Nauka To Lubię

Oficjalna strona Tomasza Rożka

Kategoria: Aktualności

Wszechświaty równoległe?

Pracujący w Kalifornii astrofizyk, analizując mapę mikrofalowego promieniowania tła zauważył na niej dziwne struktury. Naukowiec uważa, że to światło które pochodzi z wszechświatów równoległych.

Pracujący w Kalifornii astrofizyk, Ranga-Ram Chary, analizując mapę mikrofalowego promieniowania tła zauważył na niej dziwne struktury. Tam gdzie na mapie miało być ciemno, pojawiały się jasne plamy. Naukowiec uważa, że najbardziej prawdopodobnym wytłumaczeniem jest to, że światło które widzi pochodzi z wszechświatów równoległych.

Czy to możliwe? Tak. Żadna teoria nie zabrania istnienia wszechświatów równoległych do naszego. Nie zabrania także istnienia wszechświatów starszych od tego w którym my żyjemy. Tyle tylko, że to nie jest żaden dowód za tym, że takie światy rzeczywiście istnieją.

Czym jest mikrofalowe promieniowanie tła, zwane inaczej promieniowaniem reliktowym? To echo Wielkiego Wybuchu. Brzmi abstrakcyjnie. Około 380 tysięcy lat po Wielkim Wybuchu, a więc w bardzo BARDZO wczesnej fazie rozwoju naszego wszechświata, temperatura materii obniżyła się do około 3000 Kelwinów a to spowodowało, że zupa materii i energii (a tym właśnie był wczesny wszechświat) zaczęła się rozdzielać. Fotony oddzieliły się od materii, a ta zaczęła się skupiać w pragalaktyki. Od tego czasu te pierwotne fotony przemierzają wszechświat we wszystkich kierunkach, a my dzięki temu jesteśmy w stanie zobaczyć, jak ten wczesny wszechświat wyglądał. Na mapie mikrofalowego promieniowania tła widać bowiem mniejsze i większe skupiska materii. To są miejsca w których zaczęły powstawać galaktyki i ich gromady. Promieniowania reliktowego jest bardzo mało (w każdym centymetrze sześciennym świata jest około 300 tworzących go fotonów), ale za to jest ono wszędzie. Otacza nas ze wszystkich stron. W skrócie mówiąc to promieniowanie to nic innego jak resztki światła, które emitował rozgrzany i potwornie ściśnięty młody wszechświat. Tak jak żarzące się włókno żarówki czy rozgrzany do czerwoności rozpalony w ogniu metalowy pręt. Poświata Wielkiego Wybuchu wydostała się z gorącej zupy materii dopiero, gdy zaczął się z niej formować przezroczysty gaz atomów. Szacuje się, że było to ok. 380 tyś lat po Wielkim Wybuchu.

A wracając do wszechświatów równoległych. Ich istnienia nie możemy wykluczyć, ani potwierdzić. Przynajmniej na razie. Tajemnicze plamy o których wspomniałem wcześniej nie są żadnym dowodem. W najlepszym wypadku będą argumentem za tym, by jeszcze raz, jeszcze dokładniej przeanalizować wyniki badań, które przeprowadza się nieustannie od kilkudziesięciu lat. Zdaniem naukowca, który zauważył tajemnicze plamy, są to ślady materii, która pochodzi z innego świata, na dodatek takiego w którym mają obowiązywać inne niż u nas prawa fizyki. To ostatnie stwierdzenie jest – delikatnie mówiąc – słabo udokumentowane. Badacza poniosła chyba fantazja. Dobrze jest pamiętać, że w XXI wieku nie jesteśmy w stanie powiedzieć z czego zbudowane jest ponad 90 proc. Naszego własnego wszechświata. Ciemna energia i ciemna materia to ogromne znaki zapytania dla kosmologów. Zanim więc zaczniemy dowodzić istnienia innych wszechświatów, będzie trzeba rozwikłać zagadkę tego w którym my żyjemy.

>>> Zapraszam na profil FB.com/NaukaToLubie (kliknij TUTAJ). To miejsce w którym staram się na bieżąco informować o nowościach i ciekawostkach ze świata nauki i technologii.

3 komentarze do Wszechświaty równoległe?

Fagi – dobre wirusy

– Jak to się dzieje, że ci ludzie nie chorują – zastanawiał się widząc Hindusów kąpiących się i pijących wodę z Gangesu. Rzeki, która jest ściekiem. Więcej! wszystko wskazuje na to, że oni są przez to zdrowsi !

Bakterie stają się dla nas coraz groźniejsze. Coraz częściej zdarza się, że nie dają im rady nawet najbardziej zaawansowane terapie antybiotykowe. Sytuacja wymaga podjęcia niestandardowych metod. A może przeciwnie, wymaga powrotu do źródeł?

Ta historia rozpoczyna się w Indiach ostatnich lat XIX wieku. To wtedy przypłynął tam młody brytyjski biochemik i bakteriolog Ernest Hanbury Hankin. Ma jeden cel, walkę z cholerą, która miejscami przybiera rozmiary epidemii. Sukcesów nie ma praktycznie żadnych, a jego desperację potęguje fakt, że w Indiach zdają się nie działać reguły, których nauczył się w Anglii. Młody badacz zauważa bowiem, że na cholerę bardzo rzadko chorują ci, którzy kąpią się w rzece Ganges. Dla Hindusów sprawa jest oczywista, wody rzeki są święte, a każdy kto się w nich kąpie jest „chroniony”. Dla naukowca, sprawa jest trudna do zrozumienia. Przecież Ganges to ściek! To miejsce które powinno być źródłem problemu, a nie lekarstwem. Ku konsternacji większości Europejczyków, a już na pewno tych, którzy mieli wykształcenie medyczne czy biologiczne, Hindusi wodę z Gangesu pili. I? I nic im się nie działo. Jak to możliwe? Brytyjski naukowiec uważał, że w rzece musi być coś, co pijących jej wodę uodparnia. Fenomen dotyczył nie tylko wody w Gangesie, ale także w innych rzekach, równie zanieczyszczonych.

W 1896 roku Ernest Hanbury Hankin opublikował pracę naukową, w której stawiał tezę, że, w badanej przez niego wodzie istnieją czynniki antybakteryjne, które są na tyle małe, że nie sposób zatrzymać ich nawet na najdrobniejszych filtrach. Praca nie została jednak zauważona. Dopiero 20 lat później odkryto co tym czynnikiem jest. Dwa zespoły badaczy, brytyjski i francuski, odkryły bakteriofagi, czyli wirusy, które niszczą bakterie. Nazwa bakteriofag oznacza dosłownie „zjadacze bakterii”. W rzeczywistości wirusy nie pożerają bakterii. Ale o tym za chwilę. Dalsze badania pokazały, że w zasadzie każda bakteria ma swojego faga, czyli wirus, który bez większych problemów może sobie z nią poradzić. Pierwszy przypadek uleczenia wirusami zakażenia bakteryjnego (konkretnie chodziło o infekcję laseczką czerwonki, czyli siejącą śmierć dezynterią) miał miejsce w 1915 roku.

ganges

Zagadka: znajdź głowę chłopaka w śmieciach

Pierwszy nazwę bakteriofag zastosował pracujący w Paryżu Kanadyjczyk, Félix d’Herell. Nie jest ona do końca ścisła, bo sugeruje, że wirusy pożerają bakterie. W rzeczywistości wirusy niczego nie zjadają. Nie są organizmami żywymi, więc nie potrzebują źródła energii do zaspokajania swoich potrzeb. Jak w takim razie zabijają? Bakteriofagi, jak zresztą wszystkie wirusy, komórki żywych organizmów wykorzystują. Wirusy są kapsułkami zawierającymi materiał genetyczny. Nie potrafią same się poruszać. Posiadają jednak „klucze” do żywych komórek. Każda żywa komórka w swojej ścianie ma receptory. To coś w rodzaju zamka do drzwi. Ten, kto posiada klucz, może wejść do środka. Wirusy posiadają klucze, czyli białka pasujące do receptorów. Gdy cząsteczka wirusa znajdzie się w bezpośredniej bliskości komórki, jest bardzo prawdopodobne, że dojdzie do adsorpcji. Wirus otwiera zamek. Chwilę później następuje penetracja. Specjalną igiełką fag wkłuwa się do wnętrza bakterii i wstrzykuje tam swój materiał genetyczny. Komórka (w przypadku fagów komórka bakteryjna) nie ma pojęcia, że jest zainfekowana. Przecież wirus miał „legalne klucze”. Gdy materiał genetyczny znajdzie się w środku, dochodzi do tzw. replikacji genomu. Komórka replikuje wirusy z taką prędkością, że wkrótce zostaje – dosłownie – rozerwana z powodu ich natłoku w swoim wnętrzu. Od momentu „włożenia klucza do zamka” do unicestwienia bakterii mija nie więcej niż 30 minut! Każda zainfekowana komórka wyprodukuje kilkadziesiąt wirusów. A każdy z nich gotowy jest do ataku na nową bakterię.

W naturalnych warunkach pomiędzy bakteriami i wirusami ustala się pewna równowaga, ale gdyby tak wirusy antybakteryjne namnażać i traktować jako najlepszy z dostępnych antybiotyków? Wirusami leczono zanim, zanim ktokolwiek wiedział, czym są ci „niewidzialni” zabójcy bakterii. Félix d’Herelle leczył fagami śmiertelnie chorych na czerwonkę. „Ozdrowienie” następowało po kilkudziesięciu godzinach. Dzisiaj do koncepcji leczenia wirusami coraz częściej się wraca. Antybiotyki wydają się skuteczne, ale tylko na krótką metę. Bakterie potrafią się na nie uodparniać. W Polsce jedna trzecia szczepów dwoinki zapalenia płuc jest odporna na penicylinę. Na fagi nie da się uodpornić, bo te mutują tak samo szybko jak same bakterie. W Polsce znajduje się jeden z dwóch na świecie (i jedyny w Europie) ośrodek naukowy, który prowadzi terapię bakteriofagami. Kilka lat temu rozmawiałem z jego szefem, profesorem Andrzejem Górskim. Powiedział mi wtedy, że do Laboratorium Bakteriofagowego w Instytucie Immunologii i Terapii Doświadczalnej PAN we Wrocławiu zgłaszają się setki osób cierpiących na zakażenia, których żadne antybiotyki nie potrafią wyleczyć. Naukowcom z Wrocławia udaje to w ponad 80 procentach. W porównaniu z terapią antybiotykami, fagi są tańsze, a na pewno nie mniej skuteczne. Ponadto leczenie fagami nie powoduje skutków ubocznych, bo działanie wirusów jest ściśle ukierunkowane i wybiórcze. Określony bakteriofag atakuje tylko jeden gatunek bakterii. W ten sposób po terapii fagami oszczędzamy te „dobre bakterie”, np. z wnętrza układu pokarmowego. Tymczasem antybiotyki tak nie potrafią. – Czasami wystarczy kilkadziesiąt godzin, by osoba od lat cierpiąca na zakażenie uwolniła się od kłopotu. Leczymy nawet infekcje wywołane przez szczepy gronkowca złocistego – śmiercionośne bakterie, będące największym postrachem oddziałów intensywnej terapii – mówił mi prof. Górski.

Skoro mają tyle zalet, dlaczego bakteriofagami nie leczy się powszechnie? Przeszkodą jest prawo. Formalnie (w Unii Europejskiej i USA) przed skomercjalizowaniem, terapia musi być zarejestrowana, a jeszcze wcześniej poprzedzona badaniami klinicznymi. I tutaj pojawiają się problemy formalne. Terapia fagami nie jest zunifikowana, tylko po to by była skuteczna musi być tworzona dla każdego pacjenta osobno. Tego typu postępowanie wymyka się jednak normom, jakie ustalają prawnicy i urzędnicy. Nie bez znaczenia jest pewnie fakt, że przemysł farmaceutyczny czerpie ogromne korzyści z produkcji antybiotyków. Tańsza i w wielu przypadkach skuteczniejsza metoda leczenia fagami może być traktowana jako niechciana konkurencja. – Terapia fagowa to z formalnego punktu widzenia wciąż eksperyment, a do zaakceptowania nowości potrzeba czasu – powiedział mi kilka lat temu prof. Górski. Od tego czasu nic się nie zmieniło.

Drugi – poza Polską – ośrodek leczący fagami znajduje się w stolicy Gruzji, Tbilisi. Założył go zresztą Félix d’Herelle, ten sam, który nadał nazwę bakteriofagom. Ten zagorzały komunista pracował w Związku Radzieckim do śmierci. Gruziński instytut nie podlega pod prawo europejskie i amerykańskie, więc ma większą swobodę w działaniu, niż ośrodek we Wrocławiu. Kilka lat temu, Instytut z Gruzji założył filię w Meksyku, gdzie nie obowiązuje amerykańskie prawo, a bogatym (i chorym) Amerykanom znacznie łatwiej dojechać tam niż do Gruzji.

 

1 komentarz do Fagi – dobre wirusy

Bolid – kilka mitów, kilka faktów

Bolid, jasny ślad na nocnym niebie, jaki pojawił się przedwczoraj nad Polską, wywołał ogromne emocje. I nie ma się co dziwić. Przy okazji warto wyjaśnić kilka nieporozumień.

Bolid, jasny ślad na nocnym niebie, jaki pojawił się przedwczoraj nad Polską wywołał ogromne emocje. I nie ma się co dziwić. Tak dobrze udokumentowane na zdjęciach zdarzenie to jednak rzadkość. Przy okazji tego zdarzenia warto wyjaśnić kilka nieporozumień.

  1. Czy to dało się przewidzieć?

NIE. Bolidy to wbrew pozorom małe obiekty (piszę o tym w kolejnym punkcie), a takich nie da się obserwować przez teleskopy a tym bardziej śledzić ich trajektorii. W efekcie, choć są okresy kiedy szansa na zaobserwowanie bolidu jest większa, nie da się przewidzieć kiedy i gdzie go zauważymy. Jeżeli tak, skąd wzięło się tyle zdjęć tego zjawiska? Bolid pozostawia na nocnym niebie (w niektórych przypadkach także na dziennym niebie) ślad, który „trwa” kilkanaście, a nawet kilkadziesiąt sekund. Jeżeli ktokolwiek był na zewnątrz, jeżeli ktokolwiek miał w dłoni aparat fotograficzny (np. w telefonie), miał ogromne szanse by zrobić zdjęcie mimo tego, że nie spodziewał się niczego szczególnego. Wiele ze zdjęć bolidu było robionych na cmentarzach. Cóż, mieliśmy Wszystkich Świętych, a pogoda w sporej części Polski była perfekcyjna. Noc, liście na drzewach, znicze na grobach, łuna światła i … bolid w tle. Bonus dla artystycznych dusz.

  1. Czy to był duży obiekt?

NIE. Ludzkie oko jest w stanie zobaczyć krótkotrwały błysk światła wtedy gdy w ziemską atmosferę wchodzi obiekt wielkości ziarenka piasku. W czasie deszczy (rojów) meteorów, których w ciągu roku jest kilkanaście, przeważającą większość świetlnych efektów powodują właśnie ziarenka wielkości główki od szpilki. Gdy meteor ma wielkość kostki do gry, ślad jaki pozostawia po sobie utrzymuje się na kilka sekund. Bolidy mają wielkość kilku, górka kilkunastu centymetrów. Kilkunastocentymetrowe nie tylko mogą świecić jaśniej niż Księżyc w pełni, ale także być źródłem efektów dźwiękowych. Te przypominają charakterystyczny pisk hamującego na dworcu pociągu, albo wyładowanie atmosferyczne. Szczególnie duże bolidy mogą być widoczne także w ciągu dnia.

  1. Czy bolid mógł dolecieć do Ziemi?

NIE. Ten konkretny, który w sobotę wieczorem wywołał takie poruszenie, nie doleciał do powierzchni gruntu. Był za mały. Skąd o tym wiemy? Pierwszym wskazaniem jest to, że w pewnym momencie świetlny ślad jakiego bolid był źródłem urywa się. To nie jest wskazanie jednoznaczne, bo w przypadku niektórych obiektów świetlny ślad kończy się w miejscu w którym obiekt ma za mało energii (powietrze wyhamowało go) by rozgrzewać otaczające go powietrze. O tym czym jest świetlny ślad piszę w kolejnym punkcie. Jest jednak argument drugi za tym, że nic do powierzchni ziemi nie doleciało. Sobotni obiekt nie był duży, bo świadkowie przelotu nie słyszeli efektów dźwiękowych. Obiekty o średnicy rzędu centymetrów (a nawet te o średnicy dziesiątków centymetrów) spalają się całkowicie w atmosferze. Niektóre najpierw rozpadają się na mniejsze kawałki, a potem spalają.

  1. Czy świetlisty ślad na niebie zostawił rozgrzany do białości kawałek skały?

NIE. Powszechnie uważa się, że to co widzimy na niebie, to rozgrzany do białości kawałek meteoru. Tymczasem to nieprawda. Po pierwsze – jak wspominałem wcześniej – te obiekty są bardzo małe a efekty świetlne powstają na znacznych (kilkadziesiąt kilometrów) wysokościach. Po drugie, gdyby źródłem światła był meteor, nie widzielibyśmy utrzymującego się przez kilkanaście sekund śladu, tylko bardzo szybko poruszający się punkt świetlny. Co zatem świeci jeżeli nie rozgrzany meteor?

Powierzchnia meteoru nagrzewa się rzeczywiście bo tego typu obiekty poruszają się z bardzo dużymi prędkościami (nawet ponad 100 000 km/h), ale powodem tego nagrzewania nie jest ocieranie się o atomy ziemskiej atmosfery, tylko sprężenie powietrza przed czołem meteoru. Kosmiczna „skała” działa jak szybko poruszający się spychacz, który pcha przed sobą gaz. W ten sposób wytraca prędkość, ale „zyskuje” energię. W ten sposób może się rozgrzać do temperatury kilku tysięcy st. C. Tak, jest źródłem światła, ale to nie to światło widzimy na powierzchni ziemi. Rozgrzany meteor przekazuje część swojej energii otoczeniu przez które przelatuje, czyli powietrzu atmosferycznemu. Te rozgrzane zaczyna intensywnie świecić. I to to światło widzimy. Meteor przelatuje dalej, ale gaz świeci tak długo aż się nie ochłodzi co czasami trwa kilkanaście sekund. W pewnym momencie świetlny ślad urywa się. To znak, że w tym miejscu meteor całkowicie się spalił albo rozpadł na fragmenty mniejsze niż ziarenka piasku.

  1. Czy można się spodziewać większej ilości bolidów?

TAK. Przelot bolidu nie jest jednorazowym wydarzeniem. Wbrew pozorom na danym obszarze zdarza się kilka razy w roku. Trzeba jednak pamiętać, że średnio połowę doby mamy dzień. Bolidy dzienne, czyli na tyle duże by zobaczyć je na jasnym niebie, są rzadkością. Ponadto bolidów nie widać gdy na niebie są chmury bo świetlne ślady powstają dużo wyżej. No i kwestia świadków. Gdyby ten sam przelot miał miejsce nie w godzinach wczesno wieczornych tylko nad ranem, nie byłoby pięknych zdjęć, ani ogromnej liczby świadków.

Podsumowując. Gdyby wziąć to wszystko pod uwagę, piękna pogoda, wczesny wieczór i jasny bolid zdarza się raz wiele miesięcy. Co nie znaczy, że kolejny nie pojawi się jutro. Szanse na pojawienie się bolidów rosną w czasie deszczów meteorów. Obecnie Ziemia przechodzi przez pozostałości po komecie 2P/Encke, czego efektem jest dość rzadki (średnio 5 „spadających gwiazd” na godzinę) rój Taurydów Północnych. Jest bardzo prawdopodobne, ze sobotni bolid był kiedyś częścią komety 2P/Encke.

>>> Zapraszam na profil FB.com/NaukaToLubie (kliknij TUTAJ). To miejsce w którym staram się na bieżąco informować o nowościach i ciekawostkach ze świata nauki i technologii.

5 komentarzy do Bolid – kilka mitów, kilka faktów

Co by się stało…

…gdyby uderzyła w nas asteroida albo kometa? Właśnie jedna z nich przelatuje rekordowo blisko Ziemi. Za pomocą prostych symulatorów (linki w tekście) można sobie wyobrazić rozmiar kataklizmu.

…gdyby uderzyła w nas asteroida albo kometa? Jedna właśnie przelatuje obok nas w rekordowo małej odległości zaledwie 500 tysięcy kilometrów od nas. Skutki kolizji zależą od wielu czynników, w tym od struktury obiektu, jego wielkości, energii ale także kąta pod jakim obiekt wszedłby w ziemską atmosferę. Za pomocą prostych symulatorów można sobie wyobrazić rozmiar kataklizmu.

Co nam może grozić?

Według NASA to największe zbliżenie tak dużego obiektu od 2006 roku. Asteroida 2015 TB 145 została zauważona dość późno bo zaledwie kilka tygodni temu. Porusza się względem Ziemi z prędkością ponad 125 tys km/h a jej rozmiar wynosi około 300 metrów na 600 metrów.Tak późna obserwacja może dziwić, bo obiekty tych rozmiarów śledzone są czasami przez całe lata. Tym razem jest inaczej, bo asteroida znajduje się na dość niestandardowej orbicie. Z tego powodu NASA obiekt uznała za niebezpieczny. Nawet największe komputery Agencji nie są w stanie dokładnie wyliczyć drogi po której asteroida będzie się poruszała. Różne obliczenia wskazują jednak, że minie Ziemię w odległości około 500 tysięcy kilometrów. To niemalże o włos. Dla porównania odległość pomiędzy Ziemią a Księżycem wynosi niecałe 400 tysięcy kilometrów.

Eksperci z NASA uspokajają, że do kolizji nie dojdzie, co by się stało, gdyby jednak… W poniższej tabelce na czerwono zaznaczyłem skutki jakie wywołałoby uderzenie w Ziemię takiej asteroidy jak ta, która właśnie nas mija.

Gdyby asteroida miała średnicę do 25 metrów, takie obiekty uderzają w Ziemię średnio raz na 150 lat, najprawdopodobniej w całości spaliłaby się w ziemskiej atmosferze. Zagrożenie związane z takim „spotkaniem” byłoby zerowe. Meteor czelabiński, który wszedł w ziemską atmosferę 15 lutego 2013 roku miał nie więcej niż 20 metrów średnicy. W wyższych warstwach atmosfery obiekt rozpadł się na drobne kawałki i większość z nich wyparowała w drodze do powierzchni Ziemi. te nieliczne, które „przetrwały” lekko uszkodziła kilka tysięcy budynków (w dość ciasno zabudowanym mieście) i niewielkie obrażenia około tysiąca osób. W przeważającej większości, chodziło o rany spowodowane odłamkami szkła. Straty zostały spowodowane przez falę uderzeniową, a nie odłamki meteorytu.Tak duży obiekt jak meteor czelabiński ostatni raz wszedł w ziemską atmosferę w 1908 roku, czego skutkiem była katastrofa tunguska.

A co z większymi obiektami?

obiekt czas skutki
do 50 m co 1500 lat zniszczenia obejmują średniej wielkości miasto, pojawiają się pożary i fale tsunami
do 150 m co 20 000 lat zniszczenia obejmują kilkaset kilometrów kwadratowych
do 300 m co 100 000 lat totalne zniszczenia w promieniu 100 km, szkody w promieniu kilkuset kilometrów
do 600 m co 200 000 lat tsunami na całej planecie, zniszczenia obszaru porównywalnego z Polską
do 1000 m co 1 000 000 lat poważne zmiany klimatyczne odczuwalne na całej planecie, zniszczony obszar porównywalny z całą Europą
do 5000 m co 20 000 000 lat globalne zniszczenie, pyły powstałe w wyniku kolizji zasłaniają Słońce, wieloletnia zima na całej planecie
powyżej 10 000 m co 100 000 000 lat po nas…

 

 

 

 

 

 

 

 

 

 

W Układzie Słonecznym znajdują się miliony, miliardy obiektów, które potencjalnie mogłyby nam zagrozić. Grawitacyjną ochronę nad naszą małą planetą sprawuje jednak Słońce i dwa gazowe giganty, czyli Jowisz i Saturn. To one ściągają na siebie przeważającą większość obiektów, które mogłyby uderzyć w Ziemię. Warto także zdawać sobie sprawę z tego, że odległości w kosmosie są… prawdziwie kosmiczne. Nawet jeżeli mówimy o tak bliskim przelocie jak ten aktualny. Spróbowałem to pokazać w jednym z moich filmików.

Asteroida w nas (nie) uderzy – Nauka. To lubię.

miniatura

Dane w powyższej tabelce są mocno przybliżone, oddają jednak skalę zagrożenia. Dla osób bardziej zainteresowanych polecam dwa symulatory/kalkulatory, dzięki którym można policzyć i zobaczyć zagrożony przez kosmiczny obiekt obszar.

– Pierwszy symulator jest dla mnie zaawansowanych:

uderzenie

– Drugi dla osób, które nieco bardziej chcą się zagłębić w problem:

uderzenie2

>>> Zapraszam na profil FB.com/NaukaToLubie (kliknij TUTAJ). To miejsce w którym staram się na bieżąco informować o nowościach i ciekawostkach ze świata nauki i technologii.

3 komentarze do Co by się stało…

Kolorowa jesień naukowo

Jest taki moment w roku, kiedy las – zwykle zielony – mieni się niemalże wszystkimi możliwymi kolorami. Dlaczego liście zmieniają kolor jesienią?

Liście są zielone, bo zawierają chlorofil. To związek chemiczny, barwnik, który potrafi „produkować” elektrony pod wpływem światła słonecznego. Po co roślinom elektrony? Potrzebują ich po to, by zaszła fotosynteza, czyli proces, w trakcie którego – w skrócie – z wody, dwutlenku węgla i światła powstają cukry i tlen. Ten ostatni jest usuwany do atmosfery, a cukry stanowią pożywienie dla roślin. W ciągu roku ilość wody i dwutlenku węgla jest mniej więcej stała. Co innego jednak ze światłem. Jego ilość w ciągu 12 miesięcy zmienia się diametralnie.

Sekret tkwi w świetle
Chlorofil to niejedyny barwnik – choć najważniejszy – z wielu występujących w roślinach zielonych. Gdy jesienią temperatura obniża się i powoli spada ilość dochodzącego do powierzchni ziemi światła słonecznego, dla roślin to znak, że zbliża się zima. Czas odpoczynku, a właściwie snu. To także sygnał, by przestać produkować chlorofil. To dosyć racjonalna decyzja. Skoro światła i tak jest coraz mniej, a za chwilę przyjdzie w ogóle „przystopować”, po co tracić energię na produkcję chlorofilu?

A więc chlorofilu jest coraz mniej, ale tutaj niespodzianka. Można by się spodziewać, że wraz z zanikiem barwnika liści, powinny one stawać się coraz bardziej przezroczyste. Otóż nie! Chlorofil znika a wraz ze zbliżaniem się zimy „do głosu” dochodzą inne barwniki. Są w liściach przez cały czas, ale „hegemonia” chlorofilu powoduje, że tych innych po prostu nie widać. Pojawiają się dopiero wtedy, gdy zmniejsza się ilość zielonego barwnika. Liście stają się coraz bardziej żółte i pomarańczowe, ale nie dlatego, że przysychają, ale dlatego, że znajduje się w nich całkiem sporo barwników z grupy karotenoidów. To te, które nadają kolor marchewce czy pomarańczom. Dzięki karotenoidom liście stają się żółte, pomarańczowe czy brązowe. Ale nie wszystkie liście są tak samo żółte. Sekret tkwi w ilości dochodzącego do powierzchni ziemi światła, a także temperaturze, gatunku drzewa, a nawet odczynie pH gruntu, na którym roślina się rozwija. Na jesień bardzo żółte są liście osiki, ale już liście klonu czy jesionu w ogóle nie żółkną. Te stają się intensywnie czerwone.

O co chodzi z czerwienią?
Barwniki, które odpowiadają za wiele odcieni czerwieni jesiennych liści, pochodzą z grupy antocyjanidyn. Te same związki występują zresztą w kwiatach. I tutaj ciekawostka. Dokładnie ten sam barwnik (cyjanidyna) nadaje róży kolor krwistej czerwieni i chabrom ciemnego błękitu. Wracając jednak do liści. Tak jak barwnik żółty czy pomarańczowy jest w liściach przez okrągły rok, tak barwniki czerwone produkowane są dopiero jesienią. Bez sensu? Po co tuż przed opadnięciem liść traci energię na produkcję czegokolwiek? To rzeczywiście swego rodzaju tajemnica. Dzisiaj naukowcy sądzą, że barwniki z grupy czerwonych chronią komórki liści przed zamarznięciem.

Jesienią nocne przymrozki są czymś zupełnie normalnym. Rośliny, w których liściach jest dużo czerwonych barwników, są odporniejsze na nie. To, co zastanawia badaczy, to fakt, że związki z grupy antocyjanidyn są produkowane także w innych okolicznościach. Na przykład wtedy, gdy roślinę zaatakują jednokomórkowe grzyby, gdy natężenie światła UV jest zbyt wielkie albo gdy zanieczyszczenie środowiska staje się dla nich uciążliwe. Czerwone liście mogą świadczyć o chorobie roślin. I znowu pojawia się pytanie. Dlaczego wyczerpana, chora roślina marnuje swoją energię na produkcję czerwonych barwników ? Czy nie lepiej, by w tej sytuacji ją oszczędzała? Eksperci przypuszczają, że jeżeli antocyjanidyny są produkowane po to, by liść wisiał na drzewie tylko troszkę dłużej, może oznaczać, że tuż przed zimą drzewo chce pobrać ze środowiska coś, co pomoże mu we wzroście w kolejnym sezonie. Być może tak jest rzeczywiście. W końcu liść zawiera wiele soli mineralnych czy pierwiastków, które roślinie mogą się jeszcze przydać. Część z nich drzewo odzyska, gdy liść zgnije na powierzchni gruntu, ale być może substancje najbardziej potrzebne roślina chce odzyskać bezpośrednio z liścia? Jeżeli tak, czerwone barwniki przypominałyby nieco komandosów czy BORowców, którzy w sytuacji zagrożenia pilnują ewakuacji ważnych osób. Dbają by liść wisiał jak najdłużej, po to by zanim spadnie, udało się z niego nak najwięcej wyciągnąć.

Przepis na kolorową jesień
Niektóre barwniki są charakterystyczne dla konkretnego gatunku roślin. Inne występują we wszystkich, ale pojawiają się w zależności od warunków zewnętrznych. To dlatego liście nawet dwóch stojących obok siebie drzew mogą mieć nieco inny odcień. Czy można sformułować przepis na kolorową jesień? Listę warunków, jakie muszą zostać spełnione, by spacer po jesiennym lesie był przeżyciem wręcz metafizycznym? Można się o to pokusić. Temperatura powietrza powinna spadać powoli, nie gwałtownie. To samo dotyczy ilości dochodzącego do liści światła. Pogoda powinna być słoneczna, a niebo niezasnute chmurami. Tylko wtedy chlorofil będzie ustępował innym barwnikom w sposób ciągły. Jakiekolwiek nagłe zmiany mogą spowodować, że liście znajdą się na ziemi, zanim zdążą zapłonąć feerią kolorów. Jeżeli jest zbyt mokro, liście wcześniej spadną, a jeżeli zbyt często chmury będą przysłaniały słońce, liście nie wyprodukują czerwonego barwnika. W skrócie: jesień musi być ciepła, sucha i słoneczna. Wtedy będzie złota, czerwona, brązowa, żółta, pomarańczowa…

 

Polecam wideo  „Tajemnica czerwonego drzewa – Nauka. To lubię.”

 

Polecam wideo „Liście jesienią (okiem fizyka) – Nauka. To lubię.”

Brak komentarzy do Kolorowa jesień naukowo

Orionidy nadlatują !!!

Już za chwileczkę, już za momencik… a tak właściwie od kilku dni Ziemia w swoim ruchu wokół Słońca przelatuje przez chmurę kawałków komety Halley’a. Maksimum tych zderzeń nastąpi z środy na czwartek.

Ziemia z resztkami komety Halley’a „spotyka się” kilka razy w roku. W październiku skutkuje to deszczem Orionidów, na przełomie kwietnia i maja Eta Akwadydów, a w pierwszych dniach sierpnia Akwarydów. Dzisiaj w nocy jest maksimum roju Orionidów.

Poruszająca się w kierunku Słońca kometa (nie tylko kometa Halley’a) topiąc się pozostawia na swojej drodze niewielkie skalne kawałki, z których jest posklejana. Powstaje wtedy ślad, który znaczy drogę po której kometa się poruszała. W ciągu roku Ziemia wielokrotnie wlatuje w tak pozostawioną „ścieżkę” (u dołu tego wpisu wypisałem listę największych rojów meteorytów jakie można oglądać w Polsce).

Pozostałości komet z którymi Ziemia się „zderza” to pył i małe okruchy skalne. W ziemskiej atmosferze pozostawiają widoczny gołym okiem świetlny ślad nawet te, które są wielkości ziarenek pisaku. To dzięki grubej ziemskiej atmosferze możemy oglądać – o ile pogoda na to pozwoli – ciekawe widowisko. Nie musimy przy tym chować się pod dach 😉 , choć gdyby nie chroniąca nas atmosfera byłoby to konieczne, bo drobne cząstki pyłu i większe okruchy skalne wpadają w nią nawet z prędkością 75 km/s. Wtedy ocierając się i zderzając z cząsteczkami powietrza silnie rozgrzewają swoją powierzchnię. Zderzenia te są tak intensywne i jest ich tak dużo, że powierzchnia obiektu zaczyna się topić i wrzeć. Część w ten sposób „nabytej” energii przekazana zostaje do otaczającego meteor powietrza. To nagrzewa się i świeci a my widzimy „spadającej gwiazdy”.

Znakomita większość „spadających gwiazd” spala się całkowicie w ziemskiej atmosferze. Co więcej to co obserwujemy gołym okiem, to zaledwie ułamek wszystkich spadających na Ziemię meteorów. Większość z nich  jest na tyle mała, że ich „spalania” nie widać gołym okiem. Szacuje się, że w ciągu doby na powierzchnię Ziemi spada aż 100 ton tego niezauważalnego pyłu. Corocznie – w ściśle określonych porach – różnych rojów pojawia się na naszym niebie ok. 20. Niektóre z nich widoczne są na jednej półkuli a inne – tak jak Orionidy – na obydwu. Do ich obserwacji nie trzeba kosztownych urządzeń i o ile pogoda dopisze – i dodatkowo noc będzie bezksiężycowa – powinno być widać spadające gwiazdy. Uważny obserwator może ich zauważyć nawet 15 w ciągu jednej godziny.

Najobfitsze roje meteorytów występujące na półkuli północnej (w Polsce).  
Nazwa i okres występowania    
Kwadrantydy (1-6 I)    
Eta Akwarydy (24 IV – 20 V)    
Delta Akwarydy (15 VII – 20 VIII)    
Geminidy (7-16 XII)    
Perseidy (23 VII – 20V III)    
Orionidy (16-27 X)    
Taurydy (20 X- 30XI)    
Leonidy (15-20 XI)    

 

>>> Zapraszam na profil FB.com/NaukaToLubie (kliknij TUTAJ). To miejsce w którym staram się na bieżąco informować o nowościach i ciekawostkach ze świata nauki i technologii.

Brak komentarzy do Orionidy nadlatują !!!

Fizyka tłumu

Zatłoczone miejsca mogą być bardzo niebezpieczne. Nie, nie z powodu kieszonkowców, tylko z powodu trudnych do opanowania reakcji tłumu. Duża grupa ludzi w określonych sytuacjach zachowuje się jak „jeden organizm” a nie jak grupa organizmów niezależnych.

Dwa dni temu, w Bydgoszczy, w czasie studenckiej imprezy wybuchła panika. Jedna osoba zginęła, a kilka kolejnych zostało rannych. Do dramatu doszło nie na dużej sali, tylko w wąskim przejściu. Kilkanaście dni wcześniej, w czasie hadżu – pielgrzymki wyznawców Allaha do Mekki, w tłumie zginęło około 500 osób. W styczniu 1990 roku, w tym samym miejscu zadeptano ponad 1500 ludzi. W czym jest problem? Ludzie w swoim zachowaniu podobni są do zwierząt, np. mrówek, ryb w ławicy czy ptaków w kluczu. Poruszają się w sposób uporządkowany i określony. Do czasu. Gdy wybucha panika, uporządkowanie ustępuje chaosowi. Wbrew pozorom ten chaos można ujarzmić… za pomocą równań matematycznych.

Szybko ale bezpiecznie

Z pozoru sytuacje takie jak w saudyjskiej Mekce zdarzają się rzadko. I całe szczęście. Ale nie chodzi tylko o tragedie w których giną ludzie. Gdy trzeba ewakuować centrum handlowe, liczy się każda chwila. Jak zaprojektować wyjścia ewakuacyjne? Zrobić jedno duże, czy kilka mniejszych? A kibice piłkarscy na dużym stadionie? Po skończonym meczu tysiące ludzi chce jak najszybciej dostać się do swoich samochodów czy do środków komunikacji publicznej. Jak oznaczyć ciągi komunikacyjne? Wypuszczać ludzi partiami czy po prostu otworzyć drzwi i „niech sami sobie radzą”. Problem jest ważny nawet dla linii lotniczych. I nie tylko w sytuacjach zagrożenia życia. Każda minuta postoju na płycie lotniska kosztuje. Jak pasażerów szybko „usadzić” na miejscu i co zrobić by po wylądowaniu jak najszybciej – bezpiecznie – opuścili oni samolot? Pytań jest naprawdę wiele. Tylko dlaczego mają na nie odpowiadać fizycy? Ano dlatego, że duża grupa ludzi podobna jest do płynu. Ten w niektórych sytuacjach porusza się przewidywalnie i wtedy mówimy o przepływie laminarnym, ale czasami ten porządek zamienia się w chaos i wtedy mówimy o przepływie turbulentnym. Fizycy tymi przepływami zajmują się od dawna, bo to od nich zależy np. opór z jakim musi poradzić sobie jadący autostradą samochód, bo to od nich zależy sprawność silnika odrzutowego samolotu. Od niedawna wiadomo jednak, że te same równania, które opisują mechanikę płynów, można stosować do dużych grup ludzi.

Mrówki też ludzie

Mrówki zwykle wybierają drogę… którą chodzi większość. „Domyślają się” – i słusznie – że kierunek który wybrało więcej mrówek jest z jakiś powodów bardziej atrakcyjny. I tak tworzą się tzw. mikrostużki, czyli drogi, które z jakichś powodów są przez mrówki preferowane. Podobnie zachowują się ryby w ławicy. I ludzie na chodniku. Nawet w dużym tłumie, nie poruszamy się całkowicie losowo i chaotycznie. Często, nawet nieświadomie, wybieramy drogę, którą idzie przed nami osoba poruszająca się w podobnym tempie co my. Gdy ktoś idzie wolniej, albo szybciej nie zwracamy na niego uwagi. Nasz mózg podświadomie śledzi tylko tych, którzy idą w naszym tempie. My sami też możemy być dla kogoś „przewodnikiem”, a ten ktoś dla kolejnej osoby. I już się tworzą mikrostrużki. To dlatego na szerokim trakcie ludzie idący w jednym kierunku jakoś automatycznie trzymają się jednej strony. Tylko co jakiś czas ktoś próbuje przebić się ”pod prąd”. Podstawowa i święta zasada jest taka, żeby tak projektować trakty, by ruch na nich mógł być płynny. I tak, lepiej, gdyby korytarz skręcał łukiem niż pod kątem prostym. Lepiej też by na skrzyżowaniu traktów było coś co trzeba okrążyć (fontanna, rzeźba,…), bo to zwiększa płynność ruchu. Niestety, te z pozoru proste zasady, gdy wybucha panika przestają obowiązywać i pojawia się chaos. Podobnie zresztą jak u mrówek, ryb w ławicy, a nawet u ptaków w stadzie. Za wszelką cenę nie można do tego dopuścić. Nie ma co liczyć na rozwagę czy trzymanie nerwów na wodzy. Ludzie w panice przestają zdawać sobie sprawę z tego co robią. Choć nie sposób przewidzieć, co zrobi konkretna osoba, naukowcy potrafią przewidzieć co będzie robiła duża grupa ludzi. Do tego zatrudniają największe komputery świata i… setki wolontariuszy. Ci, czasami sa narażeni na niebezpieczeństwo. W czasie próbnych ewakuacji jakie prowadzono w czasie budowy samolotu Airbus 380, z 900 ochotników, 30 zostało rannych w tym jedna osoba ciężko. Z międzynarodowych norm wynika, że samolot powinny być zaprojektowany w ten sposób, by ewakuacja wszystkich pasażerów nie trwała dłużej niż 90 sekund.

Dym i kamery

Gdy z końcówki palącego się knota świecy ulatnia się dym, początkowo jego strużka unosi się pionowo do góry. Można wręcz dostrzec równoległe do siebie pasma. To tzw. przepływ laminarny. Po kilkunastu centymetrach dym zaczyna jednak tworzyć zawirowania. Uporządkowana jeszcze przed chwilą stróżka staje się chaotyczna i nieprzewidywalna. Tak wygląda przepływ turbulentny. Naukowcy z Uniwersytetu w Dreźnie analizujący przypadki w których tłum zaczyna tratować ludzi, zauważyli, że zagrożenie pojawia się wtedy, gdy ludzie zaczynają poruszać się jak ciecz albo gaz w czasie przepływu turbulentnego. Tak długo, jak „przepływ” ludzi jest laminarny – nie ma problemu. Turbulentny, czyli chaotyczny przepływ pojawia się gdy wybucha panika, ale sam może być źródłem paniki. W Mekce droga pielgrzymów wiodła przez most Jamarat, który jest węższy niż droga do niego prowadząca. To zwężenie w przeszłości powodowało, że ludzie zaczynali poruszać się turbulentnie. Chaos powodował wybuch paniki, a panika – jeszcze większy chaos. Po sugestiach jakie niemieccy fizycy wysłali władzom Arabii Saudyjskiej, drogę pielgrzymów nieco przebudowano.

Co jeszcze może mieć znaczenie? Na przykład wyrwa w drodze, w zasadzie jakakolwiek przeszkoda. Ale także kłótnia czy bijatyka dwóch idących obok siebie osób. Schody, krawężnik, nawet moment w którym pieszy schyla się, by podnieść coś, co wypadło mu z ręki. Niemieccy badacze sugerują więc, by nad miejscami gdzie poruszają się duże grupy ludzi umieszczać kamery, które automatycznie będą wykrywały w których miejscach ruch zaczyna być turbulentny. Zanim dojdzie do tragedii (przecież z tyłu napierają kolejne masy ludzi), odpowiednie służby mogą zareagować. Mają na to od kilku, do kilkunastu minut.

Wąsko źle, szeroko też niedobrze

Ślepe stosowanie zasad jakie rządzą mechaniką płynów (analogia do dymu papierosowego) jest jednak skuteczne tylko do pewnego stopnia. Ludzie ze sobą współdziałają, oddziałują na siebie znacznie bardziej niż cząsteczki gazu czy płynu. W końcu widzą, co robią inni. Gdy wziąć pod uwagę to wszystko okazuje się, że pomieszczenie (pokój, stadion czy pokład samolotu) najszybciej pustoszeje, gdy … nikt się nie śpieszy. Tylko wtedy wyjście nie staje się wąskim gardłem. Gdy wzrasta prędkość ludzi idących ku wyjściu, drzwi „korkują się”, a ludzie opuszczają pomieszczenie grupkami. To spowalnia opuszczanie zagrożonego terenu. Dlatego lepiej jest projektować więcej węższych wyjść niż mniej szerszych. Ale tutaj – uwaga – sprawa jest bardziej złożona. Pomijając szczegóły (które choć bardzo ciekawe, zajęłyby tutaj zbyt dużo miejsca), okazuje się, że gdy ludzie współpracują z sobą (np. znajomi z pracy) szybciej wyjdą wąskim wyjściem. Gdy raczej konkurują o to kto szybciej się wydostanie, lepsze są wyjścia szerokie (chociażby miałoby ich być mniej). Gdy wyjścia są szerokie, dobrze przed nimi stawiać kolumny. Z symulacji komputerowych wynika, że w sytuacji krytycznej przed wyjściem rzadziej tworzą się wtedy kolejki, a w efekcie „przepływ” staje się bardziej laminarny. Z kolei przed wąskimi wyjściami dobrze jest zamontować równoległe  barierki (takie jak przy wejściu do metra), które spowodują, że już przed wejściem, ludzie będą szli w uporządkowanym szyku.

Kilka lat temu niemiecki rząd uruchomił projekt Hermes, w ramach którego powstał system kierujący tłumem. Kamery obserwują prędkość ludzi, a komputery za pomocą znaków świetlnych i dźwiękowych decydują którędy tłum prowadzić. Na stadionie czy w czasie dużej wystawy gdy trzeba zarządzić ewakuację, któreś z wyjść może być zablokowane (albo za bardzo oblegane). Wtedy kierowanie się w jego kierunku jest bardziej niebezpieczne niż nawet dołożenie drogi i udanie się do innego wyjścia. Dawanie ludziom jasnych sygnałów co mają robić w czasie zagrożenia jest niezwykle istotne. Zauważono (zresztą u zwierząt występuje ten sam mechanizm), że w sytuacjach kryzysowych podążamy raczej za tłumem, w grupie czujemy się bezpieczniej. Bez wyraźnej informacji duża grupa może przemieszczać się w kierunku jednego wyjścia („tam idą wszyscy, widocznie ktoś zna najlepszą drogę”), podczas gdy inne będą puste.

Dzisiaj jeszcze zbyt wcześnie by dogłębnie przeanalizować to co dwa dni temu stało się w Bydgoszczy. Przejście było wąskie, ludzi było dużo, okna były pozamykane. Brak tlenu przyspiesza podejmowanie irracjonalnych decyzji. Niektórzy świadkowie twierdzą, że ktoś w przejściu rozpylił gaz. Być może po to by uspokoić ludzi. Jeżeli tak było rzeczywiście, tylko pogorszył sytuację. Wyjaśnienie przyniesie śledztwo.

>>> Zapraszam na profil FB.com/NaukaToLubie (kliknij TUTAJ). To miejsce w którym staram się na bieżąco informować o nowościach i ciekawostkach ze świata nauki i technologii.

4 komentarze do Fizyka tłumu

Co tam się dzieje? Komety czy Obcy?

Wokół jednej z setek tysięcy gwiazd, które obserwuje teleskop Kepler krążą duże obiekty. Naukowcy nie widzą czym one są, ani jak powstały. Internety już mówią o tworach obcych cywilizacji.

Wiecie co to jest Brzytwa Ockhama? To zasada zgodnie z którą przy „wyjaśnianiu zjawisk należy dążyć do prostoty, wybierając takie wyjaśnienia, które opierają się na jak najmniejszej liczbie założeń i pojęć”. Trudno obcą cywilizację uznać za najbardziej oczywisty powód niezrozumiałych obserwacji astronomicznych. Oczywiście nie można jej też całkowicie wykluczyć.

Co konkretnie tak zadziwiło astronomów? W 2009 roku Teleskop Kosmiczny Keplera wśród setek tysięcy gwiazd wypatrzył KIC 8462852. Ta nie świeciła jednak tak jak inne słońca. Coś w sposób nieregularny zakłócało jej obserwację. Tym „czymś” jest duża ilość niewielkich, ale bardzo gęstych obiektów. – Prawdę mówiąc, światło emitowane przez KIC 8462852 było najdziwniejszą rzeczą, jaką zaobserwował Kepler od początku swojego istnienia – powiedziała badaczka z Yale Tabetha Boyajian. Kepler pracuje na orbicie od kilku lat. Inny badacz, Jason Wright, astronom z Penn State University powiedział, że był pod wrażeniem tego, jak niesamowicie to wyglądało. – Obca cywilizacja to ostatnia hipoteza, jaką powinniśmy w takim przypadku rozpatrywać, ale to coś wyglądało tak, jak gdyby stworzyli to właśnie kosmici. (oryginał wypowiedzi : „I was fascinated by how crazy it looked”. “Aliens should always be the very last hypothesis you consider, but this looked like something you would expect an alien civilization to build.”).

Jako że zdjęcia pochodzą sprzed kilku lat, badacze twierdzą, że bardzo dokładnie sprawdzili sprzęt i nie ma mowy o usterce czy pomyłce. – Tam na prawdę krąży ogromna ilość obiektów, ściśniętej materii – powiedziała Boyajian. Czym te obiekty mogą być? No właśnie tutaj zaczyna się kłopot. Bo lista naturalnych wytłumaczeń tego fenomenu jest bardzo krótka. W zasadzie, choć i to jest bardzo mało prawdopodobne, podobny efekt dałyby tylko komety. Być może inna gwiazda przyciągnęła w stronę KIC 8462852 sznur komet. Trudno nawet oszacować prawdopodobieństwo takiego zdarzenia, bo… nigdy wcześniej niczego podobnego nie zaobserwowano.

I co teraz? Dane są analizowane, a gwieździe wokół którejś coś krąży od stycznia będą się przyglądały ziemskie radioteleskopy. Gwiazda KIC 8462852 na nocnym niebie znajduje się pomiędzy gwiazdozbiorami łabędzia i lutni. Patrząc tam można sobie przez chwile pomyśleć…. że ktoś patrzy stamtąd w naszym kierunku. Nie, no błagam, musi być jakieś bardziej przyziemne wytłumaczenie 😉

Zapraszam na profil FB.com/NaukaToLubie (kliknij TUTAJ). To miejsce w którym staram się na bieżąco informować o nowościach i ciekawostkach ze świata nauki i technologii.

2 komentarze do Co tam się dzieje? Komety czy Obcy?

Skąd jesteśmy, kim jesteśmy i dokąd zmierzamy?

O człowieku można mówić na wiele różnych sposobów. Inaczej opisują go atlasy anatomiczne, inaczej podręczniki do biochemii czy antropologii. Książka „Człowiek” nie jest atlasem opisującym każdą cząstkę ludzkiego ciała. Nie jest też podręcznikiem, który opowiada o reakcjach biochemicznych, które zachodzą w ludzkich komórkach. Jest próbą odpowiedzi na trzy krótkie pytania. Skąd jesteśmy, kim jesteśmy i dokąd zmierzamy? Łatwo takie pytania zadać, znacznie trudniej znaleźć na nie odpowiedzi.

Po „Kosmosie” przyszedł czas na „Człowieka” , czyli drugą część mojej trylogii. Opowieść o tym skąd jesteśmy, kim jesteśmy i dokąd zmierzamy?

rozkładówka - wstęp

O człowieku można mówić na wiele różnych sposobów. Inaczej opisują go atlasy anatomiczne, inaczej podręczniki do biochemii czy antropologii. Organizm człowieka jest „kosmicznie” skomplikowany i właśnie dlatego jest tak niezwykły. Książka „Człowiek” nie jest atlasem opisującym każdą cząstkę ludzkiego ciała. Nie jest też podręcznikiem, który opowiada o reakcjach biochemicznych, które zachodzą w ludzkich komórkach. Jest próbą odpowiedzi na trzy krótkie pytania. Skąd jesteśmy, kim jesteśmy i dokąd zmierzamy? Łatwo takie pytania zadać, znacznie trudniej znaleźć na nie odpowiedzi.

rozkładówka_Konarzewski

Kiedyś przeprowadzałem wywiad z neuropsychologiem. Zapytałem go, ile tak właściwie wiemy o ludzkim mózgu. Intuicja podpowiadała mi, że niewiele. Zakładałem, że profesor odpowie, że poznaliśmy nie więcej niż kilka procent wszystkich zagadnień związanych z mózgiem. A tymczasem odpowiedział: „gdyby zapytał mnie pan o to kilka lat temu, powiedziałbym, że nie więcej niż 10 procent, ale dzisiaj, po uruchomieniu kilku dużych międzynarodowych programów dotyczących badania mózgu, po ogromnej liczbie publikacji, jakie pojawiły się w ostatnich latach, twierdzę, że wiemy nie więcej niż 3-4 procent”. Ta odpowiedź jest zaskakująca tylko pozornie. W nauce bardzo często wraz ze wzrostem wiedzy, wzrasta także świadomość naszej niewiedzy. Naukowców i pasjonatów na całym świecie napędza nie to co jest znane, tylko właśnie to, co jest tajemnicą. Jako dziennikarz naukowy przyglądam się tym tajemnicom i czuję podekscytowanie. Ta książka jest pełna moich ekscytacji i fascynacji oraz prób znalezienia odpowiedzi na nurtujące mnie pytania.

rozkładówka_kaczmarzyk

Książka podzielona została podzielona na trzy części. W każdej z nich, oprócz mojego tekstu, znajduje się fascynujący wywiad z naukowcem. Rozmawiam o przeszłości, teraźniejszości i przyszłości człowieka. W wywiadach staram się uzyskać odpowiedzi na tytułowe pytania: skąd jesteśmy, kim jesteśmy i dokąd zmierzamy? Czy je uzyskuję? O tym każdy Czytelnik przekona się sam.

rozkładówka - tadeusiewicz

Człowiek to drugi tom trylogii, którą wymyśliłem w ubiegłym roku. Pierwszy tom, który ukazał się w 2014 roku był zatytułowany Kosmos. Opisuję w nim wszystko to, co jest większe od człowieka. Od Wszechświata począwszy, poprzez galaktyki i układy planetarne, a na planetach, w tym planecie Ziemi, skończywszy. Trzeci tom trylogii – Mikrokosmos – ukaże się w przyszłym roku.

Książka Człowiek została wydana nakładem Grupy Wydawniczej Foksal sp. z o.o.

Zapraszam do lektury

2 komentarze do Skąd jesteśmy, kim jesteśmy i dokąd zmierzamy?

Jak zrobić latawiec?

Zrobienie latawca jest bajecznie proste. Nie trzeba do tego wyszukanych materiałów, ani drogich urządzeń. A zabawy (zarówno dla dzieci jak i dorosłych) cała masa.

Dlaczego latawiec lata? W największym skrócie dlatego, że ciśnienie pod nim jest większe niż ciśnienie nad nim. Ta różnica ciśnień wynika z tego, że pęd powietrza opływa go z góry i z dołu z różną prędkością.

Struga powietrza „natrafiając” na latawiec rozdziela się. Gdy latawiec znajduje się pod odpowiednim kątem (to tzw. kąt natarcia), struga, która opływa go wzdłuż górnej powierzchni porusza się szybciej, a wzdłuż dolnej wolniej. To powoduje, ze nad latawcem jest niższe ciśnienie, a pod nim wyższe. To powoduje, że latawiec zaczyna się unosić. Jeżeli tak jest, dlaczego nie unosi się w nieskończoność ? Bo w dół ciągnie go siła grawitacji. Czym latawiec cięższy, tym ma ona większe znaczenie. Jeżeli unosi jakąś aparaturę badawczą, „zły” wpływ siły grawitacji można nadrobić zwiększając powierzchnię „skrzydła”. Ale i tutaj trzeba znać umiar. Czym większe skrzydło, tym cięższy latawiec, tym mocniejsza (a więc także cięższa) musi być linka, która go przytrzymuje. Duże latawce w zasadzie nie startują z rozbiegu, a do tego by puszczać je „z ręki” potrzeba dużego wiatru.

A co z ogonem? Latawce potrafią bez nich latać, ale w przypadku płaskich latawców ogon jest bardzo pomocny. Choć powoduje że latawiec jest cięższy, a to oznacza, ze na pewno wolniej będzie się wznosił i niżej latał, ogon utrudnia niepożądane obroty i kołysanie latawca wokół którejś z jego osi. Obroty są problemem szczególnie dla mniejszych latawców, które są bardzo podatne na zmieniający się wiatr. W skrócie, ogon zwiększa stabilność. Zresztą to akurat możecie sprawdzić sami.

latawiec

Gdy latawiec w końcu się uniesie… zaczyna się zabawa. Można ścigać się który poleci wyżej, który szybciej się wzniesie czy w końcu który dłużej utrzyma się w powietrzu. Jest jednak kilka reguł co do których puszczając latawce trzeba bezwzględnie się stosować. Nigdy nie wolno puszczać latawców w pobliżu linii wysokiego (jakiegokolwiek) napięcia, a także w pobliżu lotnisk, wysokich anten czy urwisk. Nie wolno tego robić także w pobliżu dróg publicznych. Lepiej (dla latawca) by w pobliżu nie było drzew. Pod żadnym pozorem nie wolno puszczać latawców w czasie burzy lub tuż przed nią. Może to grozić śmiertelnym niebezpieczeństwem, bo w wysoko latający obiekt może uderzyć błyskawica. I jeszcze jedno. Gdy latawiec jest duży, a wiatr silny, lepiej uważać z puszczaniem latawców. Latawiec bez problemu może przewrócić człowieka, a nawet go unieść. Jak ktoś nie wierzy, niech w Internecie wyszuka takie dyscypliny sportu jak kitejumping, kiteboarding czy buggykiting.

A na koniec kilka rekordów. W sierpniu 1919 roku, w Niemczech padł rekord wysokości lotu latawcem – 9740 metrów. Najdłuższy latawiec miał 1034 metry, największy miał powierzchnię 553 m2, a najszybszy poruszał się z prędkością 193 km/h. Najdłużej w powietrzu latawiec znajdował się 180 godzin.

> Tutaj mój materiał wideo o puszczaniu latawców:

Zapraszam na profil FB.com/NaukaToLubie (kliknij TUTAJ). To miejsce w którym staram się na bieżąco informować o nowościach i ciekawostkach ze świata nauki i technologii.

1 komentarz do Jak zrobić latawiec?

Nobel z fizyki – abstrakcja goni abstrakcję

W ciągu każdej sekundy, przez nasze ciała przenika kilkadziesiąt bilionów neutrin. Abstrakcyjnie dużo. Masa każdego z nich jest mniejsza niż miliardowa część masy atomu wodoru. Abstrakcyjnie mało. Takie właśnie są neutrina. Abstrakcyjne. Za ich badania przyznano tegorocznego Nobla z fizyki.

Neutrina są najbardziej chyba nieuchwytnymi cząstkami badanymi przez fizyków. Prawie w ogóle nie oddziałują z materią. Po prostu przez nią przenikają. Zupełnie tak, jak gdyby była dla nich przezroczysta. Nie stanowią dla nich żadnej przeszkody ciała niebieskie jak i olbrzymie odległości (które pokonują z prędkością zbliżoną do prędkości światła). Powstają w czasie reakcji jądrowych, nie mają ładunku i posiadają nieskończenie małą masę. Neutrina występują w trzech odmianach. Najlepiej poznane są tzw. neutrina elektronowe, ale oprócz nich istnieją jeszcze neutrina taonowe i mionowe. I to właśnie różne odmiany tej samej cząstki były przez 30 lat powodem zamieszania nazwanego tajemnicą neutrin słonecznych. Ale zanim o tajemnicy.

PH20-water-withboat-apr23-wm-small

Wnętrze ogromnego detektora neutrin Super-Kamiokande. Wydrążony we wnętrzu góry mieści 50 000 ton superczystej wody. Widoczne na zdjęciu bańki to fotopowielacze, które rejestrują subtelne błyski światła. Te powstają wtedy, gdy neutrino zderzy się z jądrem atomowym.

Dlaczego ich badanie jest tak ważne? Na prawdę zasługuje aż na Nagrodę Nobla?  Neutrina są być może najliczniejszą grupą cząstek jakie „zasiedlają” nasz wszechświat. W ciągu każdej sekundy, przez nasze ciała przenika ich kilkadziesiąt miliardów. Abstrakcyjnie dużo. Skoro chcemy poznać wszechświat, skoro mamy ambicje by go zrozumieć, nie poradzimy sobie bez wiedzy o neutrinach. Przez lata uważano, że są to cząstki bezmasowe, czyli, że w ogóle nie mają masy. W rzeczywistości ważą, choć tyle co nic. W przypadku tak małych i ulotnych obiektów trudno mówić o precyzyjnym pomiarze masy, ale szacunkowo masę neutrin określa się na dziesiąte części elektronowolta, a to mnie niż jedna miliardowa część masy atomu wodoru. Abstrakcyjnie mało.

A wracając do tajemnicy neutrin słonecznych. Naukowcy doskonale wiedzą w wyniku jakich reakcji we wnętrzu Słońca powstaje jeden z rodzajów neutrin, czyli neutrina elektronowe. Z dużą precyzją można policzyć ile neutrin elektronowych powinno trafiać na Ziemię i ile powinno być rejestrowanych. Przez lata problem polegał jednak na tym, że te przewidywania teoretyczne nijak się miały do danych eksperymentalnych. Neutrin elektronowych na Ziemi rejestrowano o wiele mniej (aż o ok. 70 proc. mniej) niż powinno ich być. Możliwości były dwie. Albo reakcje, które wg. fizyków powinny zachodzić w jądrze Słońca wcale tam nie zachodzą i dlatego o wiele mniej neutrin elektronowych dociera do Ziemi, albo w czasie swojej podróży pomiędzy gwiazdą a naszą planetą coś z neutrinami się dzieje. Ostatecznie okazało się, że fizycy mieli rację co do procesów zachodzących w Słońcu. One po prostu oscylują – czyli zmieniają swoje właściwości. Zamieniają się pomiędzy sobą postaciami. Jedne neutrina spontanicznie, zmieniają się w inne. W naszym świecie dużych przedmiotów to zdolność mocno abstrakcyjna. Jak można ją sobie wyobrazić? A można sobie wyobrazić spadające z drzewa jabłko, które w czasie lotu ku powierzchni gruntu spontanicznie zamieni się w śliwkę, po to by ostatecznie upaść na trawę jako gruszka? Takie właśnie są neutrina. Abstrakcyjne.  Zamiast badać jeden rodzaj neutrin docierających do Ziemi,  zaczęto przyglądać się im wszystkim na raz. Tym razem, wszystko się zgadzało. To było ostateczne potwierdzenie tzw. oscylacji neutrin.

Zapraszam na profil FB.com/NaukaToLubie (kliknij TUTAJ). To miejsce w którym staram się na bieżąco informować o nowościach i ciekawostkach ze świata nauki i technologii.

 

 

 

Tomasz Rożek

3 komentarze do Nobel z fizyki – abstrakcja goni abstrakcję

Nobel za pasożyty…

… a właściwie za walkę z nimi. Laureatami Nagrody Nobla w 2015 w dziedzinie fizjologii i medycyny zostali: William C. Campbell, Satoshi Ōmura i Youyou Tu.

… a właściwie za walkę z nimi. Laureatami Nagrody Nobla w 2015 w dziedzinie fizjologii i medycyny zostali: William C. Campbell, Satoshi Ōmura i Youyou Tu

Dwóch pierwszych panów, Irlandczyk William C. Campbell i Japończyk Satoshi Ōmura zostało wyróżnionych za odkrycie leku na choroby wywołane przez nicienie. Im Komitet Noblowski zdecydował się przyznać połowę nagrody. Drugą połowę dostała Chinka Youyou Tu, która została doceniona za prace nad terapią przeciwko malarii. Youyou Tu ma dzisiaj 83 lata i prawie nie mówi po angielsku. Jej osiągnięcia w walce z malarią choć znane, zostały zapomniane. Nie ma się co dziwić. Komitet Noblowski docenił ją za stworzenie leku antymalarycznego funkcjonującego pod nazwą Artemeter. Youyou Tu wyekstrahowała go z 200 ziół, we wczesnych latach 70tych XX wieku, a więc 45 lat temu. Rzadko zdarza się, że Nagrodę Nobla otrzymuje się za tak odległe odkrycie. Artemeter znacząco obniża śmiertelność pacjentów cierpiących na malarię.

1094px-Soybean_cyst_nematode_and_egg_SEM

Osobnik młodociany i cytrynkowata cysta mątwika Heterodera glycines wypełniona larwami. Źródło: wiki

Z kolei panowie Campbell i Omura zostali nagrodzeni za odkrycia dotyczące nowych terapii chorób, wywołanych przez pasożyty ludzkie – nicienie. Chodzi m.in. o takie choroby jak słoniowacizna czy ślepota rzeczna. Chorób wywołanych przez nicienie jest bardzo dużo i występują najczęściej w tropikalnych rejonach świata w których poziom życia jest zdecydowanie niższy niż w Europie czy USA. Nie znaczy to oczywiście, że w bogatych krajach Zachodu nie występują choroby pasożytnicze, ale jest ich nieporównywalnie mniej.

– Tegoroczni laureaci Nobla opracowali terapie, które zrewolucjonizowały leczenie niektórych z najbardziej wyniszczających chorób pasożytniczych – takie zdanie znalazło się w uzasadnieniu Komitetu Noblowskiego. Odkrycia tegorocznych laureatów „dały ludzkości nowe mocne narzędzia do walki z tymi ciężkimi schorzeniami, na które zapadają setki milionów ludzi rocznie”.

Tomasz Rożek

Brak komentarzy do Nobel za pasożyty…

A co gdyby Mars zzieleniał?

Wiadomo, Ziemia jest niebieska a Mars czerwony. Tak przynajmniej te planety wyglądają z kosmosu. Ale czy tak było zawsze? Mars mógł być kiedyś zielony. W końcu wiemy ponad wszelką wątpliwość, że była tam i wciąż jest płynna woda. Jak wyglądałbym Mars, gdyby były na nim rzeki, jeziora, morza i oceany?

Kilkanaście dni temu świat obiegła wiadomość, że na Marsie znaleziono ciekłą wodę. O tym, że na Czerwonej Planecie jest woda – wiedzieliśmy od dawna. Widzieliśmy ją zamarzniętą na biegunach planety. Podejrzewaliśmy, że jest także pod powierzchnią w formie wiecznej zmarzliny. Co więcej, podejrzewaliśmy, że czasami ta woda wypływa małymi strumyczkami z oświetlonych promieniami Słońca zboczy gór i kraterów. Podejrzenia jednak to nie to samo co fakty i niezbite dowody. Dzisiaj wiemy jednak, że – przynajmniej tym razem – podejrzenia były słuszne. Tam rzeczywiście nie tylko była, ale wciąż jest całkiem sporo wody.

Mars jest czerwony, bo pokrywający planetę pył jest bogaty w rdzawego koloru tlenki żelaza. Jeżeli planeta boga wojny kiedykolwiek była zielona to nie z powodu odbijających zielone światło minerałów, tylko z powodu życia. O ile było ono takie samo jak to ziemskie. Życie potrzebuje płynnej wody. Z tym akurat – jak się okazuje – w przypadku Marsa nie ma problemu i najpewniej nigdy nie było. Skąd przypuszczenie, że wody na Marsie kiedyś było znacznie, znacznie więcej niż tej, która znajduje się tam dzisiaj? Wystarczy sprawnym (naukowym) okiem rzucić na powierzchnię Czerwonej Planety. Pełno tam struktur do złudzenia przypominających wyschnięte koryta rzek, wąwozy, strumyki a nawet wodospady. Sam amerykański łazik Curiosity, wylądował w dawnym korycie rzeki, w którym głębokość wody sięgała dwóch metrów. Są też ogromne przestrzenie położone znacznie poniżej średniego poziomu gruntu planety. Te do złudzenia przypominają wyschnięte morza i oceany. Te mniejsze zagłębienia to wypisz wymaluj puste jeziora. A teraz zamknijmy oczy i pofantazjujmy. Jak wyglądałby Mars, gdyby, tak jak na Ziemi, płynnej wody było na nim pod dostatkiem?

mars-kevin-gill-01Wygląda jak Ziemia

Na pewno nie byłby czerwony. Może byłby niebieski, może zielony. Spróbujmy wyobrazić sobie Marsa sprzed miliardów lat. Kevin Gill, amerykański informatyk i entuzjasta astronomii wykorzystując zaawansowaną technologię cyfrową, trójwymiarowe zdjęcia Marsa oraz dokładne pomiary jego topografii stworzył obrazy planety z czasów, gdy – tak jak Ziemia – był ona planetą pełną płynnej wody. Gill poszedł w swoim fantazjowaniu o krok dalej. W swoim komputerowym modelu założył, że na Marsie – gdy była na nim woda – rosła bujna roślinność. I znowu z pomocą przyszła mu technologia cyfrowa. Posiłkując się danymi z Ziemi, marsjańskie drzewa i rośliny „posadził” tam, gdzie dostęp do wody i światła był najłatwiejszy. Autor symulacji wziął nawet pod uwagę wysokość nad poziomem marsjańskiego morza (w wysokich partiach gór roślin nie ma) oraz fakt, że najwyższa średnioroczna temperatura panuje na równiku, a najniższa na biegunach. Także od tego zależy wegetacja. Jeżeli jest woda, jeżeli jest atmosfera, muszą być także chmury. I one zostały naniesione na obraz Marsa z przeszłości. Jak więc wyglądał Mars kiedyś? Jak mógł wyglądać? Prawdę mówiąc prawie tak samo jak Ziemia. Trzeba się mocno przyglądać wirtualnemu obrazowi Marsa by zorientować się, że nie patrzy się na zrobione z orbity zdjęcie Ziemi. Wyżyny i niziny na Marsie występują w podobnych proporcjach co na Ziemi. Na stworzonych w komputerze obrazach widać wyraźnie najdłuższą dolinę w układzie słonecznym – Vallis Marineris – oraz szczyty ogromnych wulkanów Olympus Mons, Pavonis Mons, Ascraeusa Mons i Arsia Mons.

mars-water-2A może go dostosować?

Praca Gill’a nie może być uznana za w pełni naukową. Ale nie ma wątpliwości, że bardzo porusza wyobraźnię. Mars rzeczywiście mógł kiedyś wyglądać tak, jak „zaprojektował” go Kevin Gill. Jego praca w pewnym sensie pokazuje jednak nie tylko przeszłość (przy spełnieniu kilku warunków), ale może pokazywać także przyszłość. Być może w przyszłości ludzie skolonizują Czerwoną Planetę. Jej zaludnienie będzie niemożliwe jeżeli wcześniej planetę odpowiednio dostosujemy. Oczywiście można sobie wyobrazić budowę systemu szklarni w których ludzie, zwierzęta i rośliny będą żyły w równowadze podobnej do tej jaka panuje na Ziemi, ale jednak łatwiej chyba będzie taką równowagę stworzyć nie pod szklanym sufitem, tylko na powierzchni całej planety. Sprawa nie jest prosta i jest całkowicie poza zasięgiem naszych dzisiejszych możliwości, ale może warto zastanowić się nad czymś co niektórzy nazywają terraformowaniem obcych globów. Chodzi o takie ich „przerobienie” czy dostosowanie, by człowiek mógł na nich funkcjonować bez urządzeń technicznych takich jak sztuczna atmosfera w zamkniętej przestrzeni, kombinezony i maski. Jak Marsa przekształcić w Ziemię? Przede wszystkim trzeba na nim stworzyć atmosferę. To – przynajmniej teoretycznie – mogłyby zrobić żyjące na powierzchni gruntu bakterie. Trzeba je więc tam wysłać. Gdyby po setkach tysięcy lat atmosfera rzeczywiście na Marsie powstała, trzeba byłoby ją ogrzać. Wprowadzić do niej gazy cieplarniane tak, by energia słoneczna była na Czerwonej Planecie zatrzymywana. To spowodowałoby wzrost temperatury i „wypłynięcie” spod gruntu lub spłynięcie z biegunów ciekłej wody. Teraz pozostaje obsadzenie planety roślinami i gotowe. Proste prawda? 😉

PS. Woda, która dzisiaj płynie na Marsie jest słona. Prawdę mówiąc, znaleziono ją właśnie po śladach soli. Czy byłaby ona zdatna do picia? Gdyby ją oczyścić, jak najbardziej. Gdyby tego nie zrobić, gdyby spróbować wypić ją taką jaka wypływa ze zboczy, skończyłoby się… jeszcze większym pragnieniem. Spróbuj wypić szklankę mocno posolonej wody.

Zapraszam na profil FB.com/NaukaToLubie (kliknij TUTAJ). To miejsce w którym staram się na bieżąco informować o nowościach i ciekawostkach ze świata nauki i technologii.

 

 

1 komentarz do A co gdyby Mars zzieleniał?

Jak fotografować Krwawy Księżyc?

Tegoroczne całkowite zaćmienie Księżyca (28.09 nad ranem) jest niezwykłe, bo połączone z zbliżeniem Srebrnego Globu do Ziemi. Kolejna szansa na sfotografowanie go dopiero za kilkanaście lat. Jak zrobić zdjęcie Krwawemu Księżycowi?

Tegoroczne całkowite zaćmienie Księżyca (28.09 nad ranem) jest niezwykłe, bo połączone z zbliżeniem Srebrnego Globu do Ziemi. Kolejna szansa na sfotografowanie go dopiero za kilkanaście lat. Jak zrobić zdjęcie Krwawemu Księżycowi?

Na początku zdanie wyjaśnienia. Fotografowania Księżyca nie jest trudne. Szczególnie Księżyc w pełni jest obiektem tak dużym i jasnym, że nie będzie problemu ani z jego znalezieniem na nocnym niebie, ani z ustawieniem na nim ostrości. Z tym poradzi sobie każdy aparat. W zasadzie jedynym sprzętem o jaki warto się zatroszczyć, jest statyw. Zachęcam do ustawienia aparatu w tryb manualny. W trybie automatycznym wszystkie zdjęcia będą bardzo do siebie podobne. Na „manualu” możesz poeksperymentować. Zanim przeczytasz dalej, rzuć okiem na mój poprzedni wpis, może Ci się przydać.   KLIKNIJ TUTAJ

No to do rzeczy:

Ostrość. Jeżeli mamy aparat w trybie manualnym, ostrość trzeba ustawić na nieskończoność. W trybie manualnym powinna się ustawić automatycznie (autofocus).

Czułość. Jeżeli aparat umożliwia ustawianie czułości (ISO), tym parametrem można się nieco pobawić, uzyskując czasami bardzo ciekawe efekty. Czym niższa czułość tym wyraźniejsze będzie zdjęcie (niższy poziom szumów). Niestety czym niższa czułość, tym dłuższy musi być czas naświetlania, a to może być problemem np. gdy nie mamy statywu albo gdy w kadrze są szybko poruszające się obiekty. Ich rozmazanie może być dodatkowy atutem zdjęcia. No ale to już kwestia gustu fotografa. Jeżeli chcemy by czas otwarcia migawki był jak najkrótszy, trzeba ustawić wysoką czułość. W takim wypadku na zdjęciu pojawiają się szumy („ziarno”). Może ono dodać artyzmu, ale znowu, to kwestia gustu. Dobra rada: zjawisko zaćmienia Księżyca trwa na tyle długo, że bez problemu można zrobić więcej niż jedno zdjęcie. Poeksperymentuj, ustawiaj różne wartości czułości.

Czas naświetlania. Bardzo trudno zrobić zdjęcie „z ręki” gdy czas otwarcia migawki wynosi mniej niż 1/30 s. Tym bardziej że mówimy o fotografowaniu bardzo odległego obiektu. Stąd jeszcze raz sugestia, by zaopatrzyć się w statyw, nawet gdyby miał być najprostszy. Jeżeli nie masz, obserwuj zaćmienie z miejsca w którym możesz oprzeć aparat o drzewo, krzesło czy chociażby słup od ogrodzenia.

Podobnie jak w przypadku ustawiania czułości, warto poeksperymentować ustawiając różne wartości czasów otwarcia migawki. Zdziwisz się jak różne mogą być zdjęcia tego samego obiektu. Czym krótszy czas migawki, tym bardziej otwarta musi być przysłona aparatu, gdy czas jest długi, przysłona musi być „domknięta”. I tylko z pozoru nie robi to różnicy. Gdy Księżyc będzie nisko nad horyzontem, gdy w kadrze będzie nie tylko jego tarcza ale także np. drzewa albo budynki, domknięta przysłona (wartości od 11 w górę) umożliwi zrobienie zdjęcia na którym ostre będą wszystkie obiekty. Otwarta przysłona (o wartości do 4,5) spowoduje że ostre będą tylko te obiekty na które ustawiona zostanie ostrość. Reszta będzie rozmazana. Jeżeli nie czujesz się na siłach operować przysłoną, ustaw jej automatykę i operuj czasem migawki. Zdziwisz się jak różne zdjęcia uzyskasz.

Ogniskowa. Wszystko zależy od kompozycji zdjęcia, a wiec od tego co chcesz na nim mieć. Jeżeli tylko tarczę Księżyca, ustaw jak najdłuższą ogniskową (jak najbardziej przyzoomuj). Unikaj zoomu cyfrowego, zdjęcie zawsze możesz skadrować na komputerze.

Napisałem to już tutaj kilka razy, ale napisze jeszcze raz. EKSPERYMENTUJ. Masz sporo czasu, zjawisko całkowitego zaćmienia Księżyca trwa kilka godzin. Nie ma sensu robienie kilkunastu czy kilkudziesięciu zdjęć przy takich samych parametrach. Baw się ustawieniami czasu, baw przysłoną i czułością. Jeżeli masz zmienne obiektywy, korzystaj z tego. Ponadto:

– Robiąc zdjęcie korzystaj z samowyzwalacza albo ze zdalnie uruchamianej migawki. W ten sposób nie poruszysz aparatu w czasie robienia zdjęcia.

– Spróbuj zrobić kilka zdjęć przy tych samych parametrach po to by potem nałożyć je na siebie. Zobaczysz, że uzyskasz ciekawy efekt.

– Spróbuj zrobić kilka tak samo skadrowanych zdjęć na różnych etapach zaćmienia. Nakładając je na siebie udokumentujesz na jednym zdjęciu przebieg całego zjawiska.
A jak już zrobisz dobre zdjęcie, pochwal się nim na FB.com/NaukaToLubie

Powodzenia !!!

 

2 komentarze do Jak fotografować Krwawy Księżyc?

Type on the field below and hit Enter/Return to search