Astronomom udało się zidentyfikować supermasywną czarną dziurę na krańcach obserwowalnego Wszechświata, z okresu 690 milionów lat po Wielkim Wybuchu – informuje NASA. Wyniki badań opublikowano w „Nature”.

Naukowcy szacują masę tej supermasywnej czarnej dziury na 800 milionów mas Słońca. To zaskakującą dużo jak na tak młody obiekt we wczesnej erze Wszechświata.

Gdy Wszechświat powstał w Wielkim Wybuchu, to w początkowej fazie był gorącą mieszaniną cząstek, która gwałtownie się rozszerzała w trakcie tzw. ery inflacji. Około 400 tysięcy lat po Wielkim Wybuchu uległ ochłodzeniu na tyle, że powstał neutralny gaz wodorowy. Ale zanim grawitacja spowodowała grupowanie się materii w pierwsze galaktyki, Wszechświat był ciemny, bez jasnych źródeł światła. Promieniowanie od pierwszych galaktyk powodowało sukcesywnie jonizowanie wodoru (tzw. epoka wtórnej jonizacji). Gdy proces ten objął wystarczająco duży obszar Wszechświata, fotony mogły wreszcie swobodnie podróżować przez przestrzeń kosmiczną – wtedy Wszechświat stał się przezroczysty dla światła. I to mniej więcej z tego okresu pochodzą najdalsze obserwowane kwazary i galaktyki.

Wiele wodoru wokół opisywanego kwazara ULAS J1342+0928 (w jego centrum znajduje się supermasywna czarna dziura) jest w stanie neutralnym. Oznacza to, że obiekt ten nie tylko jest najdalszym kwazarem, ale na dodatek jest przykładem czegoś, co widzimy z okresu zanim Wszechświat stał się w pełni przezroczysty.

W zidentyfikowaniu supermasywnej czarnej dziury pomogły obserwacje wykonane przy pomocy należącego do NASA komicznego obserwatorium Wide-field Infrared Survey Explorer (WISE), w połączeniu z danymi z naziemnych przeglądów nieba. Potem wykonano szczegółowe badania Teleskopami Magellana w Chile.

Supermasywna czarna dziura znajduje się w centrum kwazara (rodzaj aktywnej galaktyki). Dystans do obiektu wyznaczono na podstawie przesunięcia ku czerwieni, czyli pomiaru jak bardzo światło jest rozciągnięte poprzez ekspansję Wszechświata zanim dotrze do Ziemi. Im większe przesunięcie ku czerwieni, tym dalej znajduje się obiekt, a tym samym patrzymy coraz bardziej wstecz w historię Wszechświata. Omawiany kwazar ma przesunięcie ku czerwieni z = 7,54, wyznaczone na podstawie emisji zjonizowanego węgla. Przekłada się to na ponad 13 miliardów lat podróży światła do nas.

Naukowcy przewidują, że na niebie może znajdować się od 20 do 100 kwazarów tak jasnych i odległych, jak wspomniany. Być może więcej takich obiektów uda się odkryć przy pomocy kosmicznego teleskopu Wide-field Infrared Survey Telescope (WFIRST) szykowanego przez Europejską Agencję Kosmiczną (ESA) we współpracy z NASA.

Szczegółowe informacje są dostępne na stronie: https://www.jpl.nasa.gov/news/news.php?release=2017-312 (PAP)

cza/ ekr/

Źródło: www.naukawpolsce.pap.pl