Nauka To Lubię

Oficjalna strona Tomasza Rożka

Kategoria: Aktualności

Kiedy, gdzie i jak obserwować Krwawy Księżyc?

Gdzie zwrócić wzrok, o której godzinie rozpocznie się najciekawsze i czy trzeba do obserwacji krwawego Księżyca mieć z sobą jakikolwiek sprzęt?

Kiedy?

W najbliższy poniedziałek, od godziny 2 w nocy. Choć najciekawsze będzie się działo dopiero dwie godziny później. Kilka minut po godzinie 3 nad ranem tarcza Księżyca w całości będzie znajdowała się w tzw. strefie półcienia”. Ale na prawdę widowiskowo zacznie być dopiero o 4:11. Wtedy cały Księżyc będzie w cieniu Ziemi. Nie zniknie jednak tylko będzie się stawał coraz bardziej czerwony (z domieszką brązu). Do 4:47 tarcza Księżyca będzie stawała się coraz ciemniejsza, a od tego momentu z każdą chwilą będzie się rozjaśniała. O 5:23 nastąpi koniec fazy całkowitego zaćmienia. Strefę pełnego cienia, Księżyc opuści o 6:27.  W skrócie mówiąc to co najciekawsze wydarzy się pomiędzy 4:11 a 5:23 i potrwa 72 minuty.

Gdzie?

lunar_201509Krwawy Księżyc będzie w Polsce widoczny wszędzie. Zresztą nie tylko w Polsce, ale także w całej Ameryce Południowej, w prawie całej Ameryce Północnej i Afryce. Księżyc, a szczególnie Księżyc w pełni to bardzo duży i jasny obiekt, stąd będzie widoczny także w miejscach „zanieczyszczonych” sztucznym światłem, a więc np. w centrach miast. Oczywiście obserwacje będą lepsze, gdy będą prowadzone z dala od sztucznych świateł.

Całkowite zaćmienie Księżyca nastąpi w chwili gdy Srebrny Glob będzie nisko nad horyzontem. Oznacza to, że niczego nie zobaczymy np. górskich dolinach, albo w mieście, w otoczeniu wysokich budynków. Do obserwacji trzeba więc wybrać miejsce, w którym nie będzie przeszkód patrząc w kierunku zachodnim i południowo-zachodnim i zachodnim. Optymalnie, gdyby takie miejsce było na wzniesieniu.

To, że Księżyc będzie nisko nad horyzontem spowoduje, że obserwacje będą ciekawsze. Oczywiście pod warunkiem, że niebo nie będzie przysłonięte chmurami.

Jak?

Księżyc jest tak dużym i jasnym obiektem, że bez problemu można do obserwować gołym okiem. Zwykłą lornetka, nie mówiąc o nawet najprostszym teleskopie będzie można zjawisko „zacieniania” Księżyca zobaczyć bardzo dokładnie. Tak samo jak będzie można z dużymi detalami oglądać obiekty na powierzchni Księżyca.

Dobrym pomysłem jest fotografowanie i filmowanie zjawiska. Podobnie jak z obserwacją, nie potrzeba do tego żadnego specjalistycznego sprzętu. Wystarczy zwykły aparat fotograficzny (nawet kompaktowy automat). Jedyne o co warto się zatroszczyć to statyw. Z reki obraz będzie nieatrakcyjny.

Zainteresowanym obserwacją i fotografowaniem Krwawego Księżyca polecam mój kolejny wpis. KLIKNIJ TUTAJ !!!

5 komentarzy do Kiedy, gdzie i jak obserwować Krwawy Księżyc?

Pociąg wagi państwowej

Styk nauki (historii), polityki i ogromnych pieniędzy zawsze wzbudza emocje. Nie mam bladego pojęcia, czy w okolicach Wałbrzycha jest wyładowany złotem niemiecki pociąg pancerny. Byłoby jednak lepiej, gdyby urzędnicy i politycy nad tym tematem zamilkli.

Styk nauki (historii), polityki i ogromnych pieniędzy zawsze wzbudza emocje. Nie mam bladego pojęcia, czy w okolicach Wałbrzycha jest wyładowany złotem niemiecki pociąg pancerny. Byłoby jednak lepiej, gdyby urzędnicy i politycy nad tym tematem zamilkli.

Sprawa wygląda w skrócie tak. Wrocław, a właściwie Breslau, był drugim największym, po Berlinie, miastem III Rzeszy. Miastem bogatym nie tylko w tradycje i idee, ale także pieniądze. To tutaj znajdował się sporej wielkości skarbiec Rzeszy, to tutaj były banki, a w nich depozyty. Gdy sytuacja na frontach II wojny światowej zaczęła rozwijać się dla Niemców niepomyślnie, władze miasta zaapelowały do obywateli, by ci zdeponowali swoje bogactwa. Wszystko zostało skrupulatnie policzone i skatalogowane (jak to w Niemczech). Zamknięte w metalowych skrzyniach i zabezpieczone. W maju 1945 roku nie można jednak było dłużej czekać. Rosjanie zbliżali się do Wrocławia. Wtedy postanowiono skarb wywieźć. Było go za dużo na samochody, zdecydowano się więc na pancerny pociąg. Ten wyjechał z Wrocławia i w okolicach Wałbrzycha… słuch o nim zaginął.

70 lat później, w sierpniu 2015 roku na konferencji prasowej Generalny Konserwator Zabytków (nie żaden specjalista, polityk z nadania PSLowskiego) mówi, że na 99 proc. tzw. „złoty pociąg” znajduje się w miejscu wskazanym przez anonimowych poszukiwaczy skarbów. Konserwator (w randze wiceministra) przyznał także, że widział zdjęcia georadarowe, a na nich wyraźnie rozpoznał nie tylko pociąg i jego wagony, ale także ich uzbrojenie. W tym miejscu kilka słów o georadarach. One nie służą do identyfikacji czegokolwiek. One służą do zobrazowania warstw podłoża. Gdy w badanym podłożu znajdują się jakiekolwiek artefakty, specjalista na „wydruku” zobaczy, że w ziemi „coś” się znajduje. Dopiero na podstawie danych georadarowych przeprowadza się kolejne, bardziej wnikliwe analizy. Mówienie, że na zdjęciach z georadaru Generalny Konserwator Zabytków widział elementy uzbrojenia, wydają się być mało prawdopodobne. Dzisiaj dość trudno te informacje zweryfikować, bo wspomniane zdjęcia zaginęły. Nie ma ich np. w dokumentacji jaką anonimowi znalazcy pociągu złożyli w Urzędzie Miasta Wałbrzycha.

Złoty pociąg zyskał międzynarodowy rozgłos właśnie po słowach Generalnego Konserwatora Zabytków. Do jeszcze nie odnalezionego pociągu prawo roszczą sobie Rosjanie. Do jego zawartości Światowy Kongres Żydów. Można się oburzać, ale… jeżeli tam jest złoto Wrocławia, w części jest to złoto zrabowane właśnie Żydom. Reszta to depozyty niemieckiej ludności miasta. Z kolei ustalenia kończące II Wojnę Światową mówią dość wyraźnie, że niemiecki sprzęt wojskowy z terenów wyzwalanych przez Armię Czerwoną, należy się Związkowi Radzieckiemu (a więc Rosji). Prawa majątkowe w takich sytuacjach przedawniają się dopiero po upływie 100 lat. W tej sytuacji nam nie należy się oczywiście nic. No, może za wyjątkiem satysfakcji z wydanych na badania i ewentualne wydobycie pociągu pieniędzy.

Nie mam bladego pojęcia, czy w okolicach Wałbrzycha znajduje się niemiecki pociąg pancerny. Nawet jeżeli tam rzeczywiście jest, nie wiem, czy to ten sam, który wywoził skarby Wrocławia, czy jakiś inny. 70 lat po wojnie mamy bardzo małą wiedzę na temat labiryntu korytarzy drążonych przez Niemców w Sudetach. Nigdy nie ogłoszono zakrojonego na szeroką skalę programu naukowego, którego celem byłoby zidentyfikowanie czy przebadanie tego co w Sudetach robili Niemcy. A szkoda. Skala niemieckich prac musiała być ogromna, skoro w okolice zamku Książ miał być przeniesiony cały ośrodek zajmujący się badaniem, udoskonalaniem i produkcją niemieckich rakiet V. Swoją drogą, po wojnie zarówno sprzęt, dokumentację jak i ludzi „przejęli” Amerykanie. Tylko dzięki temu amerykański program kosmiczny dzisiaj jest wiodącym. W skrócie mówiąc, to Naziści postawili człowieka na Księżycu. A wracając do „złotego pociągu”. Polskie władze, zarówno na poziomie samorządu, województwa jak i stolicy, zabrały się za sprawę totalnie nieprofesjonalnie. Urzędnik rządowy (Generalny Konserwator Zabytków) chlapie językiem na lewo i prawo, inny urzędnik (wojewoda dolnośląski) zaprzecza wszystkiemu, a kolejny (prezydent Wałbrzycha) coś niecoś sugeruje. Efekt jest taki, że o niejasnej sprawie piszą światowe media, a w lasach wokoło Wałbrzycha na każdym kroku jakiś poszukiwacz skarbów. Niektórzy z nich nie znają subtelnych metod badawczych. Kilka dni temu w jednym z „podejrzewanych” miejsc ktoś podpalił las. Zamieszanie absolutnie nie służy nie tylko sprawie samego pociągu, ale utrwala także negatywny i NIESPRAWIEDLIWY obraz Polski za granicą. Jeszcze trochę, a przeczytamy, że to Polacy zrabowali złoto i kosztowności Niemcom i Żydom, których następnie podstępnie z Wrocławia wypędzili. Pasuje jak ulał do polskich obozów śmierci.

Teren, na którym pociąg jest, albo być może jest, powinien zostać natychmiast zamknięty i dobrze pilnowany. Badania powinno robić wojsko i specjaliści archeolodzy, a nie domorośli poszukiwacze przygód. A jeżeli cokolwiek będzie tam znalezione, powinno zostać w tajemnicy przetransportowane w miejsce, gdzie na spokojnie będzie można to zbadać i skatalogować. Dopiero wtedy, bez pośpiechu, na poziomie rządu, powinna zapaść decyzja, czy cokolwiek światu komunikujemy, czy naszym jedynym komunikatem będzie „no comments”. I tak przez przynajmniej kolejnych 30 lat.

 

Tekst ukazał się na portalu gosc.pl, zdjęcie pochodzi ze strony Stowarzyszenia Pamięci Powstania Warszawskiego 1944 (www.sppw1944.org)

1 komentarz do Pociąg wagi państwowej

Czujnik w nas

W Szwajcarii stworzono czujnik, który wszczepiony pod skórę jest w stanie kontrolować kilka parametrów życiowych równocześnie. Kilka lat temu pisałem o takich czujnikach jak o dalekiej przyszłości.

W Szwajcarii stworzono czujnik, który wszczepiony pod skórę jest w stanie kontrolować kilka parametrów życiowych równocześnie. Kilka lat temu pisałem o takich czujnikach jak o dalekiej przyszłości.

Czujnik, a właściwie elektroniczny chip, powstał w laboratoriach politechniki w Lozannie EPFL (École polytechnique fédérale de Lausanne). Ma wielkość paznokcia w małym palcu i nie trzeba wymieniać mu baterii. Ładuje się go przez indukcję, przez skórę. Wszystko, co zbada i zmierzy, przesyła bezprzewodowo do smartfona. Jest to bodaj pierwsze urządzenie tego typu, które może być wykorzystywane komercyjnie u pacjentów. Poprzednie konstrukcje nie były co prawda większe, ale miały ogromną wadę – badały tylko jeden parametr, tylko jedną zmienną. Ten równocześnie rejestruje ich kilka.

Od czego się zaczęło?

Czujnik, o którym mowa, wpisuje się w rozwój dziedziny zwanej nanotechnologią. Co prawda urządzenia nano są znacznie, znacznie mniejsze, ale bardzo szybki wyścig do miniaturyzacji zawdzięczamy właśnie nanotechnologii. Za ojca tej dziedziny uważany jest genialny fizyk Richard Feynman. Uczestniczył w pracach nad budową pierwszej bomby atomowej (projekt Manhattan), a po wojnie pracował na najlepszych uniwersytetach amerykańskich. Zajmował się kwantową teorią pola i grawitacji, fizyką cząstek i nadprzewodnictwem. To on jako pierwszy podał koncepcję komputera kwantowego i – w 1960 roku – zapowiedział powstanie nowej dziedziny nauki – nanotechnologii. W 1965 r. otrzymał Nagrodę Nobla z fizyki. Feynman wielokrotnie zwracał uwagę na to, że przyszłość będzie nano, że zrozumienie tego, co dzieje się w nanoświecie, świecie na poziomie pojedynczych cząstek i atomów, będzie kluczowe dla naszego przyszłego rozwoju.

Trudno oczywiście dokładnie określić, kiedy nanotechnologia rzeczywiście powstała, ale nie ma wątpliwości, że wiele dziedzin przemysłu coraz chętniej zwraca głowę w kierunku ekstremalnej miniaturyzacji. Jedną z dziedzin, które robią to szczególnie często, jest medycyna. Nanomedycyna dzisiaj rozwija się w dwóch kierunkach. Jeden to próby (coraz częściej udane) stworzenia nanocząsteczek, które będą nośnikami leków, a nawet genów. Wnikając do organizmu, będą uwalniać przenoszony czynnik dokładnie w tym miejscu i dokładnie o tym czasie, jaki jest optymalny. Drugi kierunek to nanosensory. Te mogą być wykorzystywane nie tylko w medycynie, ale także na przykład w ochronie środowiska. Dobrym przykładem jest nanosensor służący do analizy krwi. Z zewnątrz wygląda jak siateczka z ogromną ilością otworów. W rzeczywistości to mikroskopijne kanaliki krzemowe, w których znajdują się przeciwciała wyłapujące komórki nowotworowe. Analiza przeciwciał pozwala stwierdzić, czy w krwi znajdują się komórki rakowe, a jeżeli tak, to ile i jakie. Taka informacja nie może być pozyskana w trakcie standardowej analizy, bo komórek nowotworowych w krwi jest bardzo mało. Co ciekawe, testowana metoda jest dużo tańsza niż dzisiaj stosowane, a do analizy wystarczy jedna, dosłownie, kropla krwi.

Myszy już mają

Nanomedycyna jednoznacznie kojarzy się jednak z budową nanorobotów, które wpuszczone do ludzkiego krwiobiegu będą nie tylko monitorowały funkcje życiowe, ale także reagowały na stany kryzysowe organizmu. Te skojarzenia – przynajmniej na razie – są całkowicie chybione. Co nie znaczy oczywiście, że prace nad miniaturyzacją robotów nie są prowadzone. Już dzisiaj tworzone są roboty, których rozmiary umożliwiają użycie ich w rzeczywistych warunkach szpitalnych. Na przykład kapsułka monitorująca wnętrze układu trawiennego skonstruowana przez japońską firmę Denso Research jest wielkości standardowej tabletki. Jest wyposażona we własne zasilanie i kamerę CCD wysokiej rozdzielczości oraz urządzenie do przesyłania informacji drogą radiową do urządzenia bazowego. Po połknięciu „kapsułka endoskopowa” przekazuje wysokiej jakości obraz w czasie rzeczywistym. Nie ma własnego napędu, porusza się pod wpływem… siły grawitacji i perystaltyki jelit. Ale na rynku są już urządzenia niewiele większe, które mogą poruszać się samodzielnie, choć na razie jeszcze nie w układzie krwionośnym. Kilka lat temu na jednej z konferencji nanotechnologicznych pokazano nanosilnik, który jest mniejszy od główki od szpilki. Jego koła napędowe były 100 razy cieńsze niż kartka papieru, a ich średnica mniejsza niż średnica ludzkiego włosa. Silnik obracał się z częstotliwością jednego obrotu na sekundę i teoretycznie mógłby być elementem systemu napędowego jakiegoś małego urządzenia pływającego. Zanim te powstaną, miną jeszcze lata. Wcześniej do medycyny wejdą inteligentne czujniki, które być może będą wszczepiane pod skórę na dłuższy czas osobom o podwyższonym ryzyku zdrowotnym. Takim czujnikiem jest wspomniany sensor stworzony w Lozannie. Ma wielkość poniżej centymetra i w czasie rzeczywistym monitoruje obecność oraz stężenie kilku molekuł. Może badać odczyn (pH), temperaturę, ale przede wszystkim cholesterol, glukozę, poziom tlenu oraz stężenie przynajmniej kilku leków. To ostatnie będzie szczególnie ważne dla osób, które z powodu swojej choroby muszą regularnie zażywać jakieś medykamenty. Ich przedawkowanie jest wtedy bardzo łatwe. Pełna kontrola nad poziomem substancji czynnej we krwi jest bardzo istotna. Sensor został przetestowany na myszach, a testy kliniczne na ludziach rozpoczną się za kilka lat.

Brak komentarzy do Czujnik w nas

Pluton jak Biedronka

Wczorajszy przelot sondy New Horizons w pobliżu Plutona natchnął mnie do pewnych przemyśleń. Po co badać coś tak odległego jak Pluton? Po co badać delfiny, motyle czy orangutany? Po co zajmować się gwiazdami, płytami tektonicznymi i DNA?

Wczorajszy przelot w pobliżu Plutona i związanych z nim sporo pytań natchnął mnie do pewnych przemyśleń. Niemal za każdym razem, gdy w nauce dochodzi do jakiegoś odkrycia, do wysłania sondy, do zbudowania nowego rodzaju mikroskopu czy znalezienia nowej cząstki elementarnej, pada pytanie, po co to wszystko? Po co wydawać miliony dolarów by dowiedzieć się co słychać np. na globie, który oddalony jest od nas o miliardy kilometrów. Dajmy na to na takim Plutonie. Wczoraj udało się sfotografować jego powierzchnię z odległości nieco ponad 12 tysięcy kilometrów. To 30 razy mniej niż odległość pomiędzy Ziemią i naszym Księżycem. Sonda która tego dokonała to New Horizons. Leciała w kierunku Plutona prawie 10 lat przebywając w tym czasie 5 miliardów kilometrów. No i po co to wszystko? Po co lecieć tak daleko, po co wydawać niemałe przecież pieniądze, po co zaangażowanie ogromnej grupy ludzi przez długi okres czasu?

Zacznijmy od pieniędzy. Całkowity koszt misji New Horizons, wszystkich urządzeń sondy, jej wystrzelenia, ale także analizy danych a nawet obsługi medialnej wydarzenia to około 700 milionów dolarów, czyli nieco ponad 2 miliardy i 600 milionów złotych. To dziesięć razy mniej (!!!) niż wynosi roczny przychód supermarketów Biedronka w Polsce. To mniej niż budowa 20 kilometrowego odcinka autostrady A1. W końcu to mniej niż zakup i 13 letnia obsługa 4 samolotów F16, które służą w polskiej armii (w sumie kupiliśmy ich 48). Tyle jeżeli chodzi o koszty. Tak, te są duże… dla przeciętnego obywatela. Niewielu byłoby stać na wybudowanie i wysłanie w kosmos sondy New Horizons (choć np. Jan Kulczyk, najbogatszy Polak, mógłby takich sond wysłać 7), ale w skali państwa, dla budżetu państwa rozwój nauki to grosze. Grosze zainwestowane najlepiej jak można sobie wyobrazić. Grosze, które w przyszłości przyniosą miliony poprzez rozwój technologii a w dalszej perspektywie rozwój przemysłu. Każda ekspansja to wyzwanie i konieczność znajdowania rozwiązań na problemy z których nie zdawaliśmy sobie sprawy. Przecież loty w kosmos mają bezpośrednie przełożenie na komunikację, elektronikę i materiałoznawstwo. Rozwój technik obrazowania (nieważne czy w astronomii czy w biologii) od razu jest wykorzystywany w medycynie. Nasze miasta byłyby skażonymi pustyniami gdyby nie powstawały zaawansowane technologicznie silniki i komputery, które tymi silnikami sterują.

A wracając do Plutona, delfinów, motyli i orangutanów. Po co je badać? Bo one są częścią nas, a my częścią świata którego różnorodność – przynajmniej mnie – powala na kolana. Wszystkie lekkie atomy, które nas budują powstały w czasie Wielkiego Wybuchu. Wszystkie ciężkie w czasie wybuchu gwiazdy. Warto rozwijać zarówno kosmologię, astrofizykę jak i fizykę cząstek. Nasze DNA to uniwersalny język całej przyrody, a gatunki (zarówno zwierzęce jak i roślinne), które zamieszkują Ziemię (a pewnie także inne globy) powstawały jedne z drugich. To dlatego nie można zaniedbywać biologii (w tym egzobiologii) i medycyny. Oddychamy powietrzem w którego skład wchodzą różne gazy. To dlatego warto rozwijać chemię i interesować się tym jak zmieniały się atmosfery na innych planetach. Ta wiedza może być bezcenna gdy zacznie zmieniać się nasza atmosfera. Bo to że wszystko jest wokoło nas zmienne – to oczywiste. Kontynenty są w ruchu (nie tylko zresztą na Ziemi) i dzięki temu mogło powstać życie. Ale to nie powstałoby, gdyby Ziemia nie miała swojego pola magnetycznego. A tego by nie było gdyby jądro planety nie było gorące i półpłynne. Ale nawet gdyby było, Ziemia byłaby martwa, gdyby nie było Księżyca, który stabilizuje ruch Niebieskiej Planety wokół Słońca. A Księżyc powstał w kosmicznej katastrofie w której w Ziemię uderzyła planetoida wielkości Marsa. Geologia, geografia, fizyka, astronomia, biofizyka i biochemia… Mam dalej wymieniać? Czy jest sens wymieniać? Czy jest sens pytać, po co badamy coś tak odległego jak Pluton? Po co badamy delfiny, motyle czy orangutany, a nawet biedronki (chodzi o owada, nie o sieć sklepów)? Moim zdaniem szkoda na to czasu. Lepiej go wykorzystać na zaspokajanie swojej ciekawości. Bo to ciekawość idzie przed odkryciami. Tak było zawsze i tak będzie zawsze.

3 komentarze do Pluton jak Biedronka

Ludowców gra grafenem

W jednym z najbardziej znanych na świecie polskich instytutów naukowych, w miejscu w którym produkuje się grafen, doszło dziwnych i niezrozumiałych kombinacji podczas wyboru dyrektora placówki. Sprawa wygląda na polityczną ustawkę, która może utopić polski grafen.

W jednym z najbardziej znanych na świecie polskich instytutów naukowych, w miejscu w którym produkuje się grafen, doszło dziwnych i niezrozumiałych kombinacji podczas wyboru dyrektora placówki. Sprawa wygląda na polityczną ustawkę, która może utopić polski grafen.

O sprawie pisałem już w Tygodniku Gość Niedzielny. Dotychczasowym szefem Instytutu Technologii Materiałów Elektronicznych (ITME) w Warszawie był doktor Zygmunt Łuczyński. Zasłużony fizyk i człowiek, który wiele lat temu zainicjował w tej jednostce badania nad nowymi postaciami węgla, czyli nad grafenem („wie pan, chodziłem za tym, jak jeszcze nikt nie wiedział czym jest grafen„). Dzisiaj ITME jest światowym liderem technologii. To w Warszawie powstają jedne z największych kawałków grafenu na świecie. Naukowcy pracujący w „grupie grafenowej” są zaangażowani w najbardziej prestiżowe projekty międzynarodowe, a sam instytut w rankingach jest plasowany na czołowych pozycjach. Dla przypomnienia, grafen to postać węgla, która ma niespotykane w innych materiałach właściwości. Jest bardzo wytrzymały, a równocześnie elastyczny. Lekki i przezroczysty, ale odporny na działanie sił zewnętrznych. Doskonale przewodzi prąd i ciepło. I choć trudno znaleźć dziedzinę w której grafen nie mógłby być wykorzystywany, największe nadzieje wiąże się z grafenem w elektronice. Panuje powszechne przekonanie, że w najbliższej przyszłości, to grafen, czy ogólnie węgiel, wyprze z elektroniki krzem, który dzisiaj jest jej fundamentem. W skrócie mówiąc, grafen, pod wieloma względami jest materiałem przyszłości.

Doktorowi Łuczyńskiemu kilka miesięcy temu kończyła się kadencja dyrektorska i starając się o kolejną, wystartował w ogłoszonym konkursie. Wraz z nim do konkursu stanęło jeszcze trzech innych kandydatów. Każdy z nich odpadł jednak na kolejnych etapach procedury konkursowej. Konkurs sprzed kilku miesięcy wygrał więc bezapelacyjnie dotychczasowy szef Instytutu, dr Zygmunt Łuczyński. Tą wygraną potwierdziła odpowiednią uchwałą Komisja Konkursowa, a Rada Naukowa Instytutu skierowała do Ministra Gospodarki pismo z rekomendacją i prośbą o powołanie nowego (starego) dyrektora na kolejną kadencję. Skany tych pism zamieszczam na dole wpisu.

Mimo tej wygranej, doktor Łuczyński dyrektorem jednak nie został, bo jego nominacji nie podpisał Minister Gospodarki, Janusz Piechociński z PSLu. Nie pomogło to, że do ministra zwróciła się z prośbą o podpisanie nominacji Rada Naukowa Instytutu oraz Rada Główna Instytutów Badawczych. Nie pomogło nawet to, że na biurku ministra znalazł się list podpisany przez 190 pracowników Instytutu popierających swojego poprzedniego dyrektora.  W liście do premiera Piechocińskiego, szef Rady Głównej Instytutów Badawczych pisał, że Rada wyraża pogląd, że konkurs na stanowisko dyrektora instytutu badawczego ITME został przeprowadzony zgodnie z obowiązującymi wymaganiami prawnymi.  A potem dodawał: „Rada Główna Instytutów Badawczych popiera stanowisko Rady Naukowej ITME. W imieniu Rady Głównej zwracam się do Pana Premiera o reasumpcję odmowy powodłania dr. Zygmunta Łuczyńskiego na stanowisko dyrektora ITME.” Premier Piechociński zdania jednak nie zmienił.

Dlaczego? Otóż ministerstwo twierdzi, że zostały złamane procedury, bo nie wszyscy kandydaci przeszli pełną ścieżkę konkursową. To prawda, ale to nie jest niezgodne z prawem. Nie wszyscy kandydaci dotrwali do końca procedury konkursowej, bo odpadli wcześniej. Pomijając nazwiska (choć te są w dokumentach zamieszczonych poniżej), jeden z panów odpadł na egzaminie z angielskiego. Jego wiadomości były zdaniem komisji konkursowej dużo poniżej tych, które deklarował w dokumentach. Drugi kandydat zrezygnował, gdy trzeba było podzielić się z komisją swoją wizją na temat rozwoju i przyszłości instytutu. Trzeci nie dopełnił formalności przy zgłoszeniu swojej kandydatury i dlatego komisja w ogóle nie rozpatrywała jego podania.

Napisałem do Ministerstwa Gospodarki maila z pytaniem o dziwne praktyki konkursowe. Po kilku dniach otrzymałem odpowiedź, że konkurs trzeba było powtórzyć z powodu złamania procedur. Jak to możliwe, skoro szefem Komisji Konkursowej był przedstawiciel ministerstwa, który na piśmie oświadczył, że wszystkie procedury były zachowane? Zerknijcie proszę w dokumenty poniżej. Gdy do rzeczniczki ministra Piechocińskiego napisałem kolejnego maila z prośbą o wyjaśnienie tej niezgodności (ministerstwo twierdzi, że prawo zostało złamane, przedstawiciel ministerstwa zaświadcza, że wszystko odbyło się zgodnie z przepisami), nie otrzymałem żadnej odpowiedzi. Mimo, że już dawno minął ustawowy termin na odpowiedź jaki prawo narzuca urzędnikom.

Ministerstwo Gospodarki postawiło na swoim i po unieważnieniu konkursu, rozpisało nowy. Dotychczasowy dyrektor – doktor Łuczyński – przepadł, szefem Instytutu Technologii Materiałów Elektronicznych został były prezes Grupy Azoty (Kędzierzyn Koźle) Ireneusz Marciniak. – O tej osobie mówiło się jak o kandydacie forsowanym przez ministerstwo gospodarki – powiedział mi dr Zygmunt Łuczyński. Ireneusz Marciniak był związany z różnymi spółkami skarbu państwa od kilkunastu lat.

Trzy miesiące temu dr Łuczyński udzielił pismu Elektronik wywiadu pod znamiennym tytułem „Kto jest zainteresowany przejęciem ITME?„, w którym tłumaczył naciski i motywy stojące za próbą przejęcia sterów w jednym z najbardziej znanych na świecie polskich ośrodków naukowych. – Z moich informacji wynika, że istnieje porozumienie pomiędzy Ministerstwem Gospodarki a Politechniką Warszawską, na mocy którego niedługo ma nastąpić konsolidacja Politechniki i ITME – mówił Łuczyński. Zapytany o to porozumienie rzecznik Politechniki Warszawskiej, zaprzeczył istnieniu jakiejkolwiek umowy. Doktor Łuczyński, we wspomnianym wywiadzie opowiada także, że ośrodek którym kierował znajduje się w wielu rankingach instytucji naukowych na czołowych pozycjach. Prowadzi bardzo ważne naukowo i biznesowo projekty (w tym bardzo prestiżowe, międzynarodowe), znajduje dofinansowanie i ma świetny sprzęt. – Nietrudno zatem dojść do wniosku, że ITME jest łakomym kąskiem do przejęcia – powiedział mi doktor Łuczyński. I dodawał, że przejęcie ITME to „bilet do wielu prestiżowych programów o charakterze międzynarodowym”. Tyle tylko, że dyrektor Łuczyński nie godził się na zmiany organizacyjne w instytucie. – Uczestnictwo w światowym wyścigu technologicznym, czego grafen jest doskonałym przykładem, wymaga 100-procentowej i maksymalnej koncentracji oraz podporządkowania się temu celowi – mówił Łuczyński w Elektroniku. A potem dodawał, że laboratoria Instytutu pracują na trzy zmiany, bo w tak zaciętym wyścigu technologicznym z jakim mamy do czynienia, liczy się każda godzina. – To moim zdaniem jest wystarczający powód, aby nie zmieniać konia w czasie gonitwy – mówił. I dodawał, że jakiekolwiek zmiany personalne w kierownictwie czy organizacyjne nie dają gwarancji utrzymania kadry, co jest kluczowe dla rozwoju prac. – Nie jest tajemnicą, że większość ze specjalistów pracujących nad grafenem ma liczne propozycje i możliwość natychmiastowego przejścia do innych (zagranicznych) ośrodków badawczych. Każda niestabilność związana z działalnością placówki jest tutaj realnym zagrożeniem, a w konsekwencji grozi utratą pozycji Polski w tej dziedzinie – mówił doktor Łuczyński. No właśnie. Pozycja Polski. Wydaje się, że w tym wszystkim najmniej chodzi o pozycję Polski i polskich badań.

 

DOKUMENTY015_Strona_2

Uchwała Komisji Konkursowej stwierdzająca zwycięstwo w konkursie dr. Zygmunta Łuczyńskiego

 

DOKUMENTY015_Strona_1

List Komisji Konkursowej rekomendujący dr. Łuczyńskiego na stanowisko dyrektora ITME

 

DOKUMENTY015_Strona_3-kolorowy

Uchwała Rady Naukowej Instytutu, w które potwierdzona zostaje prawidłowość procedury konkursowej, w której wygrał dr Zygmunt Łuczyński

 

List RGJB do Piechocińskiego-podkreślenia

List Przewodniczącego Rady Głównej Instytutów Badawczych do Premiera Piechocińskiego z prośbą o zmianę decyzji wsp. niepowoływania dr. Łuczyńskiego na stanowisko dyrektora ITME.

 

Wniosek  Rady Nauk do Ministra_Strona_1

Wniosek Rady Naukowej ITME o reasumpcję odmowy powołania dr. Zygmunta Łuczyńskiego na stanowisko dyrektora ITME

 

Wniosek  Rady Nauk do Ministra_Strona_2

Uzasadnienie wniosku o reasumpcję odmowy powołania dr. Zygmunta Łuczyńskiego na stanowisko dyrektora ITME strona 1

Wniosek  Rady Nauk do Ministra_Strona_3

Uzasadnienie wniosku o reasumpcję odmowy powołania dr. Zygmunta Łuczyńskiego na stanowisko dyrektora ITME strona 2

Wniosek  Rady Nauk do Ministra_Strona_4

Uzasadnienie wniosku o reasumpcję odmowy powołania dr. Zygmunta Łuczyńskiego na stanowisko dyrektora ITME strona 3

Wniosek  Rady Nauk do Ministra_Strona_5

Uzasadnienie wniosku o reasumpcję odmowy powołania dr. Zygmunta Łuczyńskiego na stanowisko dyrektora ITME strona 4

 

35 komentarzy do Ludowców gra grafenem

Muzyka to drgania

Dla niektórych muzyków informacja o tym, że całe swoje życie poświęcają produkcji drgań może być niemiłym zaskoczeniem. Setki, tysiące godzin prób, ból, łzy i emocje, a wszystko po to, by cząsteczki powietrza wyprowadzić z położenia równowagi.

Dla niektórych muzyków informacja o tym, że całe swoje życie poświęcają produkcji drgań może być niemiłym zaskoczeniem. To samo dotyczy także tych, którzy śpiewają. Setki, tysiące godzin prób, ból, łzy i emocje, a wszystko po to, by cząsteczki powietrza wyprowadzić z położenia równowagi.

Co to znaczy z położenia równowagi? To w przypadku cząsteczek powietrza, niezbyt fortunne stwierdzenie. Tlen, azot, wodór – atomy tych i wielu innych pierwiastków wchodzących w skład powietrza i tak nigdy nie są w spoczynku. Poruszają się chociażby pod wpływem różnicy temperatur czy ciśnienia (jedno z drugim jest zresztą powiązane). Jeżeli ktoś nie wierzy, niech spojrzy za okno, a najlepiej nich wyjdzie na świeże powietrze. Wiatr to właśnie ruch cząsteczek powietrza. Zimą wbijający się w ubranie jak szpilki, latem zwykle przyjemnie schładzający naszą skórę. Co ten ruch ma wspólnego z dźwiękami? Nic. Gdy wieje wiatr, cząsteczki powietrza przemieszczają się z miejsca na miejsce, jak samochody jadące szeroką autostradą. Z dźwiękami jest inaczej. Tutaj ruch bardziej przypomina zakorkowane miasto, gdzie na ulicach samochody stoją zderzak w zderzak. Albo nie, przypomina klik-klaka. Kulka z brzegu zostaje odchylona i uderza w swoją sąsiadkę, a ta w kolejną itd. Ale środkowe kulki zmieniają położenie tak nieznacznie, że nawet tego nie widać. Co nie przeszkadza im przekazywać energię. To przekazywanie energii od jednej kulki, do kolejnej dojdzie w końcu do ostatniej, która energicznie odskakuje. Podobnie jest z dźwiękiem. Cząsteczki powietrza przekazują sobie energię dźwięku tak jak kuleczki klik – laka. Z tą różnicą, że kuleczek w popularnej zabawce jest najwyżej kilka, a cząsteczek powietrza pomiędzy źródłem dźwięku a naszym uchem mogą być setki milionów.

Gęściej znaczy szybciej

Dźwięk rozchodzi się oczywiście nie tylko w powietrzu, nie tylko w gazach, ale także w cieczach i ciałach stałych. Czym gęstszy jest ośrodek, tym dźwięk szybciej się w nim rozchodzi. Na pozór to nielogiczne, ale gdyby się dłużej zastanowić… Skoro cząsteczki przekazują energię dźwięku nie jak posłańcy poruszający się na dużych odległościach, tylko raczej jak ludzie czekający w kolejce, czym bliżej siebie będą cząsteczki, tym szybciej dźwięk będzie przekazywany. Tym więcej energii zostanie przekazanej dalej. W powietrzu dźwięk porusza się z prędkością około 1200 km/h. W wodzie prędkość dźwięku jest prawie 5 razy większa i wynosi około 5400 km/h, a w stali wibracje poruszają się z prędkością bliską 18 000 km/h. Z drugiej strony, gdy cząsteczek nie ma wcale, albo gdy są bardzo daleko od siebie, dźwięk nie jest przekazywany w ogóle. W próżni panuje idealna cisza.

Dźwięki można wytwarzać na wiele różnych sposobów. Wytworzenie, to zwykle jednak za mało. Żeby były słyszalne, trzeba je wzmocnić. I mowa tutaj nie o mikrofonach i głośnikach, tylko o wzmacnianiu dźwięków przez same instrumenty. Człowiek wydaje dźwięki bo powietrze wychodzące z płuc, wprawia w drgania cienkie błony zwane strunami głosowymi. Dźwięki wydawane przez człowieka wzmacniane są w klatce piersiowej. W wielu instrumentach dźwięk wzmacnia pudło rezonansowe. W innych, są za to odpowiedzialne tzw. fale stojące. Sporo w tym fizyki, ale ciekawsze od tego jest to, co dzieje się z dźwiękiem po „opuszczeniu” instrumentu.

To oczywiste że drgania mogą być mocniejsze, albo słabsze. Wtedy dźwięk jest głośniejszy, albo cichszy. Ale to nie jedyna cecha drgań. W końcu ten sam dźwięk grany na skrzypcach i na pianinie różnią się od siebie. Falę wyobrażamy sobie jako sinusoidę (góry i doliny). To wyobrażenie jest jak najbardziej prawidłowe, tyle tylko, że trochę wyidealizowane. W rzeczywistości „górki” i „doliny” nie są gładziutkie, tylko składają się z wielu mniejszych „góreczek”. To w tych nieregularnościach zawarta jest informacja o dźwiękach. Nie o ich głośności, ale o ich brzmieniu. Jak to rozumieć, że w czymś zawarta jest informacja o brzmieniu?

Kostki na całe życie

W końcu fala akustyczna (czyli drganie od cząsteczki do cząsteczki) dojdzie do ucha, a konkretnie do błony bębenkowej. Od środka jest ona połączona z trzema kosteczkami – młoteczkiem, kowadełkiem i strzemiączkiem. To najmniejsze kości w całym ciele człowieka. I co ciekawe, od urodzenia do śmierci nie zmieniają one swoich rozmiarów. Nie rosną – jak wszystkie inne kości naszego organizmu. Trzy wspomniane kosteczki przenoszą drgania błony bębenkowej w głąb ucha, ale to nie jedyna ich funkcja. Są tak ze sobą połączone (na zasadzie dźwigni), że znacząco te drgania wzmacniają. Aż o 20 razy!

Kosteczki słuchowe przenoszą drgania do ślimaka. To zakręcony kanał, który jest wypełniony płynem. We wnętrzu kanału znajdują się czułe na drgania cieczy komórki. Wibracje powietrza na zewnątrz ucha, przez zmyślny system zamieniane są na wibracje płynu wypełniającego ślimak. A tam, drgania płynu zamieniane są na impulsy nerwowe. I w zasadzie dopiero od tego momentu można mówić o „słyszeniu”. Ucho nie słyszy, tylko zamienia drgania cząsteczek powietrza na impulsy elektryczne. To mózg tym impulsom nadaje znaczenie i interpretacja. To dopiero w zakamarkach mózgu odpowiedniej sekwencji impulsów elektrycznych przypisywane są dźwięki skrzypiec czy trąbki. To mózg, a nie ucho rozróżnia i potrafi nazwać te same dźwięki grane przez różne instrumenty.

Słuch jest pierwszym zmysłem człowieka. Już w pierwszych tygodniach życia płodowego, wykształcają się organy słuchowe. Długo przed porodem, dziecko słyszy. Słuch jest jedynym zmysłem, który tak wcześnie pozwala poznać dziecku świat zewnętrzny. Zaraz po porodzie dziecko prawie nie widzi. Słyszy doskonale i odczuwa zapachy. Od kilku lat wiadomo, że dziecko uczy się naśladować dźwięki, jakie słyszało jeszcze przed urodzeniem. W czasopiśmie Current Biology grupa francuskich i niemieckich uczonych opublikowała raport z którego wynika, że zaraz po urodzeniu dzieci płaczą zgodnie z melodią języka biologicznej matki. Francuskie noworodki na przykład płakały z intonacją wznoszącą się, a niemieckie z intonacją opadającą. To odzwierciedla melodię charakterystyczną dla tych języków. Dziecko rozwijając się w łonie matki, choć nie rozumie znaczenia słów, uczy się naśladować melodykę języka. Po co? Inne badania wskazują, że gdy płacz dziecka ma podobną „strukturę” jak język matki, noworodkowi łatwiej jest przyciągnąć uwagę swojej rodzicielki.

Muzyka to drgania cząsteczek powietrza. Brzmi wręcz banalnie prosto. Ale z prostotą ma niewiele wspólnego. Te drgania, ich wydobywanie, przenoszenie, rejestrowanie i interpretacja, to jedno z najciekawszych zagadnień w przyrodzie.

Brak komentarzy do Muzyka to drgania

Złapali kwant !!!

Dwójce młodych fizyków, doktorantów Uniwersytetu Warszawskiego, jako pierwszym na świecie udało się sfotografować kwanty, cząstki światła, w bardzo szczególnym momencie – chwili, w której się parują.

Dwójce młodych fizyków, doktorantów Uniwersytetu Warszawskiego, jako pierwszym na świecie udało się sfotografować kwanty, cząstki światła, w bardzo szczególnym momencie – chwili, w której się parują.

Tak, światło składa się z cząstek. A właściwie sprawa jest bardziej złożona. Światło ma cechy fali (podobnej do tej na wodzie), ale wykazuje też cechy korpuskularne. W skrócie mówiąc, jest i falą, i cząstką. Trudno to odnieść do naszej rzeczywistości, bo w makroświecie cechy fali i cząstki wykluczają się. W świecie kwantów nic się nie wyklucza.

Quantum paparazzi spying identical photon pairs

„Łapacze fotonów”, młodzi fizycy z UW, na tym zdjęciu zachowują się jak fotony. Są w dwóch miejscach równocześnie. Obok układu pomiarowego Radosław Chrapkiewicz (po prawej) oraz Michał Jachura (stojący za nim) .

W zasadzie proste 

Cząstki światła nazywają się kwantami. Nie mają masy spoczynkowej, nie da się ich zatrzymać i przyjrzeć im się „na spokojnie”. Przeciwnie, pędzą z prędkościami, które trudno sobie nawet wyobrazić. 300 tys. kilometrów na sekundę! Ile to jest? Odległość między Zakopanem i Trójmiastem (prawie 700 km) światło pokonuje w tysięczne części sekundy. Jak złapać, jak sfotografować coś, co porusza się z taką prędkością? – Układ, który zastosowaliśmy do naszych pomiarów, jest dość złożony, ale sama idea nie jest skomplikowana – powiedział mi Michał Jachura z Uniwersytetu Warszawskiego. – Źródłem fotonów jest fioletowy laser. Padają one na urządzenie, w którym z jednego fotonu powstaje jeden elektron. Następnym elementem jest wzmacniacz powielający ten jeden elektron. Tak powstaje kilka milionów elektronów, które następnie padają na płytkę z fosforu, gdzie powodują błysk światła. Ten błysk rejestrujemy specjalną kamerą – mówi drugi z młodych badaczy, Radosław Chrapkiewicz. – I to w zasadzie wszystko – dodaje. Niektóre elementy układu, w którym udało się złapać fotony, np. wzmacniacz obrazu, to urządzenia wykorzystujące technologię wojskową. Samo sfotografowanie pojedynczej cząstki światła to jednak nie było topowe osiągnięcie Michała i Radka. Im udało się zobaczyć moment, w którym fotony się parowały. Ale zanim o tym, warto powiedzieć trochę o samych fotonach.

Światło wprost ze światłowodu

Światło wprost ze światłowodu. Obiektyw aparatu Radka Chrapkiewicza był skierowany dokładnie w kierunku światłowodu (wyjścia) z lasera femtosekundowego. Ten laser emituje bardzo krótkie błyski światła, których długość nie przekracza 100 fs (femtosekund). Femtosekunda to jedna bilionowa część sekundy. W czasie jednej femtosekundy światło pokonuje drogę sto razy krótszą niż grubość ludzkiego włosa!

Jaki kształt? Jaki kolor?

Fotografia kojarzy nam się z odwzorowywaniem rzeczywistości. Skoro foton dał się sfotografować, można chyba zapytać, jak on wygląda. Zacznijmy od kształtu. Da się go określić? – W jednym pomiarze nie, ale robiąc wiele pomiarów, wiele zdjęć, udaje się to zrobić, choć od razu trzeba powiedzieć, że kształt fotonu nie jest stały. Może się różnić w zależności od tego w jakim otoczeniu się znajduje – tłumaczy Michał. – W naszej aparaturze obserwowaliśmy np. fotony o wydłużonych kształtach, takich trochę jak ołówek, ale udawało nam się także obserwować fotony rozseparowane, czyli takie, w których jeden foton był rozdzielony na dwie części. I to części, które znajdują się od siebie w odległości nawet centymetra – dodaje Radek. A kolor? Tutaj sprawa zaczyna się komplikować jeszcze bardziej. – Foton ma trzy cechy, które nazywamy stopniami swobody – opowiada Michał Jachura.

– Pierwszy to struktura w przestrzeni, czyli w pewnym sensie kształt. Drugi stopień swobody – spektralny – to innymi słowy kolor. Fotony mogą być czerwone, niebieskie, ale możemy mieć fotony w tak zwanej superpozycji, np. fotony białe, składające się z wielu barw dla których określony kolor ustala się dopiero w momencie pomiaru. Ten sam foton mierzony wielokrotnie może mieć różne kolory. Ostatni stopień swobody to polaryzacja, tzn. kierunek, w jakim foton drga. Jeżeli dwa fotony mają identyczne trzy stopnie swobody, nie ma żadnej możliwości, by odróżnić je od siebie – kończy Michał Jachura. Zatem wróćmy do osiągnięcia dwóch doktorantów. Fotografowali oni fotony, które dobierały się w pary. W czasie tego procesu zauważyli, że dwa różne fotony skazane są na samotność. Nawet gdy znajdą się obok siebie, „nie widzą” się i zwykle nie dobierają się w pary. Sytuacja wygląda zupełnie inaczej, gdy fotony są identyczne, to znaczy, gdy wszystkie trzy stopnie swobody dwóch cząstek są takie same. Wtedy powstają pary, które na dodatek są wyjątkowo jednomyślne. Jeden foton „idzie” zawsze tam, gdzie ten drugi. Chociaż trudno powiedzieć, który jest pierwszy, a który drugi, skoro obydwa są identyczne. Łączenie fotonów nazywa się efektem Hong-Ou-Mandela i na Wydziale Fizyki Uniwersytetu Warszawskiego po raz pierwszy na świecie udało się go sfilmować.

Quantum memory - glowing green

Układ pamięci nowej generacji do komputerów kwantowych. Zielona tuba to pamięć. Za pomocą lasera (czerwona wiązka) w atomach rubidu „zapisywana” jest informacja, która następnie może być odczytywana. Ta pamięć to także dzieło doktorantów z UW.

Nauka podstawowa

Pozostaje tylko znaleźć odpowiedź na pytanie, po co tego typu badania się robi. – Być może kiedyś uda się wyniki naszych eksperymentów wykorzystać w rozwijanych technologiach kwantowych, na razie myślimy jednak o naszych eksperymentach w kategoriach badań podstawowych – mówi Michał Jachura. – Nas bardziej niż kształt samego fotonu interesuje to, jaki kształt będzie miała para fotonów, które zaczną ze sobą interferować, zaczną się na siebie nakładać. To można wykorzystać do zupełnie nowego rodzaju mikroskopii o bardzo wysokiej rozdzielczości. – uzupełnia Radosław Chrapkiewicz.

11 komentarzy do Złapali kwant !!!

Oczywista… oczywistość

Mogło by się wydawać, że naukowcy czasami wyważają dawno otwarte drzwi. Po długich testach dochodzą do wniosków, które… dla każdego są logiczne. Sztuka dla sztuki ? Nie, w nauce wszystko musi zostać sprawdzone i przetestowane. Inaczej jest tylko hipotezą.

Wszystko zaczęło się od robienia porządku w komputerze. A w zasadzie chęci zrobienia porządku. Skończyło się jak zawsze, znalazłem artykuł, który odłożyłem sobie do przeczytania na później. Artykuł był sprzed… siedmiu lat! No i postanowiłem coś napisać.

Tekst pochodził z anglojęzycznego serwis popularno-naukowego POPSCI.COM i był w zasadzie listą najbardziej oczywistych badań jakie prowadzono w 2007 roku. Obok informacji o tym co było obiektem badań i jaki ośrodek naukowy je przeprowadzał, podano także wnioski jakie z nich wynikają. Niektóre naprawdę zaskakujące.

– Fajtłapy nie są lubiane w szkole. Do takich wniosków doszła Janice Causgrove Dunn z Uniwersytetu Alberta w Kanadzie. Przebadała 100 chłopców i 110 dziewcząt w wieku szkolnym. Jej praca ukazała się w Journal of Sport Behavior. Autorka badań twierdzi, że eksperymentalne odkrycie znanej przecież prawdy jest ważne, bo dopiero teraz można ilościowo analizować a w konsekwencji zrozumieć związek pomiędzy kondycją fizyczną, rozwojem fizycznym a samotnością czy – bardziej ogólnie – szczęściem.

– Nieletni piją alkohol dla zabawy. Badania były przeprowadzone przez naukowców z Uniwersytetu Penn State w USA. Rozmawiano z prawie dwoma tysiącami młodych ludzi, pytając o powody dla których sięgnęli po alkohol, mimo młodego wieku. Naukowcy wyodrębnili trzy kategorie motywów. Eksperyment, chęć zrelaksowania się i poszukiwanie przygody. Okazało się jednak że bardzo duża grupa pytanych nie mieściła się w żadnej z tych szufladek. Po dogłębniejszych studiach okazało się, że te osoby sięgają po alkohol, bo… są przekonane że picie to świetna zabawa. Badania, choć mogłyby się wydawać naiwne są niezwykle ważne. To dzięki takim studiom specjaliści, którzy zajmują się prewencją i przeciwdziałaniem problemom alkoholowym mogą tworzyć programy profilaktyczne i terapeutyczne dla młodych alkoholików.

– Sen i kofeina zwalczają senność. Logiczne ? Tak, ale… Francuscy badacze zrobili następujący test. Grupie kilkunastu 20latków i kilkunastu 40latków pozwolili na 30 minutową drzemkę w samochodzie. W tym samym czasie analogiczne grupy 20 i 40latków piły kawę. Następnie wszyscy byli proszeni o przejechanie dystansu około 250 kilometrów samochodem. Okazało się, że tak jak kawa pomagała zachować trzeźwość umysłu niezależnie od wieku, tak drzemka działała ożywczo tylko na młodszych. Starszym w ogóle nie pomagała.

– Wakacje bez komórki są bardziej udane. Do takich wniosków doszli uczeni z Uniwersytetu w Tel Avivie w Izraelu. Ci, którzy biorą służbowy telefon komórkowy czy jakiekolwiek inne urządzenie związane z pracą na urlop nie są w stanie wypocząć psychicznie. Często zdarza, że szaf wymaga od swojego pracownika, by ten był w pełnym kontakcie ze swoją firmą nawet w czasie urlopu. To z kolei powoduje, że pracownik po urlopie wcale nie jest bardziej wypoczęty niż przed. A ten stan jest większą stratą dla firmy niż potencjalny zysk z racji ciągłego kontaktu. Z zacytowanych badań pracodawcy powinni wyciągnąć jasne wnioski. Jak pozwalasz pracownikowi jechać na urlop, odbierz mu służbowy telefon.

– Samotność jest szkodliwa. Badacze z Uniwersytetu Chicago przebadali wpływ jaki ma na fizyczne i psychiczne samopoczucie życie w samotności. Sprawdzili to dla ludzi młodych, tych w wieku średnim oraz takich, którzy przekroczyli 60 rok życia. Czego można się było spodziewać, samotność najgorzej wpływa na najstarszych. Samotni mają wyższe ciśnienie a także zaburzone niektóre parametry krwi. Poza tym – jak wskazują statystyki – są bardziej narażeni m.in. na choroby serca. W USA 25 proc społeczeństwa nie potrafi wskazać osoby sobie bliskiej. Bogate społeczeństwa stają się coraz bardziej samotne. Ta sytuacja zmusza badaczy do badania wpływu takiego trybu życia na ogólną kondycję obywateli.

Pewien polityk mawiał, że coś jest oczywistą oczywistością. Nie wiem jak w polityce, ale w nauce niewiele rzeczy jest oczywistych i lepiej wszystko dokładnie sprawdzić. Czyż oczywiste – na pierwszy rzut oka nie jest to, że to Słońce krąży wokół Ziemi, a nasz glob jest płaski?

Brak komentarzy do Oczywista… oczywistość

Zabawa w określanie wieku

Internetowa zabawa która polega na odgadywaniu wieku osób na fotografiach służy temu, by informatyczny gigant nauczył się czegoś, na czym w przyszłości będzie zarabiał krocie. A jeżeli chodzi o zdjęcia… cóż. Niby są twoje. Niby.

Internetowa zabawa która polega na odgadywaniu wieku sfotografowanych osób służy temu, by informatyczny gigant nauczył się czegoś, na czym w przyszłości będzie zarabiał krocie. A jeżeli chodzi o zdjęcia… cóż. Niby są twoje. Niby.

Po pierwsze nieprawdą jest, że to pierwsza tego typu aplikacja (a takie informacje pojawiły się w wielu miejscach). Odgadywać wiek, płeć i nastrój na podstawie zdjęcia czy sekwencji zdjęć (video) wiele firm próbuje od dawna. Aplikacja Microsoftu jest zabawą tylko dla użytkowników, dla firmy jest cenną nauką.

Po co komu takie programy? Pierwszy, kto nauczy się rozpoznawać emocje innych osób będzie miał w ręku ogromną władzę i ogromne pieniądze. Wiele lat temu, w USA, testowano system, który z tłumu ludzi wyławiał konkretne jednostki. Złapana w kadrze kamery twarz jest przez odpowiedni algorytm analizowana i porównywana ze zdjęciami zamieszczonymi w bazie danych. W ten sposób można z tłumy wyławiać np. przestępców, którzy uciekli z więzienia, podejrzanych, którzy się ukrywają, czy ludzi, których służby bezpieczeństwa z jakiś powodów inwigilują. Już kilka lat temu profesjonalne systemy osiągały zdolność analizowania do miliona twarzy na sekundę! Do komputera głównego systemu można dodatkowo wprowadzić algorytm, który np. pozwoli po sposobie chodzenia wyławiać z tłumu tych, którzy pod płaszczem czy kurtką niosą coś ciężkiego. Albo tych, którzy mają odpowiedni nastrój. Co to znaczy odpowiedni? Zależy od tego kto płaci. Jeżeli służby bezpieczeństwa, wyławiane z tłumu na lotnisku mogą być np. osoby zestresowane. Jeżeli system ma pracować dla kogoś kto sprzedaje dobra luksusowe będzie wyszukiwał raczej ludzi zadowolonych z siebie. Podekscytowani faceci być może będą bardziej skłonni kupować gadżety elektroniczne, a osoby zamyślone czy rozmarzone książki. Psycholodzy, socjolodzy  wiedzą lepiej jak połączyć emocje z zachowaniami konsumenckimi. Mają w tym zresztą dość sporą praktykę. Niektóre produkty kupujemy chętniej gdy muzyka w sklepie jest spokojna, inne, gdy jest rytmiczna. W wielu rozpylane są zapachy, których świadomie nie czujemy. Nie tylko sklepach, ale także biurach, fabrykach czy miejscach publicznych. Dużą praktykę mają w tym Japończycy. Wszystko po to, by projektować nasze zachowania. Na prawdę myślisz, że jesteś panem samego siebie i że świadomie podejmujesz decyzje? Jeżeli tak myślisz, mylisz się bardzo.

W pismach dla facetów reklamuje się inne produkty, niż w gazetach dla młodych matek. To logiczne. Wraz z rozwojem systemów rozpoznających emocje i intencje, targetowanie przekazu reklamowego wejdzie na zupełnie nowy poziom. Pozostaje do rozwiązania jeszcze jedna kwestia. Jak komunikować się z potencjalnym klientem? Można sobie wyobrazić tradycyjne nośniki reklamowe, które będą wyświetlały reklamy w zależności od tego kto na nie patrzy. Możliwe, ale chyba mało skuteczne. Dużo bardziej prawdopodobne jest to, że ktoś zrobi użytek z kamerek zamontowanych w komputerach, tabletach, telefonach komórkowych. Oczywiście za zgodą właścicieli. Zgodzimy się na wszystko, już tyle razy sprzedaliśmy się dla zwykłej wygody, że i na to przymkniemy oko. Już dzisiaj w wyszukiwarkach internetowych działają algorytmy, które podpowiadają treści (nie tylko reklamowe) w zależności od naszej aktywności w internecie. W przyszłości algorytmy wyszukiwania i proponowania zostaną wzbogacone o płeć, wiek i nastrój osoby, która w danym momencie korzysta z urządzenia elektronicznego.

A wracając do aplikacji służącej do „odgadywania” wieku na podstawie zdjęcia. Nie da się jednoznacznie określić wieku czy emocji na podstawie konkretnych, fizycznych cech twarzy. Łatwiej jest z określaniem płci. Po to by tego typu programy dobrze działały, muszą się tego nauczyć. Do nauki potrzebna jest jednak odpowiednia liczba przykładów. Osób, które dobrowolnie prześlą swoje zdjęcie a wynikami pochwalą się w mediach społecznościowych. Wiedza, którą zyska algorytm stojący za aplikacją warta będzie miliardy. Witajcie w klatce – króliczki doświadczalne 🙂

I jeszcze jedno. Co dzieje się ze zdjęciami, które wrzucamy do serwisu? Microsoft twierdzi, że ich nie przetrzymuje („We don’t keep the photo”) ale gdy wklikać się głębiej (w Terms of Use), wśród wielu akapitów można znaleźć stwierdzenia, które temu przeczą.

Microsoft does not claim ownership of any materials you provide to Microsoft (…). However, by posting, uploading, inputting, (…) your Submission, you are granting Microsoft, its affiliated companies, and necessary sublicensees permission to use your Submission in connection with the operation of their Internet businesses.

Co w wolnym tłumaczeniu znaczy:

Microsoft nie rości sobie praw własności jakichkolwiek materiałów (…). Jednak zamieszczając, przesyłając, wprowadzając (…) materiały, użytkownik przekazuje firmie Microsoft oraz jej spółkom zależnym i licencjobiorcom prawo do korzystania z tych materiałów w związku z działalnością tych firm.

Dalej przepisy precyzują, że firma ma prawo bez ograniczeń kopiować, rozpowszechniać, przekazywać, odtwarzać, publicznie wykonywać, powielać, edytować, tłumaczyć przekazane jej materiały. A jako, że firma nie rości sobie praw do materiałów, zrobi to podpisując nazwiskiem właściciela.

Podsumowując. Zabawa która polega na odgadywaniu wieku osób na zdjęciach służy temu, by gigant informatyczny nauczył się skutecznego radzenia sobie z tym, z czym matematyka (algorytmy informatyczne) radzą sobie kiepsko. Dzięki wrzucaniu prywatnych zdjęć dajemy firmie możliwość stworzenia unikalnej bazy z której w przyszłości, przy tworzeniu profesjonalnych narzędzi będzie mogła korzystać. I grubo na tym zarabiać. A jeżeli chodzi o zdjęcia… cóż. Niby są twoje. Niby.

1 komentarz do Zabawa w określanie wieku

Bajkał – zimne morze

Nad Bajkałem byłem w zimie. Śnieg mienił się jak diamenty, termometr wskazywał prawie minus 30 st C, a woda parowała tak, jak gdyby była gorąca.

Nad Bajkałem byłem w zimie. Śnieg mienił się jak diamenty, termometr wskazywał prawie minus 30 st C, a woda parowała tak, jak gdyby była gorąca.

W zasadzie była gorąca. Była o około 40 st. C cieplejsza niż otoczenie. Gorące lata na Syberii nagrzewają ogrom wody w Bajkale. Gdy przyjdzie zima, trzeba miesięcy, by jezioro tę energię oddało. Mimo kilkudziesięciostopniowego mrozu Bajkał zwykle zamarza dopiero na przełomie stycznia i lutego. Ale nawet gdy taflę pokryje czasami wielometrowa warstwa lodu, Bajkał nie przestaje czarować. Powolne zamarzanie wody powoduje, że zdążą z niej „uciec” wszystkie bąbelki powietrza. W efekcie lód staje się idealnie przezroczysty. W przeciwieństwie do lodu, który powstaje, gdy woda zamarza szybko. Ten ostatni jest matowy, jak gdyby mleczny. Wystarczy zobaczyć kostki lodu w zamrażalniku.

P1020173

 

 

 

 

 

 

Z pary odrywającej się od powierzchni wody, tworzą się nisko zawieszone chmury. Wznoszą się coraz wyżej, aż w końcu znikają gdzieś za horyzontem. Parująca woda osiada także na wszystkim co znajduje się w pobliżu brzegu jeziora.

Dziedzictwo przyrody

Nie ma przesady w stwierdzeniu, że Bajkał odkryli Polacy. Odkryli dla nauki. Mowa tutaj o polskich zesłańcach, głównie po powstaniu styczniowym. Oni jako pierwsi przeprowadzili profesjonalne i obiektywne badania samego jeziora i jego otoczenia, flory i fauny, a także pierwsze badania klimatyczne rejonu Bajkału. I tak, dzięki pracom Benedykta Dybowskiego, lekarza i przyrodnika, wiemy dzisiaj, że w jeziorze i jego najbliższym sąsiedztwie żyje 1500 gatunków zwierząt i około 1000 gatunków roślin. Prawie 80 procent z nich to endemity, czyli gatunki niewystępujące nigdzie indziej na świecie.

Tylko tutaj żyje nerpa, czyli słodkowodna foka, i omul – jedyna na świecie słodkowodna ryba z rodziny łososiowatych. Przykłady można długo mnożyć. Inny Polak, Aleksander Czekanowski, geolog i meteorolog, odkrył ogromne pokłady węgla i sporządził pierwsze profesjonalne archiwum danych pogodowych, z kolei Jan Czerski, geolog i paleontolog, jako pierwszy dokładnie opisał pasma górskie, znajdujące się wokół Bajkału. Ostatni z wielkich polskich badaczy, Wiktor Godlewski, jako pierwszy sporządził mapę dna jeziora. Do dzisiaj okazuje się, że zrobione 150 lat temu badania są potwierdzane pomiarami nowoczesnymi.

Bajkał zajmuje powierzchnię 31 500 kilometrów kwadratowych i wywiera ogromny wpływ na klimat dużego obszaru Syberii. Zimą podnosi temperaturę, latem ją obniża. Podnosi wilgotność atmosfery, a to ma ogromny wpływ na ilość opadów. To dzięki temu wokół jeziora występuje bardzo bogate i różnorodne życie. Samych roślin wodnych na brzegach jeziora żyje kilkaset gatunków. O bogactwie przyrody można pisać bez końca. Może wystarczy wspomnieć, że w 1996 roku Bajkał wraz z przyległymi obszarami został wpisany na listę światowego dziedzictwa przyrodniczego UNESCO.

Nieodrobiona lekcja

Ogromne bogactwo przyrody i krystalicznie czysta woda nie są oczywiście dane na zawsze. W 2013 roku zamknięto ogromny kombinat papierniczy, który regularnie wylewał do Bajkału ścieki. Nadal pracuje jednak wiele innych zakładów, także produkujących nawozy sztuczne. Do jeziora, pośrednio przez wpływające do niego rzeki, albo bezpośrednio, swoje ścieki wylewają miasta z dużego obszaru. Kilka lat temu istniało ogromne ryzyko wycieku do wód Bajkału ropy z rurociągu Syberia–Pacyfik. Ostatecznie jego trasę zmieniono, tak by rura przechodziła w pewnym oddaleniu od akwenu.

Zagrożeniem – bardziej dla terenów przybrzeżnych niż samego jeziora – jest turystyka. Bajkał każdego roku odwiedza kilkaset tysięcy ludzi. Widok ludzi myjących samochody w płytkich wodach jeziora, wycinających drzewa, po to, by założyć dziki kamping, czy urządzających sobie rajdy samochodowe po obszarach porośniętych zagrożonymi gatunkami roślin, nie jest niczym szczególnym. W oczy rzucają się także góry pozostawionych przez turystów śmieci. Ostatnio do tych zagrożeń doszło jeszcze jedno. Od wielu lat w Bajkale jest coraz mniej wody. Tegorocznej zimy jej poziom jest tak niski, że władze na Syberii ogłosiły stan wyjątkowy. W ciągu roku poziom wody spadł o 40 centymetrów. Ostatni raz taka okoliczność miała miejsce ponad 60 lat temu. Sytuacja jest dość trudna, ale wszyscy czekają do kwietnia. To wtedy powoli zaczynają topnieć śniegi w otaczających jezioro górach, a we wpływających do Bajkału rzekach przybywa wody. W kwietniu okaże się więc, czy niski poziom był tylko anomalią, czy jest trwałym trendem. Gdyby chodziło o ten drugi przypadek, trudno sobie wyobrazić zmiany – te krótkoterminowe i długoterminowe – jakie mogą czekać Syberię.

Nie do końca wiadomo, co jest powodem ubytku wody. Jak zawsze w takich sytuacjach czynników jest zapewne kilka. Ostatnie lato na Syberii było suche, ale tym nie da się wytłumaczyć aż tak dużego ubytku. Wiadomo też, że brzegi jeziora oddalają się od siebie, co w dłuższej perspektywie czasu musi mieć wpływ na poziom wody. Eksperci wskazują także na rabunkową gospodarkę wodną dużych zakładów przemysłowych i miast. Na rzekach, które doprowadzają wodę do jeziora, funkcjonują elektrownie wodne, a po to, by nieprzerwanie działały, trzeba budować zbiorniki retencyjne. Te mają wpływ na ilość wody w jeziorze. Niski poziom wody w Bajkale przyczynia się nie tylko do rozchwiania równowagi ekologicznej dużego obszaru, ale także może mieć wpływ na dostawy ciepła i prądu do miast, które wybudowane są wzdłuż brzegów rzeki Angara, w tym do sześciusettysięcznego Irkucka. Choć porównanie Bajkału do występującego dzisiaj w szczątkowej formie Jeziora Aralskiego jest mocno przesadzone, może warto by wyciągnąć wnioski z tego, co zdarzyło się na terenach dzisiejszego Kazachstanu i Uzbekistanu. Działalność człowieka w zaledwie kilkadziesiąt lat spowodowała praktycznie zniknięcie olbrzymiego jeziora, a także dewastację, a właściwie zamianę w pustynię ogromnych obszarów lądu.

P1020180
O Bajkale słów kilka

Bajkał może być jednym z najstarszych zbiorników wodnych na naszej planecie. Powstał kilkadziesiąt milionów lat temu w wyniku trzęsienia ziemi. To wtedy pomiędzy płytą amurską i płytą euroazjatycką powstało ogromne zagłębienie (ryft bajkalski), które zaczęło wypełniać się wodą. I nadal się wypełnia. Ten proces nie jest zauważalny gołym okiem, no chyba że… Pod koniec XIX wieku w rejonie Bajkału wystąpiło silne trzęsienie ziemi. W jego wyniku jezioro w jednej chwili powiększyło się. Powstała głęboka na 11 metrów zatoka Prował. Takie sytuacje to jednak rzadkość. Brzegi jeziora oddalają się od siebie, tak jak gdyby ciężar wody je rozsuwał. Płyty amurska i euroazjatycka odsuwają się. Każdego roku jezioro jest szersze o kilka centymetrów. Dzisiaj Bajkał ma objętość 23 400 kilometrów sześciennych (23,4 biliona metrów sześciennych wody). Powierzchnia jeziora stanowi 10 proc. powierzchni całej Polski, a jego długość (636 km) jest zbliżona do odległości pomiędzy Trójmiastem a Bieszczadami w linii prostej. Bajkał jest najgłębszym jeziorem świata, miejscami dno znajduje się około 1700 metrów poniżej tafli wody. Dla porównania, Bałtyk w najgłębszym miejscu ma 459 metrów. W Bajkale znajduje się około 20 proc. słodkiej wody całej planety.

Brak komentarzy do Bajkał – zimne morze

Po co zmieniamy czas?

Zmiana czasu na którą godzimy się dwa razy w roku nie ma żadnego sensu. Miała sens może dwieście lat temu. Dzisiaj powoduje straty, zamieszanie i uszczerbek na zdrowiu.

Podobno na zmianę czasu z zimowego na letni wpadł autor konstytucji USA Benjamin Franklin. Gdy była ambasadorem w Paryżu zauważył, że z powodu niedostosowanej do pory dnia godziny, ludzie śpią choć słońce było wysoko, wieczorem zaś pracują oświetlając pomieszczenia świecami. Franklin był nie tylko politykiem i dyplomatą, ale także naukowcem i wynalazcą. Choć nie do końca wiadomo jak, obliczył, że gdyby przesuwać czas na wiosnę „do przodu” a jesienią „do tyłu” można by w samym tylko Paryżu zaoszczędzić 30 mln kilogramów wosku rocznie. Wosku z którego robiono świecie. Pomysł Franklina był jak najbardziej – na tamte czasy – logiczny. Ludzie używali świec, bo funkcjonowali, pracowali, bawili się czy uczyli po zachodzie słońca. Gdyby więc przesunąć godziny wstawania, a co się z tym wiąże także zasypiania, świece nie byłyby w takich ilościach potrzebne.

Raz jest, a raz go nie ma

Pomysł Franklina nie od razu został podchwycony. Pierwsi którzy go zrealizowali byli Niemcy. To były trudne czasy, I Wojna Światowa, kryzys i braki w energii, która była potrzebna do produkcji broni i amunicji. W 1916 roku po raz pierwszy w Niemczech przesunięto czas. Obywatele ogarniętego wojną kraju mieli wcześniej chodzić spać, po to by nie oświetlać swoich mieszkań po zmroku. Chwile później zmianę czasu wprowadziły inne kraje europejskie. Argumenty o oszczędnościach nie przekonały wszystkich. Mówiono o zamieszaniu w rozkładach jazdy i o tym, że jest całkiem spora grupa zawodów które wykonywać trzeba niezależnie od umownie ustalonej godziny. Tarcia pomiędzy przeciwnikami i zwolennikami zmiany czasu były tak duże, ze w wielu krajach czasowo rezygnowano z regulacji zegarków, po to by po kilku latach do pomysłu wrócić. Tak było także w Polsce. U nas po raz pierwszy przestawiono czas w okresie międzywojennym. Później ze sprawy zrezygnowano. Czas zimowy i czas letni przywrócono pod koniec lat 40tych, a później znowu z niego zrezygnowano (na prawie 10 lat). W 1957 roku zmianę czasu wprowadzono, ale w 1965 roku znowu zarzucono. Na stałe Polska jest krajem „dwuczasowym” od 1976 roku.

Danych o oszczędnościach jakie mają wynikać ze zmiany czasu, praktycznie nie ma. Są niepewne oszacowania, które na dodatek nie są wcale jednoznaczne. Oszczędność energii da się policzyć (choć nie jest to takie proste, bo w zimie i w lecie są przecież inne warunki i nie da się tych dwóch okresów bezkrytycznie przyrównać), ale jak oszacować zamieszanie związane z przestawianiem wskazówek? Pomińmy na razie to ostatnie. A pozostańmy na samych oszczędnościach energii. Jeden z nielicznych raportów na ten temat wydał ponad 30 lat temu Amerykański Departament Energii (ADE). Z jego obliczeń wynika, że zmiana czasu rzeczywiście oznacza mniejszą konsumpcję prądu. O cały 1 proc i to na dodatek tylko przez dwa miesiące, marzec i kwiecień. Później dzień jest tak długi, że dodatkowa godzina nie wpływa na mniejsze zużycie prądu. Wyniki raportu ADE podważały poważne instytucje naukowe. Uważały, ze rachunki były błędne, a o żadnych oszczędnościach nie ma mowy. Argumentowano, że każdego roku rośnie zapotrzebowanie na energię elektryczną, a tego ADE nie wziął pod uwagę w obliczeniach. To był rok 1976. Jeżeli już wtedy wyniki analiz nie były jednoznaczne, co dopiero teraz.

Oszczędności brak

Od czasów Franklina, od czasów I Wojny Światowej, ba nawet od czasów kiedy opublikowano raport Amerykańskiego Departamentu Energii, bardzo dużo się zmieniło. I tutaj dochodzimy do sedna problemu. Zmiany godziny mogą wpłynąć na oszczędność energii, ale tylko tej którą zużywa się na oświetlenie pomieszczeń. I to pomieszczeń prywatnych. Toster, czajnik bezprzewodowy czy bojler, niezależnie od godziny zużywają przecież tyle samo energii. A żelazka, pralki, komputery? Można kręcić wskazówkami do oporu, a ilość zużywanej przez te sprzęty energii i tak nie ulegnie zmianie. To samo dotyczy zresztą oświetlenia ulic (a to pobiera znacznie więcej prądu niż oświetlenie mieszkań prywatnych), które działa od zmierzchu do świtu, niezależnie od tego o której godzinie zaczyna się świt. Dzisiaj oświetlenie pomieszczeń „pożera” mniej niż 1 proc prądu który produkują elektrownie. Co więcej, choć prądu w ogóle zużywamy coraz więcej, na oświetlenie mieszkań i domów potrzebujemy go coraz mniej. Głównie dlatego, że coraz częściej korzystamy z energooszczędnych źródeł światła. A wiec co konsumuje coraz więcej? Podnosimy swój standard życia. Coraz częściej kupujemy klimatyzatory, większe lodówki, elektryczne systemu grzewcze czy sprzęty kuchenne. Nowoczesne telewizory (wielkości okna) konsumują więcej energii niż starsze ich typy. To wszystko zużywa znacznie więcej energii niż oświetlenie, a równocześnie korzystamy z tego niezależnie od wskazywanej przez zegarki godziny. Najwięcej prądu potrzebują fabryki (przemysł), transport czy kopalnie. Przestawianie wskazówek nic tutaj nie zmieni.

Rolnicy liczą straty

Jedną z najdłużej opierających się zmianie czasu grup zawodowych byli rolnicy. Dla nich ważny jest jasny poranek a nie długi wieczór. Zwierzęta nie przestawiają przecież zegarków. W USA, gdzie rząd w Waszyngtonie nie ingeruje zbyt mocno w życie obywateli, w stanach rolniczych (m.in. Arizona i Indiana) wciąż są hrabstwa, które czasu nie przestawiają. Choć powoduje to gigantyczne zamieszanie, wola obywateli jest tam świętością. W 2006 roku kilka hrabstw w Indianie zdecydowało się jednak dostosować. Dla naukowców to była idealna okazja by sprawdzić jak to z tymi oszczędnościami energii elektrycznej jest. Obszar na którym zdecydowano się po raz pierwszy zmienić czas na letni nie był duży, więc badacze z Uniwersytetu Kalifornijskiego mogli sobie pozwolić na prześledzenie rachunków za energię elektryczną każdego domostwa. I co się okazało? Nie było żadnego zysku, tylko gigantyczna strata. W sumie na stosunkowo niewielkim terenie rachunki za prąd wzrosły o prawie 9 mln dolarów. Skonsumowano do 4 proc więcej energii niż przed zmianą czasu. To nielogiczne ! Skąd się wzięły te procenty? Naukowcy zauważyli, że istotnie nieco spadła ilość energii używanej do oświetlenia domów. Równocześnie znacznie zwiększyła się ilość energii zużywanej przez klimatyzatory i ogrzewanie. To ostanie włączano, bo wcześniejszym rankiem niektórym w mieszkaniach było za zimno. Gdy wieczorem trzeba było się wcześniej kłaść spać, okazywało się, że niektóre mieszkania są zbyt nagrzane po ciepłym dniu i do komfortowego snu, trzeba je nieco schłodzić.

Dzisiaj jedynym bezdyskusyjnym zyskiem z przesuwania czasu jest bezpieczeństwo na drogach. Dzięki temu, że po południu, w czasie powrotów z pracy jest wciąż jasno, zdarza się mniej wypadków. Szczególnie tych z udziałem pieszych. Zresztą ten argument (a nie oszczędność prądu) przekonał brytyjskich parlamentarzystów na początku XX wieku do zgody na zmianę czasu. Bezpieczniej na drogach jest jednak nie przez cały okres obowiązywania czasu letniego, ale tylko w pierwszych jego miesiącach.

Policzyć da się wszystko. Ciekawe, że na razie nikt nie zrobił jednak rachunku zysków i strat związanych ze zmianą czasu. I nie chodzi tylko o pobór energii elektrycznej, ale także bezpieczeństwo na drogach, zamieszanie w transporcie lotniczym czy kolejowym oraz niedogodności zdrowotne. Z czasem coraz więcej prądu zużywać będą urządzenia ułatwiające (umilające) nam życie. Z czasem oszczędności na oświetleniu (o ile jakiekolwiek są), będą więc wraz ze zmianą czasu coraz mniejsze. A o tym, ze bez zmiany czasu da się żyć mogą zaświadczyć najliczniejsze narody Azji. W Chinach, Japonii i Indiach nikt przestawianiem zegarka nie zaprząta sobie głowy.

W Unii Europejskiej (dyrektywa UE 2000/84/EC) czas zmienia się z zimowego na letni w ostatnią niedzielę marca, a letniego na zimowy w ostatnią niedzielę października. W marcu tracimy godzinę, a w październiku zyskujemy.

 

Tekst ukazał się w tygodniku Gość Niedzielny

Brak komentarzy do Po co zmieniamy czas?

Jak obserwować Słońce?

Taka sytuacja nie zdarza się zbyt często. 20 marca, w Polsce będzie częściowe zaćmienie Słońca. Tarcza Księżyca w około 70 procentach zakryje tarczę słoneczną. O ile niebo nie będzie bardzo zachmurzone, efekt zaćmienia będzie bardzo widoczny. Ale Słońce warto obserwować także bez zaćmienia. O ile spełnione są podstawowe warunki bezpieczeństwa.

Taka sytuacja nie zdarza się zbyt często. 20 marca, w Polsce będzie częściowe zaćmienie Słońca. Tarcza Księżyca w około 70 procentach zakryje tarczę słoneczną. O ile niebo nie będzie bardzo zachmurzone, efekt zaćmienia będzie bardzo widoczny. Ale Słońce warto obserwować także bez zaćmienia. O ile spełnione są podstawowe warunki bezpieczeństwa.

Maksimum zaćmienia nastąpi około godziny 10.50, ale już godzinę wcześniej tarcza Księżyca zacznie nasuwać się na tarczę Słońca. Słońce w tym czasie będzie się znajdowało niezbyt wysoko nad horyzontem, a więc jeżeli ktoś nastawia się na obserwacje, powinien zawczasu wybrać odsłonięty teren. Najlepiej całe zjawisko obserwować pomiędzy 10:30 a 11:30. Kilka minut przed południem spektakl zakończy się.

Kolejne spektakularne zaćmienie Słońca, w Polsce będzie miało miejsce dopiero w 2026 roku. 
Wcześniej nastąpi kilka mniejszych zaćmień.

Tegoroczne zaćmienie jest wyjątkowe. Choć Księżyc na tle tarczy Słonecznej przechodzi nawet dwa razy w roku, za każdym razem cień rzucany na powierzchnię Ziemi przez Srebrny Glob pada na inne miejsce planety. W efekcie zaćmienie Słońca w jednym miejscu występuje co kilkanaście lat. Zdarza się, że do zaćmienia dochodzi albo w chwili wschodu albo zachodu Słońca, a to utrudnia obserwację. Tak będzie w Polsce przy kolejnym zaćmieniu, które przypada na rok 2026.

Jak obserwować Słońce by coś zobaczyć i równocześnie sobie nie zaszkodzić? Słońce znajduje się 150 mln kilometrów od nas, ale ta duża odległość tylko pozornie zapewnić nam może bezpieczne obserwacje. Słońca nie wolno oglądać bezpośrednio gołym, niezabezpieczonym okiem. Tym bardziej nie wolno bez odpowiednich filtrów używać sprzętu optycznego, np. teleskopów czy lornetek. Skończyć się to może wypaleniem siatkówki i ślepotą. Filtry można kupić w internecie albo w sklepach astronomicznych. Są tanie. Folia Badeera (ND 5, która przepuszcza tylko 0.00001 część promieni słonecznych) kosztuje kilka złotych, okulary do obserwacji z taką folią niewiele więcej. Dzięki folii zjawisko zaćmienia Słońca, albo samo Słońce, to co dzieje się na jego powierzchni, można obserwować zarówno bezpośrednio, jak i przez urządzenia optyczne, o ile filtr z folii umieszczony będzie z przodu lornetki, kamery czy teleskopu a nie od strony okularu (czyli przy oku).

Jeżeli folii Badeera nie udało się kupić, odradzam domowe sposoby w rodzaju płyt CD, dyskietek czy okopconego szkła. Pod żadnym pozorem nie wolno obserwować Słońca przez nawet najciemniejsze okulary przeciwsłoneczne. Używając takich wynalazków nie macie pewności czy ilość promieni słonecznych zostanie wystarczająco mocno zredukowana zanim trafi do oka. Jest jednak jeden sposób domowy, który można wykorzystać. A mianowicie stare, zaczernione zdjęcie RTG.

Osobom, które posiadają teleskopy czy lornetki z mocowaniem, polecam tzw. metodę projekcji, czyli ustawienie ekranu za okularem teleskopu. Zastosowanie tej metody może znacznie podnieść temperaturę używanego sprzętu, więc przed obserwacją polecam sprawdzenie czy używane w nim soczewki nie są wykonane z tworzywa sztucznego.

Jak to w ogóle możliwe, że WIELOKROTNIE mniejszy Księżyc, może przysłonić całą tarczę Słońca? Księżyc jest rzeczywiście około 400 razy mniejszy od Słońca, ale jest też około 400 razy bliżej Ziemi niż Słońce. W podobny sposób ołówek w odległości kilkunastu centymetrów od oka, może przysłonić ogromne drzewo znajdujące się kilkaset metrów od obserwatora.

Wracając do zaćmienia. W mediach pojawiła się informacja o spodziewanych kłopotach europejskich elektrowni słonecznych. Coraz większa część energii elektrycznej, także w Europie, jest produkowana w ogniwach fotowoltaicznych, a zaćmienie Słońca spowoduje nagły spadek ich mocy. Organizacje zajmujące się analizą rynku energii szacują, że ten spadek na całym kontynencie może wynieść ponad 1/3. Moc europejskich elektrownie słonecznych wynosi około 90 GW, ale w wyniku zaćmienia spadnie ona do mniej niż 60 GW. Problemem nie jest spadek mocy, tylko to, że stanie się to w tym samym czasie na obszarze całej Europy. Duże zachmurzenie może niemal całkowicie zakryć Słońce, ale takie warunki nie obejmują dużych obszarów, a wtedy spadek mocy w jednym kraju (czy obszarze kraju) jest automatycznie rekompensowany przez produkcję energii w innym. Europejska sieć energetyczna jest „zautomatyzowana”. Co się jednak stanie, gdy moc ogniw słonecznych spadnie na obszarze całego kontynentu? Zobaczymy. Największe spadki mocy elektrowni dotyczą Niemców i Włochów, czyli państw, które fotowoltaikę mają rozwiniętą lepiej niż inne europejskie kraje.

A gdy zaćmienie się skończy, co można obserwować na powierzchni Słońca? Poruszające się i ewoluujące plamy Słoneczne, które często są dużo większe od naszej planety. Można obserwować tzw. granulację słońca czy protuberancje. Te ostatnie wyglądają jak płomienie wychodzące ze Słońca. Poniżej wklejam kilka linków, dzięki którym na bieżąco można śledzić pogodę słoneczną:

www.spaceweather.com – strona związana z NASA o naszym Słoneczku.

www.raben.com/maps/ – strona z mapami powierzchni Słońca.

http://eclipse.gsfc.nasa.gov/eclipse.html – Strona NASA poświęcona zaćmieniom Słońca i Księżyca.

http://www.sciencekids.co.nz/sciencefacts/space.html – Strona o Układzie Słonecznym dla dzieci.

http://theplanets.org/the-sun/ – Ciekawa strona z podstawowymi informacjami o Układzie Słonecznym.

http://sohowww.nascom.nasa.gov/ – strona domowa słonecznej misji (sondy) SOHO.

http://ulysses.jpl.nasa.gov/ – strona domowa misji Ulysses.

 

Brak komentarzy do Jak obserwować Słońce?

Papier czy plastik ?

Używanie której torby na zakupy ma mniejszy wpływ na środowisko – co byś odpowiedział? Pewnie, że papierowej. Ja bym taki całkiem pewny tego nie był.

Jedno jest pewne. Reklamówki czy ogólnie tworzywa sztuczne mogą być dla środowiska sporym wyzwaniem. Nie rozkładają się, w niektórych warunkach mogą być trujące. Np. wtedy gdy zostają spalone. Polska, na tle krajów europejskich, jest rekordzistą pod względem ilości zużywanych torebek foliowych. Tak jak średnia unijna wynosi niecałe 200 reklamówek na mieszkańca na rok, tak w Polsce zużywamy ich 466. Na drugim – niechlubnym miejscu – są Węgrzy z 425 torebkami na mieszkańca w ciągu roku. Ale np. nasi zachodni sąsiedzi, Niemcy, statystycznie zużywają tylko 71 foliówek. W takich krajach jak Dania czy Finlandia, jednorazówki praktycznie w ogóle nie są znane. Gdyby na sprawę spojrzeć w kontekście całej Unii, okazuje się, że Europejczycy rocznie wyrzucają około 8 miliardów torebek plastikowych. Samo wyrzucanie nie jest jednak problemem, o ile miejscem do którego reklamówki trafiają jest kosz na odpady z tworzyw sztucznych. Kłopot zaczyna się wtedy, gdy torby foliowe trafiają do lasu, pieca albo na wysypisko śmieci.

Polska na czele

Unia Europejska chce by do 2019 roku o 80 proc spadło zużycie torebek foliowych. Do 2017 r. zużycie reklamówek ma spaść o 50 proc. Chodzi o torebki jednorazowe, te z najcieńszego materiału. Łatwo powiedzieć, ale jak zrobić? No po brukselsku – chciałoby się rzec. Po prostu zakazać. Tyle tylko, że to nic nie da, a może nawet sytuację pogorszyć. Mowa bowiem cały czas o torebkach bardzo cienkich. Tych z grubszego tworzywa Unia nie chce zakazywać. Jeżeli w sklepie nie będzie jednorazówek, większość klientów zechce kupić torbę plastikową (teoretycznie) wielokrotnego użytku. Przy kolejnych zakupach torba zapewne zostanie jednak w domu, a przy kasie zostanie kupiona kolejna. Negatywny wpływ reklamówek z grubszego tworzywa na środowisko jest większy. I nawet gdyby za reklamówki wielokrotnego użytku trzeba było płacić… Czy kwota kilku czy kilkunastu groszy jest na tyle wysoka, by nauczyć klientów chodzenia na zakupy z własną torbą? To raczej mało prawdopodobne.

Alternatywą dla plastiku są torby materiałowe albo papierowe. Te pierwsze są bardzo trwałe. Nasze babcie i mamy często same robiły takie torby np. na szydełku, czy szyły je z niepotrzebnych już skrawków materiału. To było racjonalne zarówno ekologicznie jak i ekonomicznie. Tyle tylko, że dzisiaj tego nikt nie robi. Co z papierem? To mit, że torba papierowa jest dla środowiska neutralna. Prawdę mówiąc pod wieloma względami może być bardziej obciążająca niż plastikowa. Produkcja torby papierowej powoduje o 70 proc. większe zanieczyszczenie powietrza (1) oraz o 80 proc. większą emisję gazów cieplarnianych (2) niż produkcja torby plastikowej. Papier w trakcie produkcji o 50 proc. bardziej (3) zanieczyszcza wodę niż plastik. Produkcja torby papierowej pochłania cztery razy więcej energii (4) i trzy razy więcej wody (5) niż produkcja torby plastikowej. Proces recyklingu papieru zwykle kosztuje więcej energii niż produkcja nowej torby (6). Potrzeba ponad 90 proc. więcej energii (7) by przetworzyć kilogram papieru niż kilogram plastiku.

Babcie miały rację

Coś, co jest często wymieniane jako zaleta papierowych toreb czy opakowań, może być równocześnie ich wadą. Papier jest nietrwały. Innymi słowy, wytworzenie papierowej torby kosztuje energię i wodę, oznacza także korzystanie z wielu środków chemicznych. I to wszystko po to, by torba była wykorzystana tylko jeden raz! To prawda, że torby papierowe szybko się rozkładają. Ale ten rozkład w pewnym sensie oznacza marnotrawstwo. Pod tym względem dużo lepiej korzystać z toreb plastikowych. Jest tylko jeden warunek. Gdy taka torba ulegnie  zniszczeniu, powinna zostać przetworzona. W środowisku naturalnym będzie bowiem zalegać przez dziesiątki a nawet setki lat. To nie produkt jest problemem, tylko sposób w jaki z niego korzystamy.

Plastikowe śmieci stanowią około 20 proc. odpadów na wysypiskach śmieci. Torby foliowe około 1 proc. Są lekkie i dlatego są rozwiewane przez wiatr. Drażnią oko w lesie czy na drzewach. Drażnią nos, gdy są spalane. Ale ich użycie i wykorzystanie to nie ślepa uliczka konsumpcjonizmu. Opakowania plastikowe nie mają sobie równych! To dzięki nim produkty żywnościowe zachowują dłużej świeżość. Samochody zrobione z blachy i drewna byłyby drogie i niebezpieczne. W szpitalach bez tworzyw sztucznych nie dałoby się zachować sterylności. Są trwałe i to w pewnym sensie przysparza im wrogów. Bo w świecie w którym żyjemy to nie trwałość się liczy, tylko częsta zamiana. I tu pojawia się problem. Bo za chęcią zmiany nie idzie w parze świadomość segregowania śmieci. I świadomość tego, że tworzywa sztuczne są cennym surowcem wtórnym. Można je wykorzystać jako paliwo lub przerobić na granulat i używać do produkcji worków na śmieci, ubrań a nawet płyt chodnikowych. Wyrzucanie plastików na wysypiska czy do lasu jest nie tylko karygodne z ekologicznego punktu widzenia, ale przede wszystkim ekonomicznego. Tworzywa sztuczne, także te z których wykonane są woreczki foliowe, są magazynem energii i surowców. W końcu tworzy się je z węgla i ropy naftowej.

Podsumowując (8): Zakazywanie produkcji czy wydawania w sklepach plastikowych torebek nie ulży środowisku, a może pogorszyć jego stan. Bo choć cieniutkich torebek będzie mniej, ich miejsce zajmą torby papierowe albo plastikowe zrobione z grubej folii. A negatywny wpływ na środowisko naturalne tych ostatnich jest dużo większy niż foliówek (9). Jakie jest zatem wyjście? Edukacja i segregacja. No i powrót do czasów naszych babć, które na zakupy zawsze chodziły ze swoją siatką.

13 komentarzy do Papier czy plastik ?

Co powiedzieli na Księżycu?

Wreszcie wiadomo, co powiedział pierwszy człowiek, stawiając stopę na Księżycu. Przez cztery dziesięciolecia byliśmy w błędzie, choć złe tłumaczenie na polski wpadkę Armstronga tuszowało. A było tak.

Wreszcie wiadomo, co powiedział pierwszy człowiek, stawiając stopę na Księżycu. Przez cztery dziesięciolecia byliśmy w błędzie, choć złe tłumaczenie na polski wpadkę Armstronga tuszowało. A było tak.

Apollo 11 wystartował 16 lipca 1969 roku. Po 4 dniach, 4 godzinach i 20 minutach lądownik LM z Nailem Armstrongiem i Edwinem Aldrinem odłączył się od modułu dowodzenia, który przez następnych ponad 27 godzin orbitował wokół Srebrnego Globu. 20 lipca „Orzeł wylądował” w okolicach Morza Spokoju. Odpoczynek, posiłek, kontrola wszystkich systemów lądownika oraz ustawienie ich do pozycji startowej – w końcu po 6 godzinach i 40 minutach od wylądowania astronauci wyszli na zewnątrz, a świat usłyszał… I tutaj zaczynają się rozbieżności. Na Ziemi, w kwaterze NASA, wśród trzasków i gwizdów transmisji radiowej usłyszano: that’s one small step for man, one giant leap for mankind. Ale to zdanie nie ma sensu. Oznacza mniej więcej tyle co: to mały krok dla ludzkości, ale ogromny skok dla ludzkości. Czyżby Armstrong czegoś zapomniał? W jego wypowiedzi brakuje jednej litery. Litery „a”. Bo gdyby powiedział: „that’s one small step for a man, one giant leap for mankind”, oznaczałoby: „to mały krok dla człowieka, ale ogromy skok dla ludzkości”.

– Mam nadzieję, że historia wybaczy mi zgubienie jednej sylaby – mówił Armstrong. Równocześnie podkreślał, że wydaje mu się, że pechowe „a” powiedział, stawiając lewą nogę na Księżycu. I miał rację. Wymyślone przez sztab ludzi zdanie (choć Armstrong twierdzi, że sam na nie wpadł) zostało wypowiedziane prawidłowo, tylko usłyszane błędnie. Winę ponosi transmisja radiowa, której jakość w 1969 roku była co najmniej wątpliwa. Zgubioną literkę znalazł Peter Ford, informatyk z Australii i właściciel firmy Control Bionics. Jego praca polega na tworzeniu systemów, które osobom głuchoniemym umożliwiają porozumiewanie się ze światem. Według Forda, pierwsza część sławnego zdania trwała 3,5 sekundy, a to przy ówczesnej technologii komunikacji radiowej przynajmniej o 10 razy za szybko, żeby „a” na Ziemi zostało usłyszane. To że nie było słyszalne, nie oznacza jednak, że nie było „obecne” w ścieżce dźwiękowej. Po dwóch tygodniach poszukiwań, Ford znalazł ślad niesłyszalnego „a”. – Nie mieściło mi się w głowie, że osoba tak opanowana i precyzyjna jak Armstrong mogła nie zapamiętać poprawnie jednego zdania – powiedział pytany o powody rozpoczęcia analizy słów z Księżyca. Jedna litera może czasami bardzo dużo zmienić.

kamera

Choć od lądowania na Księżycu minęło już ponad 45 lat, do dzisiaj misje Apollo mogą być źródłem zaskoczenia. Kilkanaście dni temu dokonano odkrycia niemalże archeologicznego. Takie odkrycia zwykle kojarzą się z wykopaliskami czy przeszukiwaniem ruin, ale na pewno nie z porządkami w szafie. Tym razem było jednak inaczej. Wdowa po astronaucie Neilu Armstrongu, tym samym, który jako pierwszy człowiek stawiał nogę na Księżycu, znalazła w jego szafie kamerę, którą zarejestrowano pierwsze kroki ludzi na Srebrnym Globie. Kamera nie była elektroniczna jak te dzisiaj używane, a obraz rejestrowała na 16mm taśmie filmowej. Urządzenie i wiele innych pamiątek z lotu Apollo 11 kobieta znalazła na dnie szafy w płóciennej torbie. Zanim Armstrong wyszedł z lądownika, trzymaną w ręku kamerą rejestrował moment zbliżania się lądownika „Eagle” (Orzeł) do powierzchni Księżyca. – Ta kamera zarejestrowała jedne z najważniejszych zdjęć XX wieku – powiedział Allan Needell z National Air and Space Museum, instytucji, której wdowa po Armstrongu przekazała cenne znalezisko.

Neil Armstrong zmarł w 2012 r.

10 komentarzy do Co powiedzieli na Księżycu?

Type on the field below and hit Enter/Return to search