Nauka To Lubię

Oficjalna strona Tomasza Rożka

Kategoria: Życie

RNA w 3D

Już 1 mln razy badacze i osoby z całego świata wykorzystały RNAComposer – publicznie dostępny, skuteczny poznański system do modelowania struktury 3D RNA. A to nie jedyny polski sukces w badaniach nad wyznaczaniem struktury RNA.

Już 1 mln razy badacze i osoby z całego świata wykorzystały RNAComposer – publicznie dostępny, skuteczny poznański system do modelowania struktury 3D RNA. A to nie jedyny polski sukces w badaniach nad wyznaczaniem struktury RNA.

RNA to cząsteczki kwasu rybonukleinowego. Bez nich komórka nie mogłaby produkować białek – cząsteczek, które są istotne dla budowy i funkcjonowania komórek. Rodzajów RNA jest sporo i pełnią one w komórce różne funkcje.

I tak np. matrycowe RNA są pośrednikami, dzięki którym z DNA daje się wyciągnąć informacje – przepis na białka. Z rybosomowych RNA zbudowane są rybosomy – komórkowe centra produkcji białek. A transferowe RNA mają przynosić do tych centrów odpowiednie aminokwasy – jednostki budulcowe białek.

Model struktury 3D RNA wirusa Zika wygenerowany przez RNAComposer na podstawie sekwencji. Obecnie struktura ta jest już określona eksperymentalnie i jest zdeponowana w bazie struktur PDB. Źródło: Marta Szachniuk

 

Cząsteczkę RNA tworzy zwykle nić składająca się z połączonych ze sobą reszt nukleotydowych (w skrócie: A, C, G, U). Nawet jeśli rozszyfruje się ich kolejność w łańcuchu RNA, czyli określi sekwencję, nie jest pewne, jak cała cząsteczka układa się w przestrzeni. Bo cząsteczki RNA – w przeciwieństwie do kabla od słuchawek wrzuconych do plecaka – nie zwijają się w przypadkowe supły. Istnieją pewne reguły, które pozwalają przewidzieć, jaki kształt przybierze dana cząsteczka. W rozwikłaniu tego zagadnienia pomocne okazują się komputerowe metody do przewidywania struktur 3D RNA.

Dr hab. Marta Szachniuk wspólnie z zespołem prof. Ryszarda Adamiaka z Instytutu Chemii Bioorganicznej PAN w Poznaniu opracowała darmowy, publicznie dostępny system RNAComposer. Do systemu wprowadza się sekwencję RNA (lub informację o oddziaływaniach między resztami nukleotydowymi, czyli tzw. strukturę drugorzędową), a on w ciągu kilku/kilkunastu sekund oblicza i prezentuje trójwymiarowy model cząsteczki. Program sprawnie radzi sobie zarówno z krótkimi, jak i bardzo długimi łańcuchami cząsteczek RNA o skomplikowanej architekturze. – Wielu naukowców z całego świata używa programu RNAComposer, żeby uzyskiwać pierwsze wyobrażenie tego, jak wyglądać może w 3D cząsteczka, którą badają. Nasz system od 2012 r. wykonał już 1 mln predykcji” – opowiada dr hab. Marta Szachniuk.

To nie jest jedyny system informatyczny do predykcji struktury 3D RNA. Takich automatycznych systemów jest kilka. Poza tym przewidywaniem struktur RNA zajmują się zespoły badawcze wspomagające się badaniami eksperymentalnymi.

Aby porównać skuteczność różnych metod wyznaczania kształtu RNA w przestrzeni 3D, od 2010 roku organizowany jest konkurs RNA-Puzzles. Chodzi w nim o to, by mając zadaną sekwencję RNA, jak najdokładniej wyznaczyć strukturę cząsteczki. Modele przewidziane przez uczestników konkursu porównywane są następnie z wynikami eksperymentów chemicznych i biologicznych prowadzących do określenia struktury. Konkurs organizowany jest obecnie w dwóch kategoriach: serwerów, które automatycznie generują wyniki, oraz w kategorii predykcji ludzkich, gdzie modele powstają w wyniku integracji obliczeń komputerowych i eksperymentów laboratoryjnych. „Jesteśmy najlepsi w kategorii automatycznych systemów do predykcji 3D RNA” – podkreśla dr Szachniuk.

System RNAComposer powstał dzięki temu, że od dekady zespół z ECBiG skrzętnie gromadził ogromną bazę danych dotyczących RNA. W bazie RNA FRABASE zebrano informacje z ogromnej liczby eksperymentów. Takich, z których można było wyciągnąć wnioski o strukturze przestrzennej molekuł RNA. Baza ta jest ciągle aktualizowana i każdy może z niej bezpłatnie skorzystać. „To popularne narzędzie. Wiemy nawet, że na zagranicznych uczelniach korzystają z niej np. studenci w ramach badań i studiów przygotowujących do zawodu bioinformatyka czy biologa” – opowiada dr Szachniuk. Baza ta pomaga m.in. wyszukiwać czy w różnych cząsteczkach powtarzają się jakieś konkretne przestrzenne wzorce.

Polska na światowej mapie badań nad strukturą RNA jest widoczna także dzięki badaniom innych zespołów. Ważną postacią jest tu m.in. prof. Ryszard Kierzek z Instytutu Chemii Bioorganicznej PAN w Poznaniu. Jego prace pozwoliły określić termodynamiczne reguły fałdowania RNA. Nowatorskimi badaniami nad wyznaczaniem struktury RNA zajmuje się również zespół prof. Janusza Bujnickiego z Międzynarodowego Instytutu Biologii Molekularnej i Komórkowej w Warszawie.

PAP – Nauka w Polsce

1 komentarz do RNA w 3D

Nie wyrzucaj baterii!

Każdy powinien wiedzieć, że zużytych baterii czy akumulatorów nie wolno wyrzucać do śmieci komunalnych, tylko trzeba zanosić do specjalnie przygotowanych pojemników. Ale czy wiemy dlaczego należy tak postępować?

Każdy powinien wiedzieć, że zużytych baterii czy akumulatorów nie wolno wyrzucać do śmieci komunalnych, tylko trzeba zanosić do specjalnie przygotowanych pojemników. Ale czy wiemy dlaczego należy tak postępować?

Rocznie zużywamy prawie 300 milionów baterii. 90 proc. z nich to baterie jednorazowe. Zwykle gdy przestają działać, po prostu je wyrzucamy. W ten sposób do środowiska naturalnego trafiają tak trujące związki i pierwiastki jak ołów, kadm, nikiel, rtęć, lit i mangan. To czynniki silnie trujące. Wpływają negatywnie nie tylko na człowieka, ale na całe środowisko.

>>> Więcej naukowych informacji na FB.com/NaukaToLubie

Z wielu szkodliwych substancji czy pierwiastków z których zbudowane są wyrzucane baterie, najgorszy wpływ na zdrowie i życie człowieka mają ołów, kadm i rtęć.

Ołów – jest pierwiastkiem trującym. Związki ołowiu mają negatywny wpływ na praktycznie wszystkie komórki i narządy. Jest szczególnie niebezpieczny dla dzieci i młodzieży.

Kadm – jest jeszcze bardziej toksyczny niż ołów. Niezależnie od tego w jaki sposób dostanie się do organizmu, jest magazynowany w wątrobie, nerkach, trzustce i płucach. Jest źródłem anemii.

Rtęć – związki tego pierwiastka są silnie trujące i mają dewastujący wpływ na ośrodkowy układ nerwowy. Szalony Kapelusznik, to jedna z postaci występującej w Alicji z Krainy Czarów. Kapelusznicy często cierpieli na choroby psychiczne, bo w procesie uzyskiwania filcu były używane związki rtęci.

Jedynym sposobem na zneutralizowanie zagrożenia jest utylizacja zużytych baterii w wyspecjalizowanych zakładach przeróbki odpadów niebezpiecznych. Tam stosowana jest albo metoda mechaniczna, czyli w skrócie mówiąc rozdrabnianie baterii i oddzielanie od siebie poszczególnych ich części, albo metoda termiczna, która polega na wytapianiu szkodliwych metali w temperaturze około 1400 st C. Trzecia jest metoda hydrometalurgiczna, która polega na chemicznym przetworzeniu baterii. Traktując je kwasami lub zasadami, wytapia się metale czy związki, które są szkodliwe.  Proces recyklingu odbywa się w warunkach kontrolowanych, a odpowiednie zabezpieczenia nie pozwalają by niebezpieczne związki trafiły do środowiska naturalnego.

>>> Więcej naukowych informacji na FB.com/NaukaToLubie

Niezależnie od stosowanej metody, takie metale jak kadm, ołów, rtęć, nikiel czy lit, mogą być ponownie użyte.

PS. Zdaję sobie sprawę z tego, że tym wpisem absolutnie nie wyczerpuję tematu recyclingu baterii. Kiedyś napiszę o tym więcej. Po prostu dzisiaj wymieniałem dzieciom baterie w aparacie fotograficznym i zdałem sobie sprawę z tego jak dużo baterii zużywamy. Swoją drogą, coraz częściej myślę, że osoba (firma), która wymyśli sposób na wydajne i „zdrowe” dla środowiska magazynowanie energii elektrycznej, będzie autorem jednego z największych wynalazków wszech czasów.

9 komentarzy do Nie wyrzucaj baterii!

Type on the field below and hit Enter/Return to search