLubie

A kończąc, pozwólcie na ton nieco nostalgiczny. Wszechświat jest areną niezliczonych kataklizmów a dramatyczne katastrofy, to naturalny cykl jego życia. To nic, że od tysięcy lat na naszym niebie królują te same gwiazdozbiory. W skali kosmicznej taki okres czasu to nic nieznacząca chwila, a nawet w czasie jej trwania widoczne były wybuchy gwiazd. Z bodaj największego kataklizmu – Wielkiego Wybuchu – „wykluło” się to co dzisiaj nazywamy kosmosem. Obserwatoria grawitacyjne (np. takie jak LIGO) otworzą oczy na inne wielkie katastrofy, i to nie tylko te które będą, ale także te które były. Już prawie słychać zgrzyt przekręcanego klucza w drzwiach. Już za chwilę się otworzą. Najpierw przez wąską szparę, a później coraz wyraźniej i coraz śmielej będziemy obserwowali wszechświat przez nieznane dotychczas okulary. Ocenia się, że to co widzą „zwykłe” teleskopy (tzw. materia świecąca) to mniej niż 10% całej masy Wszechświata. A gdzie pozostałe 90% ? Na to pytanie nie znaleziono dotychczas odpowiedzi. Tzw. ciemna materia powinna być wszędzie, a nie widać jej nigdzie. Przypisuje się jej niezwykłe właściwości, łączy się ją z nie mniej tajemniczą ciemną energią. Czy LIGO, pomoże w rozwiązaniu tej intrygującej zagadki? Czy będzie pierwszym teleskopem, przez który będzie widać ciemną materię? Jeżeli obserwatoria grawitacyjne będą w stanie „zobaczyć” obiekty, które można obserwować także w świetle widzialnym (np. wybuch supernowej), a nie będą widziały ani grama ciemnej materii, to zagadka staje się jeszcze bardziej tajemnicza. Bo albo ta materia nie podlega prawom grawitacji, albo nie ma żadnej ciemnej materii. Konsekwencje obydwu tych scenariuszy są trudne do przewidzenia. Czy teraz rozumiecie dlaczego odkrycie fal grawitacyjnych jest tak ważne? 

10 komentarzy do (wszech)Świat się marszczy !!!

Śpiewające piaski

„Powszechnie wiadomym jest, że pustynię zamieszkują złe duchy, prowadząc podróżników do zguby przez najbardziej złośliwe sztuczki” – pisał w 1295 roku Marco Polo. Dzisiaj wiadomo, że to nie duchy straszą na pustyni tylko dźwięki produkowane przez wydmy.

„Powszechnie wiadomym jest, że pustynię zamieszkują złe duchy, prowadząc podróżników do zguby przez najbardziej złośliwe sztuczki”

– pisał w dzienniku ze swoich podróży Marco Polo. Był rok  w 1295 roku i o mechanice materiałów sypkich wiedziano wtedy niewiele (a i dzisiaj nie wszystko jest jasne i oczywiste). Dzisiaj wiadomo, że to nie duchy straszą na pustyni podróżników, tylko śpiewające wydmy. O co chodzi? O lawiny piasku.

>>> Więcej naukowych informacji na FB.com/NaukaToLubie.

Samochód jadący po tzw. kocich łbach hałasuje, bo koła raz wjeżdżają na kamień, raz z niego zjeżdżają. I tak w kółko, wjeżdżają i zjeżdżają, wjeżdżają… A teraz wyobraźcie sobie ziarenka piasku, które zsuwają się w dół wydmy. Nie ześlizgują się przecież po gładkiej powierzchni, tylko po innych ziarenkach piasku, leżących głębiej. I tak jak samochód na „kocich łbach”, tak drobinki piasku, raz wtaczają się na ziarenka leżące głębiej, raz z nich staczają. Zsynchronizowany ruch ziarenek „góra-dół” powoduje, że wydma zachowuje się jak ogromna drgająca membrana. Te drgania, tak jak w głośniku, „produkują” dźwięki.

Zrzut ekranu 2016-01-22 o 13_Fotor

Gdy nachylenie zbocza wydmy przekroczy wartość graniczną (około 35 st), warstwy piasku zsuwają się (a). Ziarenka piasku nie poruszają się jednak po płaskiej nawierzchni. Najpierw same muszą się wtoczyć (b) i przetoczyć (c i d) po warstwie piasku która pozostaje nieruchoma. W efekcie ziarenka piasku nie tylko poruszają się ku podstawie zbocza. Ponieważ zjeżdżają po innych ziarenkach piasku, dosyć szybko drgają poruszając się góra – dół. Źródło grafiki: Laurie Grace, ŚWIAT NAUKI 11.97

Membrana w głośniku jest jednak dużo mniejsza niż powierzchnia zsuwającej się piaskowej lawiny. Dźwięki „wygrywane” przez śpiewające wydmy mogą być tak donośne, że słychać je z odległości nawet 10 kilometrów. Dokładne pomiary wykazały, że odgłosy powstające na pustyni mogą mieć głośność nawet do 105 decybeli, podczas gdy granica bólu u człowieka wynosi 120 decybeli.

Nie każda wydma śpiewa. Ziarenka piasku muszą być małe, ich średnica nie może przekraczać 0,5 mm. Czym piasek jest czystszy, tym bardziej prawdopodobne, że będzie śpiewał. Gdy w piasku są zanieczyszczenia (muł, resztki roślin czy szczątki zwierząt, np. małe kawałki muszelek), o śpiewaniu można zapomnieć. Śpiewające wydmy występują tylko tam, gdzie jest wysoka temperatura i niska wilgotność. Wydmy nigdy nie śpiewają wcześnie rano czy późno wieczorem, bo wtedy nawet na pustyni w powietrzu (i piasku) jest trochę wilgoci. Cząsteczki wody, sklejają ziarenka piasku, a to wstrzymuje piaskowe lawiny.

Moment w którym z wydmy zsunie się lawina jest nie do przewidzenia. Gdy stromizna wydmy osiągnie wartość graniczną (wynoszącą na Ziemi dla suchego piasku około 35 stopnie), potrzebne jest tylko jedno jedyne ziarenko, które spowoduje przekroczenie wartości krytycznej i niekontrolowana już niczym lawina zsuwa się w dół zbocza. To zachwianie równowagi może być spowodowane także hukiem, albo jakimś wstrząsem. Przeróżne dźwięki powstają więc na pustynie nagle. Czasami jeden dźwięk wywołuje następny, czasami – mówią podróżnicy – jak gdyby grała cała orkiestra. Słychać dzwony, trąbki, harfy, organy i flety. Czasami słychać wystrzały armatnie, syreny okrętowe, odgłosy samolotów, głośny gwar czy płacz. Marco Polo opisywał dźwięki przypominające nawoływania, odgłosy marszu czy klaskania. Bywa, że zaskoczony i przerażony podróżnik znajduje się w samym ich środku.

>>> Więcej naukowych informacji na FB.com/NaukaToLubie

W Polsce nie ma śpiewających wydm. Jest za to tzw. „piszczący” piasek. Spacerując po plaży, stopami ugniatamy piasek. Pod wpływem naszego ciężaru, jego ziarenka są pomiędzy siebie wciskane, a to powoduje ich drgania i powstawanie dźwięków. Piszczących. Czy śpiewające wydmy występują na innych globach? Nie wiadomo. Powierzchnia Marsa składa się prawie wyłącznie z pustyń. Inny rodzaj piasku, inna grawitacja, wilgotność, ciśnienie i temperatura. Oj, fizycy będą mieli pełne ręce roboty.

okładka - piasekArtykuł pochodzi z książki „Nauka. To lubię. Od ziarnka piasku do gwiazd”. Tomasz Rożek, WAB 2012

Brak komentarzy do Śpiewające piaski

Mróz i ekstremalne doświadczenie

Nieczęsto robię doświadczenia naukowe na samym sobie. Ale… czasami mi się zdarza. Ten eksperyment, który opiszę był chyba jednym z najbardziej ekstremalnych.

Ta historia ma swój początek na Syberii. Jakiś czas temu (była już zima) zbierałem tam materiały do kilku tekstów (m.in. o jeziorze Bajkał). Trochę podróżowałem po okolicy (na Syberii okolica to co innego niż u nas 😉 ), ale przez kilka dni stacjonowałem w Irkucku.

>>> Więcej naukowych informacji na FB.com/NaukaToLubie

Któregoś dnia mojej wyprawy byłem świadkiem dość zaskakującej sytuacji. Widziałem dwóch dosyć rosłych facetów, którzy rozebrawszy się do kompletnego rosołu wskoczyli do wody. Bajkał w grudniu nie zamarza, więc nie musieli robić przerębla. Temperatura powietrza wynosiła wtedy około minus 30 st C. Panowie się wykąpali, po czym – tak jak Pan Bóg ich stworzył – weszli do samochodu i odjechali. Nie wyglądali na umęczonych, przeciwnie, ta szybka kąpiel chyba im się podobała. Już wtedy pomyślałem, że fajnie byłoby spróbować samemu wykąpać się w jeziorze, środku zimy.

Jak to jest, że ci, którzy morsują nie czują zimna (ja nie czułem)? Jak to jest, że tak dobrze czujemy się w saunie, gdzie temperatura może dochodzić nawet do plus 120 st C (!!!) ? No i co dzieje się z naszym ciałem gdy szybko zmieniamy temperaturę otoczenia?

sauna-1417238-639x739Pomijając osoby chore na serce i małe dzieci, szybka zmiana temperatury jest dla nas korzystna. O ile  dobrze się do niej przygotujemy. Eksperyment rozpocząłem od sauny. Wejście do sauny to jak zderzenie się z gorącą ścianą. W takim otoczeniu ciało bardzo szybko może się przegrzać. Dlatego mózg włącza tryb awaryjny. Coraz szybciej oddychamy i coraz szybciej bije nasze serce, a wszystko po to, by jak najwięcej krwi przepompować z wnętrza ciała do warstwy podskórnej. To dlatego gdy jest nam gorąco, jesteśmy czerwoni na twarzy. Krew krąży bardzo blisko powierzchni skóry bo wtedy najlepiej działa system chłodzenia. Pocimy się, a woda, po to by wyparować, potrzebuje energii. Tą energię odbiera powierzchni skóry, ochładzając ją. W saunie jest ekstremalnie ciepło, więc w odpowiedzi, ekstremalnie mocno się pocimy. I tutaj mała uwaga. Siedząc w saunie, nie wycierajcie spływającego hektolitrami po skórze potu. To  jest bez sensu. Pozbawiacie się wtedy systemu chłodzenia, a to może doprowadzić do przegrzania organizmu.

>>> Więcej naukowych informacji na FB.com/NaukaToLubie

Prosto z sauny wskoczyłem do basenu z zimną wodą. Miałem wrażenie, że serce staje mi w miejscu. Tymczasem ono zaczęło szybciej bić, po to by przepompować krew z zewnętrznych warstw mojego ciała do środka. Ale to jeszcze nic. Z basenu (po dokładnym osuszeniu), w krótkich spodenkach, czapce, rękawiczkach i butach, wszedłem do kriokomory. Temperatura w środku wynosiła minus 120 st C (!!!). W takiej atmosferze człowiek może przetrwać tylko kilka minut. Pomijam fakt, że palec przymarzł mi do klamki (moja wina, ściągnąłem rękawiczki), mimo ekstremalnych warunków, nic mi się nie stało. Miałem jednak wrażenie, że serce wyskoczy mi z klatki piersiowej. W niskiej temperaturze czym mniej krwi w warstwach podskórnych tym lepiej. To dlatego gdy jest nam zimno, robimy się bladzi na twarzy. Krew szybko usuwana jest z powierzchni ciała i pompowana do środka. W ten sposób tracimy mniej energii. W czasie tego przepompowywania pracuje nie tylko serce, ale w zasadzie wszystkie mięśnie.

Zrzut ekranu 2016-01-05 o 00_Fotor

Mój sprint do wody. Biegłem szybko… żeby nie zmarznąć 😉 Temperatura powietrza wynosiła wtedy około minus 7 st. C

Przepompowywanie krwi wte i wewte to doskonały trening dla ciała. Postanowiłem więc zrobić ostateczny test. Przerębel. Temperatura minus 7 st C, piaszczysta plaża i woda. Zimna woda! Najpierw koniecznie trzeba rozgrzać mięśnie, a w czasie tej rozgrzewki sukcesywnie się rozbierać. Pozostają buty do nurkowania (by nie rozciąć sobie nogi na kawałku lodu i by nie odmrozić sobie palców), czapka, rękawiczki no i kąpielówki. I tu ogromne zaskoczenie. Wszedłem do wody i nie czułem zimna. Serio, serio. Po kilkudziesięciu sekundach czułem mrowienie w mięśniach. To znak, że trzeba wyjść z wody i ponownie się rozgrzać. W czasie rozgrzewki krew (z tlenem) pompowana jest do mięśni. W lodowatej wodzie, przeciwnie, krew usuwana jest z mięśni (to mrowienie to znak, że mięśniom brakuje tlenu). Każde kolejne wejście może trwać dłużej (później pojawia się uczucie mrowienia), pomiędzy kolejnymi wejściami, zawsze trzeba się jednak rozgrzać. Nie ciepłym ubraniem, broń Boże alkoholem, tylko ćwiczeniami. Ja biegałem, robiłem przysiady i pompki.

>>> Więcej naukowych informacji na FB.com/NaukaToLubie

Moje wrażenia? Polecam każdemu. Przed wskoczeniem do przerębla, czytałem, że w czasie morsowania mięśnie pracują intensywniej niż na siłowni. Nie wierzyłem, ale uwierzyłem. Kolejnego dnia, po moim eksperymencie, bylem tak obolały, że nie potrafiłem wstać z łóżka. Co polecam każdemu 😉 

 

4 komentarze do Mróz i ekstremalne doświadczenie

Wszystko jest matematyką – rozmowa z X. prof. Michałem Hellerem

O kosmosie, ciekawości, przypadku i matematyce z księdzem profesorem Michałem Hellerem, teologiem, kosmologiem, matematykiem i filozofem rozmawia Tomasz Rożek

Z księdzem profesorem Michałem Hellerem, teologiem, kosmologiem, matematykiem i filozofem rozmawia Tomasz Rożek. Poniższy wywiad jest uzupełnieniem dwóch rozmów, które opublikowałem na kanale YouTube.com/Nauka To Lubie. Pierwsza z tych rozmów dotyczyła wszechświata, a druga człowieka. U dołu wywiadu znajdują się bezpośrednie odnośniki do obydwu rozmów.

>>> Więcej naukowych ciekawostek na FB.com/NaukaToLubie

Co się stało się prawie 14 miliardów lat temu? Możemy w ogóle udzielić jakiejkolwiek odpowiedzi?

Historię wszechświata rekonstruujemy poruszając się wstecz. Do 3 minut po wielkim wybuchu mamy wiedzę bardzo solidną, a potem grzęźniemy w hipotezach. Im bliżej początku, tym bardziej hipotetyczna jest nasza wiedza. Ta wiedza opiera się na teorii, ale teoria jest dobrze sprawdzona chociażby w takich miejscach jak laboratorium fizyki cząstek CERN, gdzie zderza się ze sobą np. protony.

Wiemy w takim razie co stało się po Wielkim Wybuchu, ale co było w punkcie zero?

Pytanie, czy taki punkt zero w ogóle był. Według klasycznej kosmologii, według teorii Einsteina, rzeczywiście punkt zero istniał i był tzw. osobliwością, czyli obszarem, w którym załamuje się pojęcie czasoprzestrzeni. Pojęcia czasu i przestrzeni tracą tam sens. Tam urywa się nasza wiedza, znane nam prawa natury przestają działać.

Skoro nie prawa przyrody, to co się tam dzieje?

To jest pytanie, na które nie znam odpowiedzi. Mamy dwie wielkie teorie: fizyka kwantowa i fizyka grawitacji. Fizyka kwantowa rządzi światem cząstek elementarnych, mikroświatem. Fizyka grawitacji rządzi kosmosem w wielkiej skali. Zaraz po Wielkim Wybuchu te dwie teorie nakładały się na siebie. Po to by wyjaśnić co dzieje się w osobliwości, trzeba połączyć te dwie teorie w jedną. Jest to niezmiernie trudne wyzwanie, bo te dwie siły mają zupełnie inną naturę. Moim zdaniem, to jest w tej chwili problem numer jeden fizyki teoretycznej. Mamy kilka, może nawet kilkanaście pomysłów jak grawitację i teorię kwantów ze sobą połączyć, ale żaden z nich nie jest potwierdzony doświadczalnie. Wszystko to są hipotetyczne rzeczy, posługują się bardzo ładną i zaawansowaną matematyką, ale nie mamy empirycznego rozstrzygnięcia, która jest prawdziwa i pewnie długo nie będziemy mieć.

Czy to jest przypadek, że człowiek został obdarzony umysłem, żeby dociekać tak skomplikowanych i abstrakcyjnych rzeczy?

Tego też nie wiemy. W każdym razie jest to rzecz niesamowita, że mamy taką władzę poznawania wszechświata. Bo pomyślmy nad tym. Jeżeli umysł ludzki powstał ewolucyjnie przez oddziaływanie z otoczeniem, to jak mówią biologowie, utrwalały się te cechy, które są potrzebne do przeżycia.

Wiedza o czarnej dziurze nie jest potrzebna?

Wiedza o czarnej dziurze jest absolutnie niepotrzebna do przeżycia.

Od biedy dałoby się połączyć wiedzę z sukcesem reprodukcyjnym. W końcu wolimy się otaczać ludźmi mądrzejszymi. Może intelekt czy wiedza to coś w rodzaju pożądanego przez przyszłego partnera gadżetu?

Myślę, że chyba wystarczyłby taki gadżet, który służyłby do uchylania głowy jak maczuga leci. Niemniej jednak jest to niesamowite, że człowiek ma tak rozwinięty umysł. Jeśli popatrzymy na historię, to tak naprawdę fizyka zaczęła się gdzieś w XVII wieku. Jesteśmy dopiero na samym początku. Co to jest kilkaset lat wobec 14 miliardów? I to jest rzeczywiście coś absolutnie niesamowitego. Można by to pytanie, które pan zadał, postawić w innej formie: czy złożoność ludzkiego mózgu wystarczy, ażeby zbadać złożoność wszechświata? Innymi słowy, czy złożoność wszechświata jest przykrojona na miarę naszego mózgu? Niezależnie od tego, czy jesteśmy sami we wszechświecie jako istoty rozumne, czy też są jacyś nasi bracia w rozumie, specjaliści mówią, że złożoność mózgu jest większa, niż złożoność całego wszechświata.

Ilość potencjalnych połączeń między komórkami w mózgu jednego człowieka jest większa niż ilość gwiazd we wszechświecie.

No właśnie. I to nas stawia w dość wyróżnionej pozycji. Natomiast czy dzięki tej złożoności możemy pojąć wszystko? Tu jest pewien logiczny paradoks. Jeśli chcielibyśmy pojąć wszystko, to musielibyśmy zrozumieć także mózg. Czy mózg może poznać sam siebie?

>>> Więcej naukowych ciekawostek na FB.com/NaukaToLubie

Mówiliśmy trochę o ewolucji, a z nią bardzo często wiąże się słowo „przypadek”. 

Arystoteles miał przyczynową koncepcję nauki, która w jakimś sensie jest aktualna do dzisiaj. Wyjaśniamy wszechświat według Arystotelesa przez ciągi przyczyn i skutków, takie łańcuchy przyczynowe. Natomiast on przypadek określił jako coś, co przerywa taki ciąg. Interweniuje przypadkowo w ten ciąg i zaburza go. I dlatego według niego nie może być wiedzy naukowej o przypadku. I ludzie uwierzyli, że przypadek jest jakimś takim obcym ciałem w nauce. Tymczasem okazuje się, że tak nie jest. Najbardziej dramatycznym czy widocznym przykładem próby oswajania przypadku jest ludzka chciwość. Jak ktoś gra hazardowo, to chce wygrać. Ludzie szukali więc jakiejś strategii, żeby zapewnić sobie zwycięstwo w totolotku, ruletce, czy w pokerze.

No i takiego sposobu nie znaleźli. Wygrana czy przegrana to kwestia przypadku.

Czy na pewno? Statystyka i rachunek prawdopodobieństwa mówią co innego. Gdyby było tak jak pan mówi, nie mogłyby działać np. banki czy towarzystwa ubezpieczeniowe, które liczą prawdopodobieństwo w związku z ubezpieczeniami na życie. Bez prawdopodobieństwa i statystyki nie byłoby dzisiejszej wiedzy. Ani fizyki, ani medycyny.

Bo statystyka daje odpowiedzi dotyczące ogółu a pojedynczy przypadek dalej jest dziełem… przypadku.

Też nie całkiem. W „Summa contra gentiles” św. Tomasz pisze, że boża opatrzność rządzi zdarzeniami ex casu del fortuna – dziejącymi się z przypadku lub losowo. Dwoje ludzi pobiera się, bo spotkali się, gdy spóźnił się pociąg. Czy to przypadek? Wszystko tu ma przyczynę. Pociąg się spóźnił, bo popsuła się lokomotywa. Młodzi ludzie byli w tym samym miejscu o tym samym czasie, bo każde z nich jechało w konkretne miejsce. W fizyce tak jest na każdym kroku. Dobrym przykładem jest zwykły rzut kamieniem. On jest opisany prostymi równaniami ruchu Newtona i wszystko jest – wydawałoby się – zdeterminowane, ale ja mogę przypadkiem tym kamieniem zamiast trafić w tarczę, to komuś w głowę. W nauce jest bardzo dużo miejsca na przypadki, a one same nie są zaprzeczeniem zasad przyrody. W siatce praw przyrody są pewne luzy na przypadki. Bez tych przypadków prawa przyrody by nie mogły działać.

A ten plan, te reguły, które tym wszystkim rządzą, te luzy, o których ksiądz profesor mówi, czy one jakoś powstały, czy one były zawsze? Jak to rozumieć?

No to jest problem genezy praw przyrody. I ja nie wiem jaka ona jest. To na pewno nie jest zagadnienie z dziedziny fizyki, bo fizyka zakłada prawa przyrody. Nie wyjaśnia ich. W każdym modelu fizycznym prawa fizyki są założone. Takie, a nie inne i koniec. Natomiast wyjaśnienie, skąd się biorą prawa przyrody, to już raczej należy do filozofii czy na przykład do teologii. Można powiedzieć, że to po prostu Pan Bóg stworzył.

>>> Więcej naukowych ciekawostek na FB.com/NaukaToLubie

To jest bardzo wygodne podejście. Pan Bóg stworzył, kropka. A może by się nad tym zastanowić ?

Często fizycy nie nazywają tego Panem Bogiem, ale skądś się one musiały wziąć. Einstein nie uznawał Boga w formie chrześcijańskiej. Raczej był bliżej panteizmu, ale używał hasła „Zamysł Boga” – the Mind of God. Może używał to jako metaforę, ale uważał, że zestaw praw przyrody to jest właśnie the Mind of God. I mówił: nie chciałbym nic więcej wiedzieć, tylko znać the Mind of God.

Znać boży zamysł… czyli to jedno równanie, które opisuje wszystko?

No tak. I tu są te granice fizyki, o których mówimy. Na to wszystko nakłada się matematyka, która jest uniwersalnym językiem opisu wszechświata. Tylko trzeba pamiętać, że matematyka nie oznacza wcale determinizmu.

2 + 2 zawsze równa się 4. Cała matematyka szkolna jest deterministyczna.

No bo w szkole się uczy najprostszych rzeczy: dodawania, odejmowania i pierwiastkowania. Niewiele więcej. W prawdopodobieństwie nic nie jest pewne, choć wszystko prawdopodobne. A to dopiero początek. Mechanika kwantowa posługuje się matematyką, która jest indeterministyczna. Wcześniej rozmawialiśmy o przypadkach. Ja rozróżniam dwa ich rodzaje. Jeden to przypadek wynikający z niewiedzy albo ignorancji. Np. mogę się z kimś założyć, czy z zza rogu wyjedzie tramwaj numer 8 czy 4. Ja nie wiem który i traktuję to w kategoriach przypadku, ale jeżeli te tramwaje są w drodze, to proces jest zdeterminowany. Natomiast czy są przypadki, zdarzenia, które rzeczywiście nie są zdeterminowane? Mechanika kwantowa jest świadectwem, że tak, są. I takie przypadki pojawiają się u podstaw całej naszej rzeczywistości.

Czy wszechświat ma jakieś granice geometryczne? Pytam zarówno o to, czy możemy dowolnie długo dzielić cząstki elementarne na coraz mniejsze kawałki, jak i o to, czy kosmos gdzieś się kończy?

Może być tak, że świat jest skończony, ale nie ma granicy. I wtedy idąc cały czas w jedną stronę, w końcu trafimy do punktu wyjścia. Modele otwarte mówią, że można zmierzać w jednym kierunku w nieskończoność. Nie ma żadnych naukowych powodów, by wszechświat miał granice. Natomiast czy można dzielić cząstki w nieskończoność? Nie wiem.

Co zapaliło małego Michała Hellera do tego by zajął się nauką? A co zapala już dorosłego księdza profesora by zajmował się nią dalej? 

Dorastałem w domu, gdzie rozmawiało się o nauce, o świecie. Ojciec był inżynierem, opublikował nawet kilka prac matematycznych. Od dziecka, jak tylko miałem jakąś książkę popularnonaukową, to się w niej zaczytywałem. I trudno tak ciekawymi rzeczami się nie zajmować. A dzisiaj? Chyba ta sama ciekawość co u małego Michała. Ciekawość jest motorem działania. Ale trzeba uważać, bo ona musi być pod kontrolą. Inaczej do niczego się nie dojdzie, niczego nie uda się wystarczająco dobrze zbadać. Na świecie żyje wielu geniuszy, którzy nie potrafili się ograniczyć. Wiedzą prawie wszystko o prawie wszystkim i zarazem niewiele. Wszystko ich za bardzo ciekawi. I w moim przypadku to zawsze było dość trudne i bywa trudne do dzisiaj. Interesuje mnie za dużo, a trzeba się ograniczyć do jednego.

>>> Więcej naukowych ciekawostek na FB.com/NaukaToLubie

Ksiądz Profesor Michał Heller jest teologiem, filozofem i kosmologiem. W 2008 roku jako jedyny dotychczas Polak został laureatem międzynarodowej Nagrody Templetona, przyznawanej za pokonywanie barier między nauką a religią. Jest autorem kilkudziesięciu książek. 

Opublikowany powyżej wywiad jest fragmentem rozmowy jaką przeprowadziłem z X. prof. Michałem Hellerem dla tygodnika Gość Niedzielny.
2 komentarze do Wszystko jest matematyką – rozmowa z X. prof. Michałem Hellerem

Jak działa alkohol?

Alkohol szkodzi zdrowiu. To hasło zna prawie każdy. Co dzieje się z alkoholem w organizmie człowieka? I co dzieje się z organizmem po spożyciu alkoholu.

Przełykany alkohol zaczyna być wchłaniany już jamie ustnej i przełyku. Najwięcej etanolu dostaje się jednak do krwi przez ścianki żołądka i jelita cienkiego. W tym drugim zaburza on zwykłe wchłanianie substancji odżywczych, a w żołądku może wywoływać stany zapalne. Mowa oczywiście o nadmiarze alkoholu oraz częstym i regularnym jego spożywaniu. Za wyjątkiem sytuacji chorobowych, niewielkie ilości alkoholu, np. lampka wina do kolacji czy kufel piwa wypity w czasie grilla – nikomu nie zaszkodzą. Przeciwnie mogą pomóc, alkohol jest antyoksydantem, czyli „likwiduje” wolne rodniki, które wpływają na starzenie się komórek. Mowa oczywiście o niewielkich ilościach alkoholu, a nie o jego nadużywaniu.

>>> Więcej naukowych ciekawostek na FB.com/NaukaToLubie

Potrzeba energii

A co dzieje się z alkoholem już wchłoniętym do krwi? Jest rozprowadzany po całym organizmie. Po to by rozłożyć cząsteczkę etanolu, potrzeba energii. Spada więc stężenie cukru we krwi. To może prowadzić do zawrotów głowy i drżenia rąk. Dokładnie tak samo organizm zacznie reagować na niski poziom cukrów gdy… przestaniemy jeść. Przy okazji obniżania poziomu cukru we krwi, wzrasta jej ciśnienie. Na ten proces wpływa jeszcze jeden mechanizm. Krew regularnie jest przepompowywana przez nerki. Te działają jak filtr i pozbywają się tego, co dla organizmu jest niepotrzebne albo szkodliwe. Do filtrowania etanolu nerki potrzebują bardzo dużej ilości wody. To właśnie dlatego, po spożyciu alkoholu oddajemy znacznie więcej moczu niż po wypiciu takiej samej ilości np. wody. Wypicie 250 ml wina, oznacza, że w ciągu 2-3 godzin pozbędziemy się przynajmniej 500 ml wody. Niebezpieczne odwodnienie organizmu po spożyciu dużej ilości alkoholu jest realnym zagrożeniem. A wypicie nadmiernej jego ilości zawsze kończy się pragnieniem i nieprzyjemnym wrażeniem suchości w ustach. Pragnienie jest jednym z elementów tzw. kaca, czyli zespołu objawów poalkoholowych.

Najbardziej obciążona po spożywaniu alkoholu jest jednak wątroba. Tylko 2 proc. spożytego alkoholu jest usuwanego z organizmu w niezmienionej postaci. Reszta, czyli 98 proc. jest najpierw metabolizowana. Zajmuje się tym właśnie wątroba. To proces bardzo obciążający i długi. Dlatego właśnie efekty spożycia alkoholu utrzymują się tak długo. Alkohol krąży we krwi przez kilka, kilkanaście a w skrajnych wypadkach nawet kilkadziesiąt godzin. Na dodatek sposób metabolizmu alkoholu jest dla organizmu bardzo niebezpieczny. W wątrobie etanol jest utleniany do aldehydu octowego, który jest wielokrotnie bardziej trujący niż sam alkohol. I to aldehyd uszkadza wątrobę. W skrajnych wypadkach w wątrobie mogą się pojawić komórki rakowe, znacznie częściej dochodzi do marskości wątroby czyli do zniszczenia struktury tego narządu. Bardzo często nadmiar alkoholu może doprowadzić do niewydolności wątroby. Zresztą aldehyd octowy niekorzystnie wpływa nie tylko na wątrobę, ale także na mózg. Nudności, bóle głowy i wymioty (czyli pozostałe objawy kaca) to efekt wpływu aldehydu na ludzki organizm a nie alkoholu.

>>> Więcej naukowych ciekawostek na FB.com/NaukaToLubie

Pijany mózg

Mówiąc o wpływie alkoholu na organizm człowieka najczęściej mamy jednak na myśli nie obniżenie poziomu cukru we krwi czy rujnowanie wątroby, tylko trudności w utrzymaniu równowagi, niewyraźne widzenie i mówienie oraz zwolniony czas reakcji. Skąd biorą się te objawy? Alkohol reaguje z substancjami, które w mózgu są odpowiedzialne za aktywność komórek nerwowych. Neurony stają się bardziej „ociężałe” nawet po wypiciu niewielkiej ilości alkoholu. Zmiany stężenia takich substancji jak kwas gamma-aminomasłowy, glutaminian czy serotonina nie tylko spowalniają działanie neuronów, ale zaburzają pracę niektórych części mózgu. Głównie w korze mózgowej, w której „znajduje się” odpowiedzialne zachowanie i logiczne myślenie. Mniejsza ilość serotoniny w podwzgórzu i w przysadce mózgowej skutkuje wylewnością i ogólnym rozluźnieniem. To dlatego pod wpływem alkoholu łatwiej zdradza się sekrety, łatwiej zaprzyjaźnia się z innymi. Krótko mówiąc znikają bariery. Alkohol wzmaga też pociąg seksualny, ale nadmiar alkoholu wpływa na takie rozluźnienie mięśni, że może skutkować problemami ze wzwodem.

Najbardziej niebezpieczne dla otoczenia są jednak konsekwencje działania alkoholu na móżdżek, tą część mózgu, która jest odpowiedzialna za koordynację ruchów i utrzymanie równowagi. To dlatego osoba pijana nie jest w stanie prosto chodzić, ma problemy np. z trafieniem kluczem do dziurki w zamku albo z dotknięciem palcem czubka swojego nosa. Osoba pijana za kierownicą samochodu nie potrafi omijać przeszkód, nie potrafi skoordynować swoich ruchów, nie jest w stanie prawidłowo ocenić odległości i szybkości. W największym skrócie jest całkowicie nieprzewidywalnym uczestnikiem ruchu na drodze. Alkohol zaburza także działanie rdzenia przedłużonego. Efektem tego – przy dużych dawkach alkoholu – jest ogólne otępienie, senność i spowolnienie reakcji.

Ile można wypić?

Organizm potrzebuje dużej ilości energii do oczyszczenia się z alkoholu. To dlatego jego wysoki poziom we krwi wywołuje dosyć szybko uczucie głodu. I tak na prawdę tylko dostarczenie dużej ilości węglowodanów ma wpływ na szybkość trawienia alkoholu. Chcąc szybko wytrzeźwieć, trzeba dużo jeść. Wszystkie inne metody, medykamenty, picie dużej ilości innych płynów czy robienie ćwiczeń fizycznych nie mają na trzeźwość żadnego wpływu.

A ile alkoholu można wypić, by móc normalnie funkcjonować? A co to znaczy normalnie? Nawet niewielka ilość alkoholu ma wpływ na nasze zachowanie, ma wpływ na pracę mózgu. Kwestią sporną pozostaje czy wpływ np. lampki wina jest zauważalny. Czy stanowi już jakiekolwiek zagrożenie. Są kraje w których prawo określa akceptowalny poziom alkoholu u kierowców na zero. Innymi słowy, np. na Węgrzech, na Słowacji czy w Czechach nie wolno mieć ani grama alkoholu we krwi. W Polsce (ale także w Szwecji i Norwegii) można prowadzić samochód mając 0,2 promila alkoholu we krwi. To – w porównaniu z innymi krajami europejskimi – dosyć restrykcyjna norma. Ale od 0,3 promila alkoholu we krwi zauważa się wpływające na zachowanie rozproszenie uwagi. Od 0,8 promila zauważalne jest już upośledzenie koordynacji ruchowo – wzrokowej. W przeważającej większości krajów Europy limit wynosi 0,5 promila, choć np. w Luksemburgu, Irlandii, Wielkiej Brytanii i na Malcie prawo dopuszcza prowadzenie samochodu z 0,8 promilem alkoholu we krwi.

A wracając na polskie drogi. Pomijając dyskusję nad tym czy polskie uregulowania prawne mają sens czy nie, ile można wypić, by nie przekroczyć limitu 0,2 promila alkoholu we krwi? Trudno o jednoznaczną odpowiedź. Wpływ alkoholu na organizm jest zależny od wielu czynników. Od stresu, zmęczenia czy różnego rodzaju dolegliwości zdrowotnych. Ale także od zażywanych leków czy od używek takich jak papierosy czy kawa. Lepiej więc nie ryzykować wsiadając za kierownicę nawet po jednym małym piwie. Lepiej odczekać. Przyjmuje się, że organizm potrzebuje godziny na pozbycie się 10 gramów czystego alkoholu. Tego w dużym (pół litrowym) piwie jest około 25 gramów. Krótko mówiąc, wsiadając za kierownicę 3 godziny po wypiciu kufla piwa, możemy być pewni, że alkomat policyjny wskaże poziom zero. I jeszcze jedno. Prawie 80 proc nietrzeźwych złapanych przez policję to kierowcy którzy pili alkohol poprzedniego dnia. Po wypiciu dużej ilości mocnego alkoholu trzeba dać organizmowi przynajmniej dobę na to, by całkowicie usunął alkohol z krwi. Tego procesu nie przyspieszy ani sen, ani zimny prysznic ani reklamowane środki farmaceutyczne.

>>> Więcej naukowych ciekawostek na FB.com/NaukaToLubie

Tekst ukazał się w tygodniku Gość Niedzielny
6 komentarzy do Jak działa alkohol?

Choinka – sztuczna czy prawdziwa?

Dla tych, którzy jeszcze nie kupili bożonarodzeniowej choinki mam radę. Jeżeli nie chcecie być na bakier z ekologią, kupcie drzewko naturalne. Na pewno nie spowoduje to żadnej katastrofy ekologicznej. Leśnicy twierdzą, że naturalne choinki mają tyle samo zalet, co sztuczne wad.

 

Ścinanie choinki przed świętami, tak jak zabijanie karpia, przedstawiane jest jak zbrodnia na środowisku naturalnym. Bo wiadomo karp to odczuwające ból zwierzę, a choinka to potencjalny las.  Gdy dorośnie, będzie cieszył oko i produkował tlen. Ten obraz jest fałszywy.

>>> Więcej naukowych ciekawostek na FB.com/NaukaToLubie

Drzewka na ścięcie

Co roku oficjalnie wycina się w całym kraju kilkadziesiąt tysięcy drzewek, najczęściej sosen i świerków. Pochodzą one ze szkółek, zakładanych na terenach otwartych albo pod liniami wysokiego i średniego napięcia. Tam gdzie nie może powstać las. Niektóre drzewka pochodzą z lasów już istniejących, ale leśnicy wycinają je w ramach… zabiegów pielęgnacyjnych. Sosny i świerki hodowane są także na prywatnych gruntach nieprzydatnych rolnictwu, ale takich na których ich właściciele nie chcą mieć lasu. W skrócie mówiąc drzewka które można legalnie kupić w sklepie, na targowiskach czy przy supermarketach są i tak skazane na ścięcie. Są sadzone na ścięcie. Jeżeli nie zostaną kupione przy okazji Świąt Bożego Narodzenia, zostaną wycięte później i wyrzucone. Pod liniami energetycznymi nie mogą rosnąć wysokie drzewa.

Alternatywą dla naturalnych drzewek bożonarodzeniowy są choinki sztuczne, plastikowe. Przed świętami pojawiają się akcje w czasie których radykalne organizacje ekologiczne przekonują, że kupowanie sztucznej choinki jest oznaką dbałości o środowisko naturalne. Specjaliści przekonują, że nic bardziej błędnego. Proces produkcji plastiku jest dla środowiska naturalnego dużym obciążeniem. Większość choinek jest produkowanych w Chinach, gdzie dbałość o środowisko nikogo nie interesuje. W procesie produkcji materiałów plastikowych (PCW) powstają szkodliwe pyły i gazy. Potrzebna jest także spora ilość energii i wody. A jeżeli mówimy o konsumpcji energii, musimy mieć z tyłu głowy emisję CO2.

Las w domu

Po kilkunastu dniach, igły naturalnej choinki zaczynają opadać i drzewko nadaje się do wyrzucenia. Ci, którzy mają swój własny ogród mogą przed świętami kupić drzewko naturalne w donicy i zasadzić je na wiosnę. Trzeba jednak pamiętać, że nie zawsze takie drzewko się przyjmie, skoro całą zimę spędziło w ciepłym mieszkaniu. Ci, którzy nie mają swoich ogródków, ściętą i już przysuszoną choinkę muszą wyrzucić do kompostownika, albo zanieść do punktu zbierania choinek, które powstają w niektórych miastach (np. w Warszawie). Suchą choinkę można też spalić. Przy tym wydziela się oczywiście CO2, ale jest to ten sam dwutlenek węgla, który drzewko pochłonęło w czasie wzrostu. Pochłaniało związki węgla i „wyrzucało” do atmosfery tlen. Na kompoście czy na wysypisku śmieci wyrzucone drzewko szybko się rozkłada. Skumulowane w nim związki chemiczne stają się z powrotem częścią obiegu materii w przyrodzie. Z kolei korzenie wyciętego drzewka wzbogacają glebę w tzw. próchnicę.

To prawda, że choinka sztuczna wystarcza na kilka lat. Z czasem blaknie jednak jej kolor i w końcu też trzeba ją wyrzucić. Najgorsze co można zrobić, to wrzucić ją do pieca. Spalany plastik jest źródłem rakotwórczych związków, które rozpylają się w atmosferze i dostają się do organizmu w czasie oddychania. Plastikowego drzewko na wysypisko śmieci będzie się rozkładało przez kilkaset lat. Najlepszym wyjście jest wrzucenie go do pojemnika na odpady segregowane. To może być jednak o tyle problematyczne, że sztuczne choinki najczęściej mają metalowy stelaż.

Pomijając fakt, że drzewko naturalne pachnie lasem, żywicą a plastikowe nie. Że ma naturalny kolor, który trudno odtworzyć nawet najlepszej imitacji. Pomijając to wszystko co dla wielu osób jest ważne, choć subiektywne i niemierzalne. Drzewka plastikowe szkodzą środowisku, a choinki naturalne – nie z powodów obiektywnych.

>>> Więcej naukowych ciekawostek na FB.com/NaukaToLubie

A tak a propos. Wiecie dlaczego choinka zruca igły? Naukowcy z Université Laval w Kanadzie odkryli, że za opadanie igieł odpowiada roślinny hormon etylen. W czasie testów zmierzono, że gałązki jodły balsamicznej (Abies balsamea) zaczęły zrzucać igły po około 14 dniach od ścięcia. Trzy dni wcześniej drzewko zaczęło intensywnie wydzielać etylen. Po 40 dniach, na testowanych drzewkach nie było ani jednej igły. Gdy badacze rozpylili w pomieszczeniu gdzie badano jodły 1-metylocyklopropen (1-MCP), związek hamujący działanie etylenu, igły „wisiały” na drzewku nie jak wcześniej 40 dni, tylko 73 dni. Zastosowanie innego związku, aminoetoksywinyloglicyny (AVG) wydłużyło ten okres jeszcze bardziej, do 87 dni. Przez cały ten wydłużony czas gałązki choinki wyglądały świeżo, jak gdyby drzewko było dopiero co ścięte.  Związek 1-MCP od dawna stosuje się w przechowalniach owoców, np. jabłek. Gdyby rozpylać go w magazynach, albo samochodach wiozących drzewka na targowiska, drzewka mogłyby przetrwać dużo dłużej. Choć z drugiej strony po co komu bożonarodzeniowa choinka w marcu?

3 komentarze do Choinka – sztuczna czy prawdziwa?

Type on the field below and hit Enter/Return to search