Nauka To Lubię

Oficjalna strona Tomasza Rożka

Tag: kosmos

Nobel z fizyki – abstrakcja goni abstrakcję

W ciągu każdej sekundy, przez nasze ciała przenika kilkadziesiąt bilionów neutrin. Abstrakcyjnie dużo. Masa każdego z nich jest mniejsza niż miliardowa część masy atomu wodoru. Abstrakcyjnie mało. Takie właśnie są neutrina. Abstrakcyjne. Za ich badania przyznano tegorocznego Nobla z fizyki.

Neutrina są najbardziej chyba nieuchwytnymi cząstkami badanymi przez fizyków. Prawie w ogóle nie oddziałują z materią. Po prostu przez nią przenikają. Zupełnie tak, jak gdyby była dla nich przezroczysta. Nie stanowią dla nich żadnej przeszkody ciała niebieskie jak i olbrzymie odległości (które pokonują z prędkością zbliżoną do prędkości światła). Powstają w czasie reakcji jądrowych, nie mają ładunku i posiadają nieskończenie małą masę. Neutrina występują w trzech odmianach. Najlepiej poznane są tzw. neutrina elektronowe, ale oprócz nich istnieją jeszcze neutrina taonowe i mionowe. I to właśnie różne odmiany tej samej cząstki były przez 30 lat powodem zamieszania nazwanego tajemnicą neutrin słonecznych. Ale zanim o tajemnicy.

PH20-water-withboat-apr23-wm-small

Wnętrze ogromnego detektora neutrin Super-Kamiokande. Wydrążony we wnętrzu góry mieści 50 000 ton superczystej wody. Widoczne na zdjęciu bańki to fotopowielacze, które rejestrują subtelne błyski światła. Te powstają wtedy, gdy neutrino zderzy się z jądrem atomowym.

Dlaczego ich badanie jest tak ważne? Na prawdę zasługuje aż na Nagrodę Nobla?  Neutrina są być może najliczniejszą grupą cząstek jakie „zasiedlają” nasz wszechświat. W ciągu każdej sekundy, przez nasze ciała przenika ich kilkadziesiąt miliardów. Abstrakcyjnie dużo. Skoro chcemy poznać wszechświat, skoro mamy ambicje by go zrozumieć, nie poradzimy sobie bez wiedzy o neutrinach. Przez lata uważano, że są to cząstki bezmasowe, czyli, że w ogóle nie mają masy. W rzeczywistości ważą, choć tyle co nic. W przypadku tak małych i ulotnych obiektów trudno mówić o precyzyjnym pomiarze masy, ale szacunkowo masę neutrin określa się na dziesiąte części elektronowolta, a to mnie niż jedna miliardowa część masy atomu wodoru. Abstrakcyjnie mało.

A wracając do tajemnicy neutrin słonecznych. Naukowcy doskonale wiedzą w wyniku jakich reakcji we wnętrzu Słońca powstaje jeden z rodzajów neutrin, czyli neutrina elektronowe. Z dużą precyzją można policzyć ile neutrin elektronowych powinno trafiać na Ziemię i ile powinno być rejestrowanych. Przez lata problem polegał jednak na tym, że te przewidywania teoretyczne nijak się miały do danych eksperymentalnych. Neutrin elektronowych na Ziemi rejestrowano o wiele mniej (aż o ok. 70 proc. mniej) niż powinno ich być. Możliwości były dwie. Albo reakcje, które wg. fizyków powinny zachodzić w jądrze Słońca wcale tam nie zachodzą i dlatego o wiele mniej neutrin elektronowych dociera do Ziemi, albo w czasie swojej podróży pomiędzy gwiazdą a naszą planetą coś z neutrinami się dzieje. Ostatecznie okazało się, że fizycy mieli rację co do procesów zachodzących w Słońcu. One po prostu oscylują – czyli zmieniają swoje właściwości. Zamieniają się pomiędzy sobą postaciami. Jedne neutrina spontanicznie, zmieniają się w inne. W naszym świecie dużych przedmiotów to zdolność mocno abstrakcyjna. Jak można ją sobie wyobrazić? A można sobie wyobrazić spadające z drzewa jabłko, które w czasie lotu ku powierzchni gruntu spontanicznie zamieni się w śliwkę, po to by ostatecznie upaść na trawę jako gruszka? Takie właśnie są neutrina. Abstrakcyjne.  Zamiast badać jeden rodzaj neutrin docierających do Ziemi,  zaczęto przyglądać się im wszystkim na raz. Tym razem, wszystko się zgadzało. To było ostateczne potwierdzenie tzw. oscylacji neutrin.

Zapraszam na profil FB.com/NaukaToLubie (kliknij TUTAJ). To miejsce w którym staram się na bieżąco informować o nowościach i ciekawostkach ze świata nauki i technologii.

 

 

 

Tomasz Rożek

3 komentarze do Nobel z fizyki – abstrakcja goni abstrakcję

A co gdyby Mars zzieleniał?

Wiadomo, Ziemia jest niebieska a Mars czerwony. Tak przynajmniej te planety wyglądają z kosmosu. Ale czy tak było zawsze? Mars mógł być kiedyś zielony. W końcu wiemy ponad wszelką wątpliwość, że była tam i wciąż jest płynna woda. Jak wyglądałbym Mars, gdyby były na nim rzeki, jeziora, morza i oceany?

Kilkanaście dni temu świat obiegła wiadomość, że na Marsie znaleziono ciekłą wodę. O tym, że na Czerwonej Planecie jest woda – wiedzieliśmy od dawna. Widzieliśmy ją zamarzniętą na biegunach planety. Podejrzewaliśmy, że jest także pod powierzchnią w formie wiecznej zmarzliny. Co więcej, podejrzewaliśmy, że czasami ta woda wypływa małymi strumyczkami z oświetlonych promieniami Słońca zboczy gór i kraterów. Podejrzenia jednak to nie to samo co fakty i niezbite dowody. Dzisiaj wiemy jednak, że – przynajmniej tym razem – podejrzenia były słuszne. Tam rzeczywiście nie tylko była, ale wciąż jest całkiem sporo wody.

Mars jest czerwony, bo pokrywający planetę pył jest bogaty w rdzawego koloru tlenki żelaza. Jeżeli planeta boga wojny kiedykolwiek była zielona to nie z powodu odbijających zielone światło minerałów, tylko z powodu życia. O ile było ono takie samo jak to ziemskie. Życie potrzebuje płynnej wody. Z tym akurat – jak się okazuje – w przypadku Marsa nie ma problemu i najpewniej nigdy nie było. Skąd przypuszczenie, że wody na Marsie kiedyś było znacznie, znacznie więcej niż tej, która znajduje się tam dzisiaj? Wystarczy sprawnym (naukowym) okiem rzucić na powierzchnię Czerwonej Planety. Pełno tam struktur do złudzenia przypominających wyschnięte koryta rzek, wąwozy, strumyki a nawet wodospady. Sam amerykański łazik Curiosity, wylądował w dawnym korycie rzeki, w którym głębokość wody sięgała dwóch metrów. Są też ogromne przestrzenie położone znacznie poniżej średniego poziomu gruntu planety. Te do złudzenia przypominają wyschnięte morza i oceany. Te mniejsze zagłębienia to wypisz wymaluj puste jeziora. A teraz zamknijmy oczy i pofantazjujmy. Jak wyglądałby Mars, gdyby, tak jak na Ziemi, płynnej wody było na nim pod dostatkiem?

mars-kevin-gill-01Wygląda jak Ziemia

Na pewno nie byłby czerwony. Może byłby niebieski, może zielony. Spróbujmy wyobrazić sobie Marsa sprzed miliardów lat. Kevin Gill, amerykański informatyk i entuzjasta astronomii wykorzystując zaawansowaną technologię cyfrową, trójwymiarowe zdjęcia Marsa oraz dokładne pomiary jego topografii stworzył obrazy planety z czasów, gdy – tak jak Ziemia – był ona planetą pełną płynnej wody. Gill poszedł w swoim fantazjowaniu o krok dalej. W swoim komputerowym modelu założył, że na Marsie – gdy była na nim woda – rosła bujna roślinność. I znowu z pomocą przyszła mu technologia cyfrowa. Posiłkując się danymi z Ziemi, marsjańskie drzewa i rośliny „posadził” tam, gdzie dostęp do wody i światła był najłatwiejszy. Autor symulacji wziął nawet pod uwagę wysokość nad poziomem marsjańskiego morza (w wysokich partiach gór roślin nie ma) oraz fakt, że najwyższa średnioroczna temperatura panuje na równiku, a najniższa na biegunach. Także od tego zależy wegetacja. Jeżeli jest woda, jeżeli jest atmosfera, muszą być także chmury. I one zostały naniesione na obraz Marsa z przeszłości. Jak więc wyglądał Mars kiedyś? Jak mógł wyglądać? Prawdę mówiąc prawie tak samo jak Ziemia. Trzeba się mocno przyglądać wirtualnemu obrazowi Marsa by zorientować się, że nie patrzy się na zrobione z orbity zdjęcie Ziemi. Wyżyny i niziny na Marsie występują w podobnych proporcjach co na Ziemi. Na stworzonych w komputerze obrazach widać wyraźnie najdłuższą dolinę w układzie słonecznym – Vallis Marineris – oraz szczyty ogromnych wulkanów Olympus Mons, Pavonis Mons, Ascraeusa Mons i Arsia Mons.

mars-water-2A może go dostosować?

Praca Gill’a nie może być uznana za w pełni naukową. Ale nie ma wątpliwości, że bardzo porusza wyobraźnię. Mars rzeczywiście mógł kiedyś wyglądać tak, jak „zaprojektował” go Kevin Gill. Jego praca w pewnym sensie pokazuje jednak nie tylko przeszłość (przy spełnieniu kilku warunków), ale może pokazywać także przyszłość. Być może w przyszłości ludzie skolonizują Czerwoną Planetę. Jej zaludnienie będzie niemożliwe jeżeli wcześniej planetę odpowiednio dostosujemy. Oczywiście można sobie wyobrazić budowę systemu szklarni w których ludzie, zwierzęta i rośliny będą żyły w równowadze podobnej do tej jaka panuje na Ziemi, ale jednak łatwiej chyba będzie taką równowagę stworzyć nie pod szklanym sufitem, tylko na powierzchni całej planety. Sprawa nie jest prosta i jest całkowicie poza zasięgiem naszych dzisiejszych możliwości, ale może warto zastanowić się nad czymś co niektórzy nazywają terraformowaniem obcych globów. Chodzi o takie ich „przerobienie” czy dostosowanie, by człowiek mógł na nich funkcjonować bez urządzeń technicznych takich jak sztuczna atmosfera w zamkniętej przestrzeni, kombinezony i maski. Jak Marsa przekształcić w Ziemię? Przede wszystkim trzeba na nim stworzyć atmosferę. To – przynajmniej teoretycznie – mogłyby zrobić żyjące na powierzchni gruntu bakterie. Trzeba je więc tam wysłać. Gdyby po setkach tysięcy lat atmosfera rzeczywiście na Marsie powstała, trzeba byłoby ją ogrzać. Wprowadzić do niej gazy cieplarniane tak, by energia słoneczna była na Czerwonej Planecie zatrzymywana. To spowodowałoby wzrost temperatury i „wypłynięcie” spod gruntu lub spłynięcie z biegunów ciekłej wody. Teraz pozostaje obsadzenie planety roślinami i gotowe. Proste prawda? 😉

PS. Woda, która dzisiaj płynie na Marsie jest słona. Prawdę mówiąc, znaleziono ją właśnie po śladach soli. Czy byłaby ona zdatna do picia? Gdyby ją oczyścić, jak najbardziej. Gdyby tego nie zrobić, gdyby spróbować wypić ją taką jaka wypływa ze zboczy, skończyłoby się… jeszcze większym pragnieniem. Spróbuj wypić szklankę mocno posolonej wody.

Zapraszam na profil FB.com/NaukaToLubie (kliknij TUTAJ). To miejsce w którym staram się na bieżąco informować o nowościach i ciekawostkach ze świata nauki i technologii.

 

 

1 komentarz do A co gdyby Mars zzieleniał?

Jak fotografować Krwawy Księżyc?

Tegoroczne całkowite zaćmienie Księżyca (28.09 nad ranem) jest niezwykłe, bo połączone z zbliżeniem Srebrnego Globu do Ziemi. Kolejna szansa na sfotografowanie go dopiero za kilkanaście lat. Jak zrobić zdjęcie Krwawemu Księżycowi?

Tegoroczne całkowite zaćmienie Księżyca (28.09 nad ranem) jest niezwykłe, bo połączone z zbliżeniem Srebrnego Globu do Ziemi. Kolejna szansa na sfotografowanie go dopiero za kilkanaście lat. Jak zrobić zdjęcie Krwawemu Księżycowi?

Na początku zdanie wyjaśnienia. Fotografowania Księżyca nie jest trudne. Szczególnie Księżyc w pełni jest obiektem tak dużym i jasnym, że nie będzie problemu ani z jego znalezieniem na nocnym niebie, ani z ustawieniem na nim ostrości. Z tym poradzi sobie każdy aparat. W zasadzie jedynym sprzętem o jaki warto się zatroszczyć, jest statyw. Zachęcam do ustawienia aparatu w tryb manualny. W trybie automatycznym wszystkie zdjęcia będą bardzo do siebie podobne. Na „manualu” możesz poeksperymentować. Zanim przeczytasz dalej, rzuć okiem na mój poprzedni wpis, może Ci się przydać.   KLIKNIJ TUTAJ

No to do rzeczy:

Ostrość. Jeżeli mamy aparat w trybie manualnym, ostrość trzeba ustawić na nieskończoność. W trybie manualnym powinna się ustawić automatycznie (autofocus).

Czułość. Jeżeli aparat umożliwia ustawianie czułości (ISO), tym parametrem można się nieco pobawić, uzyskując czasami bardzo ciekawe efekty. Czym niższa czułość tym wyraźniejsze będzie zdjęcie (niższy poziom szumów). Niestety czym niższa czułość, tym dłuższy musi być czas naświetlania, a to może być problemem np. gdy nie mamy statywu albo gdy w kadrze są szybko poruszające się obiekty. Ich rozmazanie może być dodatkowy atutem zdjęcia. No ale to już kwestia gustu fotografa. Jeżeli chcemy by czas otwarcia migawki był jak najkrótszy, trzeba ustawić wysoką czułość. W takim wypadku na zdjęciu pojawiają się szumy („ziarno”). Może ono dodać artyzmu, ale znowu, to kwestia gustu. Dobra rada: zjawisko zaćmienia Księżyca trwa na tyle długo, że bez problemu można zrobić więcej niż jedno zdjęcie. Poeksperymentuj, ustawiaj różne wartości czułości.

Czas naświetlania. Bardzo trudno zrobić zdjęcie „z ręki” gdy czas otwarcia migawki wynosi mniej niż 1/30 s. Tym bardziej że mówimy o fotografowaniu bardzo odległego obiektu. Stąd jeszcze raz sugestia, by zaopatrzyć się w statyw, nawet gdyby miał być najprostszy. Jeżeli nie masz, obserwuj zaćmienie z miejsca w którym możesz oprzeć aparat o drzewo, krzesło czy chociażby słup od ogrodzenia.

Podobnie jak w przypadku ustawiania czułości, warto poeksperymentować ustawiając różne wartości czasów otwarcia migawki. Zdziwisz się jak różne mogą być zdjęcia tego samego obiektu. Czym krótszy czas migawki, tym bardziej otwarta musi być przysłona aparatu, gdy czas jest długi, przysłona musi być „domknięta”. I tylko z pozoru nie robi to różnicy. Gdy Księżyc będzie nisko nad horyzontem, gdy w kadrze będzie nie tylko jego tarcza ale także np. drzewa albo budynki, domknięta przysłona (wartości od 11 w górę) umożliwi zrobienie zdjęcia na którym ostre będą wszystkie obiekty. Otwarta przysłona (o wartości do 4,5) spowoduje że ostre będą tylko te obiekty na które ustawiona zostanie ostrość. Reszta będzie rozmazana. Jeżeli nie czujesz się na siłach operować przysłoną, ustaw jej automatykę i operuj czasem migawki. Zdziwisz się jak różne zdjęcia uzyskasz.

Ogniskowa. Wszystko zależy od kompozycji zdjęcia, a wiec od tego co chcesz na nim mieć. Jeżeli tylko tarczę Księżyca, ustaw jak najdłuższą ogniskową (jak najbardziej przyzoomuj). Unikaj zoomu cyfrowego, zdjęcie zawsze możesz skadrować na komputerze.

Napisałem to już tutaj kilka razy, ale napisze jeszcze raz. EKSPERYMENTUJ. Masz sporo czasu, zjawisko całkowitego zaćmienia Księżyca trwa kilka godzin. Nie ma sensu robienie kilkunastu czy kilkudziesięciu zdjęć przy takich samych parametrach. Baw się ustawieniami czasu, baw przysłoną i czułością. Jeżeli masz zmienne obiektywy, korzystaj z tego. Ponadto:

– Robiąc zdjęcie korzystaj z samowyzwalacza albo ze zdalnie uruchamianej migawki. W ten sposób nie poruszysz aparatu w czasie robienia zdjęcia.

– Spróbuj zrobić kilka zdjęć przy tych samych parametrach po to by potem nałożyć je na siebie. Zobaczysz, że uzyskasz ciekawy efekt.

– Spróbuj zrobić kilka tak samo skadrowanych zdjęć na różnych etapach zaćmienia. Nakładając je na siebie udokumentujesz na jednym zdjęciu przebieg całego zjawiska.
A jak już zrobisz dobre zdjęcie, pochwal się nim na FB.com/NaukaToLubie

Powodzenia !!!

 

2 komentarze do Jak fotografować Krwawy Księżyc?

Kiedy, gdzie i jak obserwować Krwawy Księżyc?

Gdzie zwrócić wzrok, o której godzinie rozpocznie się najciekawsze i czy trzeba do obserwacji krwawego Księżyca mieć z sobą jakikolwiek sprzęt?

Kiedy?

W najbliższy poniedziałek, od godziny 2 w nocy. Choć najciekawsze będzie się działo dopiero dwie godziny później. Kilka minut po godzinie 3 nad ranem tarcza Księżyca w całości będzie znajdowała się w tzw. strefie półcienia”. Ale na prawdę widowiskowo zacznie być dopiero o 4:11. Wtedy cały Księżyc będzie w cieniu Ziemi. Nie zniknie jednak tylko będzie się stawał coraz bardziej czerwony (z domieszką brązu). Do 4:47 tarcza Księżyca będzie stawała się coraz ciemniejsza, a od tego momentu z każdą chwilą będzie się rozjaśniała. O 5:23 nastąpi koniec fazy całkowitego zaćmienia. Strefę pełnego cienia, Księżyc opuści o 6:27.  W skrócie mówiąc to co najciekawsze wydarzy się pomiędzy 4:11 a 5:23 i potrwa 72 minuty.

Gdzie?

lunar_201509Krwawy Księżyc będzie w Polsce widoczny wszędzie. Zresztą nie tylko w Polsce, ale także w całej Ameryce Południowej, w prawie całej Ameryce Północnej i Afryce. Księżyc, a szczególnie Księżyc w pełni to bardzo duży i jasny obiekt, stąd będzie widoczny także w miejscach „zanieczyszczonych” sztucznym światłem, a więc np. w centrach miast. Oczywiście obserwacje będą lepsze, gdy będą prowadzone z dala od sztucznych świateł.

Całkowite zaćmienie Księżyca nastąpi w chwili gdy Srebrny Glob będzie nisko nad horyzontem. Oznacza to, że niczego nie zobaczymy np. górskich dolinach, albo w mieście, w otoczeniu wysokich budynków. Do obserwacji trzeba więc wybrać miejsce, w którym nie będzie przeszkód patrząc w kierunku zachodnim i południowo-zachodnim i zachodnim. Optymalnie, gdyby takie miejsce było na wzniesieniu.

To, że Księżyc będzie nisko nad horyzontem spowoduje, że obserwacje będą ciekawsze. Oczywiście pod warunkiem, że niebo nie będzie przysłonięte chmurami.

Jak?

Księżyc jest tak dużym i jasnym obiektem, że bez problemu można do obserwować gołym okiem. Zwykłą lornetka, nie mówiąc o nawet najprostszym teleskopie będzie można zjawisko „zacieniania” Księżyca zobaczyć bardzo dokładnie. Tak samo jak będzie można z dużymi detalami oglądać obiekty na powierzchni Księżyca.

Dobrym pomysłem jest fotografowanie i filmowanie zjawiska. Podobnie jak z obserwacją, nie potrzeba do tego żadnego specjalistycznego sprzętu. Wystarczy zwykły aparat fotograficzny (nawet kompaktowy automat). Jedyne o co warto się zatroszczyć to statyw. Z reki obraz będzie nieatrakcyjny.

Zainteresowanym obserwacją i fotografowaniem Krwawego Księżyca polecam mój kolejny wpis. KLIKNIJ TUTAJ !!!

5 komentarzy do Kiedy, gdzie i jak obserwować Krwawy Księżyc?

Pluton jak Biedronka

Wczorajszy przelot sondy New Horizons w pobliżu Plutona natchnął mnie do pewnych przemyśleń. Po co badać coś tak odległego jak Pluton? Po co badać delfiny, motyle czy orangutany? Po co zajmować się gwiazdami, płytami tektonicznymi i DNA?

Wczorajszy przelot w pobliżu Plutona i związanych z nim sporo pytań natchnął mnie do pewnych przemyśleń. Niemal za każdym razem, gdy w nauce dochodzi do jakiegoś odkrycia, do wysłania sondy, do zbudowania nowego rodzaju mikroskopu czy znalezienia nowej cząstki elementarnej, pada pytanie, po co to wszystko? Po co wydawać miliony dolarów by dowiedzieć się co słychać np. na globie, który oddalony jest od nas o miliardy kilometrów. Dajmy na to na takim Plutonie. Wczoraj udało się sfotografować jego powierzchnię z odległości nieco ponad 12 tysięcy kilometrów. To 30 razy mniej niż odległość pomiędzy Ziemią i naszym Księżycem. Sonda która tego dokonała to New Horizons. Leciała w kierunku Plutona prawie 10 lat przebywając w tym czasie 5 miliardów kilometrów. No i po co to wszystko? Po co lecieć tak daleko, po co wydawać niemałe przecież pieniądze, po co zaangażowanie ogromnej grupy ludzi przez długi okres czasu?

Zacznijmy od pieniędzy. Całkowity koszt misji New Horizons, wszystkich urządzeń sondy, jej wystrzelenia, ale także analizy danych a nawet obsługi medialnej wydarzenia to około 700 milionów dolarów, czyli nieco ponad 2 miliardy i 600 milionów złotych. To dziesięć razy mniej (!!!) niż wynosi roczny przychód supermarketów Biedronka w Polsce. To mniej niż budowa 20 kilometrowego odcinka autostrady A1. W końcu to mniej niż zakup i 13 letnia obsługa 4 samolotów F16, które służą w polskiej armii (w sumie kupiliśmy ich 48). Tyle jeżeli chodzi o koszty. Tak, te są duże… dla przeciętnego obywatela. Niewielu byłoby stać na wybudowanie i wysłanie w kosmos sondy New Horizons (choć np. Jan Kulczyk, najbogatszy Polak, mógłby takich sond wysłać 7), ale w skali państwa, dla budżetu państwa rozwój nauki to grosze. Grosze zainwestowane najlepiej jak można sobie wyobrazić. Grosze, które w przyszłości przyniosą miliony poprzez rozwój technologii a w dalszej perspektywie rozwój przemysłu. Każda ekspansja to wyzwanie i konieczność znajdowania rozwiązań na problemy z których nie zdawaliśmy sobie sprawy. Przecież loty w kosmos mają bezpośrednie przełożenie na komunikację, elektronikę i materiałoznawstwo. Rozwój technik obrazowania (nieważne czy w astronomii czy w biologii) od razu jest wykorzystywany w medycynie. Nasze miasta byłyby skażonymi pustyniami gdyby nie powstawały zaawansowane technologicznie silniki i komputery, które tymi silnikami sterują.

A wracając do Plutona, delfinów, motyli i orangutanów. Po co je badać? Bo one są częścią nas, a my częścią świata którego różnorodność – przynajmniej mnie – powala na kolana. Wszystkie lekkie atomy, które nas budują powstały w czasie Wielkiego Wybuchu. Wszystkie ciężkie w czasie wybuchu gwiazdy. Warto rozwijać zarówno kosmologię, astrofizykę jak i fizykę cząstek. Nasze DNA to uniwersalny język całej przyrody, a gatunki (zarówno zwierzęce jak i roślinne), które zamieszkują Ziemię (a pewnie także inne globy) powstawały jedne z drugich. To dlatego nie można zaniedbywać biologii (w tym egzobiologii) i medycyny. Oddychamy powietrzem w którego skład wchodzą różne gazy. To dlatego warto rozwijać chemię i interesować się tym jak zmieniały się atmosfery na innych planetach. Ta wiedza może być bezcenna gdy zacznie zmieniać się nasza atmosfera. Bo to że wszystko jest wokoło nas zmienne – to oczywiste. Kontynenty są w ruchu (nie tylko zresztą na Ziemi) i dzięki temu mogło powstać życie. Ale to nie powstałoby, gdyby Ziemia nie miała swojego pola magnetycznego. A tego by nie było gdyby jądro planety nie było gorące i półpłynne. Ale nawet gdyby było, Ziemia byłaby martwa, gdyby nie było Księżyca, który stabilizuje ruch Niebieskiej Planety wokół Słońca. A Księżyc powstał w kosmicznej katastrofie w której w Ziemię uderzyła planetoida wielkości Marsa. Geologia, geografia, fizyka, astronomia, biofizyka i biochemia… Mam dalej wymieniać? Czy jest sens wymieniać? Czy jest sens pytać, po co badamy coś tak odległego jak Pluton? Po co badamy delfiny, motyle czy orangutany, a nawet biedronki (chodzi o owada, nie o sieć sklepów)? Moim zdaniem szkoda na to czasu. Lepiej go wykorzystać na zaspokajanie swojej ciekawości. Bo to ciekawość idzie przed odkryciami. Tak było zawsze i tak będzie zawsze.

3 komentarze do Pluton jak Biedronka

Co powiedzieli na Księżycu?

Wreszcie wiadomo, co powiedział pierwszy człowiek, stawiając stopę na Księżycu. Przez cztery dziesięciolecia byliśmy w błędzie, choć złe tłumaczenie na polski wpadkę Armstronga tuszowało. A było tak.

Wreszcie wiadomo, co powiedział pierwszy człowiek, stawiając stopę na Księżycu. Przez cztery dziesięciolecia byliśmy w błędzie, choć złe tłumaczenie na polski wpadkę Armstronga tuszowało. A było tak.

Apollo 11 wystartował 16 lipca 1969 roku. Po 4 dniach, 4 godzinach i 20 minutach lądownik LM z Nailem Armstrongiem i Edwinem Aldrinem odłączył się od modułu dowodzenia, który przez następnych ponad 27 godzin orbitował wokół Srebrnego Globu. 20 lipca „Orzeł wylądował” w okolicach Morza Spokoju. Odpoczynek, posiłek, kontrola wszystkich systemów lądownika oraz ustawienie ich do pozycji startowej – w końcu po 6 godzinach i 40 minutach od wylądowania astronauci wyszli na zewnątrz, a świat usłyszał… I tutaj zaczynają się rozbieżności. Na Ziemi, w kwaterze NASA, wśród trzasków i gwizdów transmisji radiowej usłyszano: that’s one small step for man, one giant leap for mankind. Ale to zdanie nie ma sensu. Oznacza mniej więcej tyle co: to mały krok dla ludzkości, ale ogromny skok dla ludzkości. Czyżby Armstrong czegoś zapomniał? W jego wypowiedzi brakuje jednej litery. Litery „a”. Bo gdyby powiedział: „that’s one small step for a man, one giant leap for mankind”, oznaczałoby: „to mały krok dla człowieka, ale ogromy skok dla ludzkości”.

– Mam nadzieję, że historia wybaczy mi zgubienie jednej sylaby – mówił Armstrong. Równocześnie podkreślał, że wydaje mu się, że pechowe „a” powiedział, stawiając lewą nogę na Księżycu. I miał rację. Wymyślone przez sztab ludzi zdanie (choć Armstrong twierdzi, że sam na nie wpadł) zostało wypowiedziane prawidłowo, tylko usłyszane błędnie. Winę ponosi transmisja radiowa, której jakość w 1969 roku była co najmniej wątpliwa. Zgubioną literkę znalazł Peter Ford, informatyk z Australii i właściciel firmy Control Bionics. Jego praca polega na tworzeniu systemów, które osobom głuchoniemym umożliwiają porozumiewanie się ze światem. Według Forda, pierwsza część sławnego zdania trwała 3,5 sekundy, a to przy ówczesnej technologii komunikacji radiowej przynajmniej o 10 razy za szybko, żeby „a” na Ziemi zostało usłyszane. To że nie było słyszalne, nie oznacza jednak, że nie było „obecne” w ścieżce dźwiękowej. Po dwóch tygodniach poszukiwań, Ford znalazł ślad niesłyszalnego „a”. – Nie mieściło mi się w głowie, że osoba tak opanowana i precyzyjna jak Armstrong mogła nie zapamiętać poprawnie jednego zdania – powiedział pytany o powody rozpoczęcia analizy słów z Księżyca. Jedna litera może czasami bardzo dużo zmienić.

kamera

Choć od lądowania na Księżycu minęło już ponad 45 lat, do dzisiaj misje Apollo mogą być źródłem zaskoczenia. Kilkanaście dni temu dokonano odkrycia niemalże archeologicznego. Takie odkrycia zwykle kojarzą się z wykopaliskami czy przeszukiwaniem ruin, ale na pewno nie z porządkami w szafie. Tym razem było jednak inaczej. Wdowa po astronaucie Neilu Armstrongu, tym samym, który jako pierwszy człowiek stawiał nogę na Księżycu, znalazła w jego szafie kamerę, którą zarejestrowano pierwsze kroki ludzi na Srebrnym Globie. Kamera nie była elektroniczna jak te dzisiaj używane, a obraz rejestrowała na 16mm taśmie filmowej. Urządzenie i wiele innych pamiątek z lotu Apollo 11 kobieta znalazła na dnie szafy w płóciennej torbie. Zanim Armstrong wyszedł z lądownika, trzymaną w ręku kamerą rejestrował moment zbliżania się lądownika „Eagle” (Orzeł) do powierzchni Księżyca. – Ta kamera zarejestrowała jedne z najważniejszych zdjęć XX wieku – powiedział Allan Needell z National Air and Space Museum, instytucji, której wdowa po Armstrongu przekazała cenne znalezisko.

Neil Armstrong zmarł w 2012 r.

10 komentarzy do Co powiedzieli na Księżycu?

Żyć albo nie żyć

Na Marsie znajdowane są kolejne dowody na to, że nie tylko było tam sporo wody, ale występowało także życie. Niewykluczone, że wciąż tam się znajduje.

Na Marsie znajdowane są kolejne dowody na to, że nie tylko było tam sporo wody, ale występowało także życie. Niewykluczone, że wciąż tam się znajduje.

Badania kosmosu bardzo rzadko dają jednoznaczną odpowiedź na postawione pytanie. To raczej sztuka zbierania skrawków informacji, z których żadna nie jest rozstrzygająca, ale wszystkie razem dają obraz sytuacji.

Woda była czy nie?

Tak jest niemal ze wszystkim. Ale zatrzymajmy się na Marsie. Czy jest woda na Marsie? Tak, jest. Wiemy to dzisiaj, ale musiały minąć długie lata, by móc tak jednoznacznie na to pytanie odpowiedzieć. Bo czy dowodem jest to, że z orbity widać struktury, które wyglądają jak wyschnięte koryta rzek? Czy dowodem jest to, że gdzieniegdzie – na zdjęciach z orbity – widać pojawiające się jak gdyby strużki wody? Szczególnie na nasłonecznionych zboczach gór. Czy dowodem na istnienie zamarzniętej wody są czapy czegoś białego na marsjańskich biegunach albo po prostu teoria, która mówi, że woda na Marsie być powinna? Żaden z wyżej wymienionych faktów sam w sobie o niczym nie świadczy. Ale wszystkie one razem powodują, że dzisiaj fakt istnienia wody na Czerwonej Planecie nie jest podawany w wątpliwość. Do tego dochodzi jeszcze jeden eksperyment, a mianowicie wykrycie pary wodnej w bardzo rzadkiej marsjańskiej atmosferze. A co z życiem?

Tym dawnym i tym obecnym? Sytuacja wygląda bardzo podobnie. To, że w znalezionym na Ziemi meteorycie pochodzącym z Marsa są ślady funkcjonowania żywych organizmów, o niczym nie musi świadczyć. Bakterie mogły do niego wejść, gdy skała była już na Ziemi. Istnienie wody i warunków (temperatura, promieniowanie, ciśnienie), które umożliwiały istnienie życia, także nie jest żadnym dowodem. Podobnie jak to, że na Marsie znajdowane są skały niemal identyczne jak skały osadowe pochodzenia biologicznego na Ziemi. Na to nakłada się teoria, która mówi, że w części, a być może nawet w całości życie czy elementy składowe życia na Ziemię przyniosły komety. Ale czy z tego faktu wynika, że na Marsie było życie? Może rzeczywiście komety tam uderzały, ale nie da się sprawdzić, czy najprostsze komórki tam się rozwinęły. I podobnie jak z wodą: żaden z tych argumentów sam z siebie o niczym nie świadczy, ale wszystkie równocześnie… Badania kosmiczne są jak puzzle – żaden nie zdradzi, co kryje cały obraz, ale im więcej mamy ich w ręku, tym więcej wiemy o świecie, który opisują. Właśnie znaleziono kolejny klocek. Niezwykle ważny i pasujący do poprzednich. Tym klockiem jest metan.

Co z tym życiem?

Ściślej rzecz biorąc, nie tyle metan, ile szybkie zmiany jego stężenia. O tym, że w niezwykle rzadkiej marsjańskiej atmosferze znajdują się niewielkie ilości metanu, wiedziano od dawna. Problemem było jego pochodzenie. Metan może powstawać na wiele różnych sposobów, ale na Ziemi niemal wszystkie związane są z działalnością organizmów żywych. Metan – zwany czasami gazem błotnym – składa się z atomu węgla i czterech połączonych z nim atomów wodoru (jego wzór to CH4). Jest bezwonny i bezbarwny. Skąd się wziął na Marsie? To jest właśnie pytanie za milion dolarów. A może nawet za 100 milionów. Amerykański łazik marsjański Curiosity nad wywierconym przez siebie otworem wykrył dziesięciokrotny wzrost stężenia metanu. Otwór nie był zbyt głęboki, metan zaczął się ulatniać z gruntu, który znajduje się zaraz pod powierzchnią. Do odkrycia doszło podczas badań wewnątrz 154-kilometrowego krateru Gale. W warunkach ziemskich metan jest w 95 proc. pochodzenia organicznego i związany ściśle z cyklem życiowym roślin i zwierząt. Ten fakt o niczym jeszcze nie przesądza. Po pierwsze dlatego, że pozostałe 5 proc. to produkcja metanu w procesach geologicznych. A po drugie kto powiedział, że znamy wszystkie procesy produkcji metanu? Być może na Marsie mają miejsca takie, których na Ziemi nie ma. – Te okresowe znaczne wzrosty zawartości metanu w atmosferze, tj. szybki wzrost, a później spadek, wskazują, że ich źródło musi być stosunkowo niewielkie – przypuszcza Sushil Atreya z Uniwersytetu Stanu Michigan, który bierze udział w projekcie Curiosity. – Może być wiele źródeł, biologicznych i niebiologicznych, takich jak np. reakcje zachodzące między wodą i skałami – dodał.

Podsumowując. Co wiemy nowego? Jeden z marsjańskich łazików wykrył szybko zmieniające się stężenie metanu. Czy to znaczy, że znaleziono tam życie? Nie! Czy to znaczy, że było tam kiedyś życie? Nie! W takim razie co to znaczy? Tylko tyle, albo aż tyle, że mamy kolejny kawałek układanki. Nie znamy jeszcze pełnego obrazu, ale wydaje się, że jest na nim planeta, która kiedyś obfitowała zarówno w płynną wodę, jak i w życie. Planeta, na której to życie przetrwało do dzisiaj.

Brak komentarzy do Żyć albo nie żyć

Teleportuj się !!!

Powiem szczerze: bałbym się teleportacji, skoro mamy kłopot z tradycyjnymi środkami transportu. A tymczasem naukowcom udała się teleportacja na odległość 25 km!

Może więc i dobrze, że teleportacja ludzi jest (na razie) niemożliwa. O co w ogóle chodzi? Teleportacja to przenoszenie obiektów z miejsca na miejsce, ale – jak mówią fizycy – bez zachowania ciągłości istnienia. Brzmi nie najlepiej, ale w największym skrócie polega na tym, że obiekt w jednym miejscu znika, a w drugim się pojawia.

Mielonka

Teleportacja jest dość popularna np. w filmach science fiction. Szczególnie w tych, których akcja dzieje się w przestrzeni kosmicznej. To jeden z dwóch sposobów radzenia sobie z ogromnymi odległościami, jakie w kosmosie są faktem. Nie chcąc narażać się na śmieszność, trzeba znaleźć w miarę prawdopodobny sposób szybkiego przemieszczania się. Jednym ze sposobów radzenia sobie z tym kłopotem jest zamontowanie w statkach kosmicznych napędów nadświetlnych, czyli takich, które rozpędzają obiekt do prędkości wyższej niż prędkość światła. Drugim ze sposobów jest teleportowanie. Napędów nadświetlnych nie ma i nie wiem, czy kiedykolwiek będą. Jeżeli zaś chodzi o teleportację, to problemu nie ma. Naukowcy potrafią teleportować… choć na razie nie ludzi. Na razie nie mamy ani urządzenia, ani nawet pomysłu, jak powinno wyglądać urządzenie do teleportowania większych i bardziej złożonych obiektów. Pisząc „większych i bardziej złożonych”, nie mam na myśli słonia afrykańskiego czy fortepianu. Mam na myśli większe atomy, nie mówiąc już nawet o najprostszej cząsteczce chemicznej.

Problemy z teleportowaniem przewidzieli także futurolodzy. Od czasu do czasu także w produkcjach science fiction nielubiany bohater korzystał z uszkodzonego „portalu” i w efekcie pojawiał się „po drugiej stronie” w kawałkach albo w formie przypominającej – brutalnie mówiąc – mielonkę. I także tutaj scenarzyści mieli nosa i nie bardzo minęli się z prawdą. Z definicji przy przesyłaniu cech zwanych stanami kwantowymi cząstki A do oddalonej cząstki B, niszczony jest stan kwantowy A. Trochę to skomplikowane, ale w zasadzie da się prosto wytłumaczyć. Nie może być tak, że teleportacja polega na skopiowaniu obiektu. Wtedy istniałyby dwa takie same obiekty. Teleportacja polega na „sczytaniu” obiektu A i przesłaniu w oddalone miejsce. Ale w czasie tego przesyłania obiekt A przestaje istnieć („znika”). Gdy przychodzi do jego odtworzenia, a coś pójdzie nie tak jak trzeba, wychodzi… w największym skrócie mielonka.

W czym jest problem?

Dzisiaj nikt ludzi oczywiście nie próbuje teleportować. Poza zasięgiem naukowców jest nawet teleportacja najprostszych cząsteczek. Nawet tak prostych jak chociażby trzyatomowa cząsteczka wody. Więcej, dzisiejsza technika nie pozwala teleportować nawet pojedynczego atomu, o ile mówimy o większym atomie, np. uranu, który składa się z kilkuset protonów, neutronów i elektronów. Jak to wygląda w praktyce? Każda cząstka ma tzw. stany kwantowe, czyli swoją specyfikę. Cząstki różnią się od siebie właśnie stanami kwantowymi, tak jak obiekty makroskopowe różnią się od siebie np. kolorem, zapachem, smakiem czy fakturą. Teleportacja polega na odczytaniu tych „cech”, przesłaniu ich w nowe miejsce i tam nadaniu ich innej cząstce. Przy okazji niszczy się stany kwantowe cząstki pierwotnej, stąd nie ma mowy o kopiowaniu czegokolwiek, tylko rzeczywiście o przesyłaniu.

Skoro to takie proste, w czym problem, żeby teleportować duże obiekty? Nie da się przesłać takich cech jak kolor, kształt, smak czy zapach po to, by w drugim teleporcie je odtworzyć… Te wspomniane cechy makroskopowe są wypadkową stanów kwantowych miliardów, bilionów cząstek, z których duże obiekty się składają. Problem teleportowania dużych czy większych od pojedynczych cząstek obiektów jest więc problemem skali. Na razie ledwo radzimy sobie ze stanami kwantowymi maleńkich obiektów, ale przyjdzie czas na te większe. I może wtedy pojawi się problem, czy da się teleportować wiedzę, czy da się teleportować duszę…

Wróćmy jednak na Ziemię (albo ziemię). Pierwszą teleportację kwantową przeprowadzono w 1997 r., ale już 7 lat później zespół badaczy z USA i Austrii opublikował dane, z których wynikało, że teleportowano najmniejszy atom, czyli wodór. Tym razem w piśmie „Nature Photonics” ukazała się publikacja, z której wynika, że dzięki badaczom z Uniwersytetu w Genewie, należącego do NASA Jet Propulsion Laboratory, oraz z National Institute of Standards and Technology w USA, udało się teleportować cząstkę na rekordową odległość 25 kilometrów. Informacja o stanach kwantowych została przesłana światłowodem, ale w przyszłości być może uda się ją przesłać falami radiowymi albo promieniem lasera. Tylko 25 kilometrów? Tak, wiem, wiem. W ten sposób na Księżyc czy Marsa się nie dostaniemy, ale od czegoś trzeba zacząć

Tekst ukazał się w tygodniku Gość Niedzielny

1 komentarz do Teleportuj się !!!

Ład czy chaos?

Chaos i ład – choć wydają się przeciwstawne, w naturze pięknie się przenikają. Ład wynika z chaosu, a chaos kroczy przed harmonią. Wystarczy spojrzeć na piaskową wydmę, płatek śniegu czy którykolwiek układ planetarny.

Co było pierwsze: ład czy chaos? W życiu codziennym chaos powstaje z ładu, ale we wszechświecie w różnych skalach kolejność może być odwrotna. Gwiazdy i układy planetarne powstają z chaotycznej chmury drobinek, ta zaś z eksplozji gwiazdy. Tylko czy taka chmura jest rzeczywiście chaotyczna? Nie da się przewidzieć ruchu każdego z jej atomów, ale to nie znaczy, że nie działają w niej prawa fizyki. Z czasem to one wprowadzają porządek. Z tego porządku rodzą się nowe światy. Ale czy w nich panuje ład i porządek?

Góra piasku

Z naszego punktu widzenia niekoniecznie. Na przykład ruch planet, księżyców i wszystkich innych obiektów w Układzie Słonecznym wydaje się uporządkowany i przewidywalny. Ale gdyby tak było, jak należałoby tłumaczyć, skąd wzięły się kratery, które świadczą o kolizjach, do jakich dochodziło w przeszłości i wciąż dochodzi? Skąd pojawiające się co jakiś czas „alarmy”, że do Ziemi zbliża się groźna asteroida albo planetoida? Czy to wszystko rzeczywiście działa jak w szwajcarskim zegarku? Tak, ale złożoności tego mechanizmu nie jesteśmy (jeszcze?) w stanie pojąć. Zdarzenia w kosmosie, a wśród nich zderzenia między kosmicznymi obiektami, są elementem porządku, którego my nie dostrzegamy. Ta swego rodzaju ślepota to problem nie tylko kosmicznych skal. Mamy kłopot z ogarnianiem świata w każdej skali. Z tych ograniczeń wynika to, że dość często mylimy chaos z porządkiem. Jak to możliwe?

Wyobraźmy sobie niewielki fragment pustyni i wietrzny dzień. Pojedyncze ziarenka piasku są unoszone i opadają. Jedne blisko siebie, inne dalej. Jedne w powietrzu przebywają chwilę, inne przez długi czas. Nie ma najmniejszych szans, by przewidzieć ruch wspomnianych ziarenek. On zależy od tak wielu czynników, że największe komputery na Ziemi nie poradziłyby sobie z takim wyzwaniem. Gdy patrzy się na ten obraz, aż ciśnie się na usta słowo „chaos”. Czy ruch ziarenek piasku podrywanych przez wiatr jest przypadkowy? Na pewno jest (dla nas) nieprzewidywalny, ale nie chaotyczny. Jest w nim porządek i rządzą nim prawa fizyki. Nie trzeba wierzyć na słowo, wystarczy poczekać, aż wiatr ustanie, a wtedy naszym oczom ukaże się wydma. Ta potrzebuje swego rodzaju nieporządku. Wydma nigdy nie powstanie na idealnie płaskiej powierzchni. Potrzebna jest przeszkoda. Lokalne zaburzenie porządku. Po co? By wyhamować wiatr. Tylko wtedy niesiony przez niego piasek opadnie. Jedno ziarenko, później drugie, kolejne…

(Nie)porządek na zimno

Wystarczy rzut oka na wydmę, by zobaczyć porządek. Wydmy zawsze mają jedno zbocze łagodne, a drugie strome. Łagodnym odwrócone są w kierunku wiejącego wiatru. Rozpoznajemy wydmy poprzeczne, seify, barchany czy wydmy gwiaździste. Ich kształt zależy od wielu czynników. Wśród nich są ukształtowanie terenu, siła i kierunek wiatru oraz rodzaj (właściwości) piasku. Zależności między tymi czynnikami są tak skomplikowane, że nawet największe komputery nie są w stanie tego ogarnąć. Ale o żadnym chaosie nie ma tu mowy. Tak samo jak nie ma mowy o chaosie w procesie tworzenia się kryształów. Chyba najlepszą ilustracją jest powstawanie płatków śniegu. Nie mogłyby się pojawić w idealnie czystym powietrzu, w którym nie byłoby chociażby najmniejszego pyłku. Woda w pewnej temperaturze zamarza – to jasne – ale może przechodzić w stan stały na dwa sposoby. Lód to cząsteczki wody, które zamarzły w nieuporządkowaniu. Śnieg to kryształy wody, a więc cząsteczki, które zamarzając, zdążyły się uporządkować, znaleźć się na swoich miejscach. Płatek śniegu to nieprzewidywalny porządek. Nie ma dwóch takich samych śnieżynek, ale to nie zmienia faktu, że wszystkie są stworzone według konkretnego wzoru. Każdy płatek śniegu ma kształt sześciokąta foremnego, figury, która ma sześć kątów (wierzchołków) i której wszystkie boki są równej długości. Dlaczego? Bo cząsteczki wody w krysztale łączą się ze sobą szóstkami. Połączenie „na płasko” sześciu cząsteczek wody musi utworzyć sześciokąt, w którym w wierzchołkach są atomy tlenu. I choć płatki śniegu są sześcioramiennymi gwiazdkami, każda jest nieco inna, bo każdy płatek ma inną historię, przechodzi inną drogę w chmurze. Nie da się jej przewidzieć ani odtworzyć. Rządzi nią zbyt wiele zmiennych, ale czy można powiedzieć, że w chmurze śniegowej panuje chaos? Idealnie regularne, symetryczne i uporządkowane płatki śniegu świadczą o czymś zupełnie innym. Tak samo jak idealnie „dostrojone” do siebie planety w systemach planetarnych, które powstały z chmury materii. Czy istnieją dwie takie same gwiazdy? Czy istnieją dwa takie same układy planetarne? Nie. Każdy jest inny, mimo że wszystkie powstały na podstawie tych samych zasad fizyki.
Za mało wiemy

Co ciekawe, nie do przewidzenia czy nie do opisania jest nie tylko proces, w którym coś powstaje (układ planetarny, wydma, kryształ…), ale także sam moment, w którym to powstawanie się zaczyna. Zainicjowanie wielu procesów wiąże się z nieprzewidywalną sytuacją. W przypadku płatka śniegu musi być pyłek, jakieś zanieczyszczenie. Podobnie sprawa się ma ze wszystkimi kryształami. Woda w garnku nie zacznie się gotować, o ile na ściankach garnka nie znajdzie się jakaś mała rysa. W idealnie gładkim garnku idealnie czysta woda może być w stanie ciekłym nawet wtedy, gdy jej temperatura dawno przekroczyła 100 st. C. Lawina rozpoczyna się od niewielkiego zaburzenia. Podobnie jak burza. Pioruny uderzają w sposób nieprzewidywalny, ale na pewno nie przypadkowy. Choć kształt błyskawic zdaje się na to nie wskazywać, w rzeczywistości ładunki elektryczne obierają drogę, która gwarantuje najmniejszy opór elektryczny. Skąd ładunki wiedzą, w którą stronę się przemieszczać? Przed właściwym wyładowaniem z chmury wylatuje niewielka „paczka” ładunków, która sprawdza drogę o najmniejszym oporze. Ładunki z błyskawicy, którą widzimy, są prowadzone niemalże jak po sznurku. Wszystko w idealnym porządku, według ściśle określonych reguł. Choć z zewnątrz wygląda to na chaos i przypadek.

Układ Słoneczny potrzebuje 250 mln lat, by zrobić pełny obrót wokół centrum galaktyki Drogi Mlecznej. Ten ruch ma oczywiście swoje konsekwencje. Zmieniające się kosmiczne otoczenie powoduje, że naruszana jest subtelna równowaga między Słońcem a pozostałymi obiektami w naszym układzie planetarnym. Tego oczywiście nie da się przewidzieć, ale zdarza się, że to naruszenie równowagi skutkuje wzmożoną aktywnością komet. Te częściej niż zwykle wylatują w kierunku Słońca. Zwiększa się przez to szansa na kolizję z Ziemią. Co oznaczałoby takie zderzenie? Chaos? To chyba nie jest dobre słowo. Dzięki takim kolizjom w przeszłości dzisiaj na Ziemi jest woda. Patrząc na przepiękny krajobraz z wodą, piaskiem i palmami w tle, warto sobie zdać sprawę, że tę wodę przyniosły komety, piasek to skruszone skały, a palma czy jakikolwiek inny żywy organizm na tej planecie są zbudowane z cząsteczek chemicznych, których ruch wciąż jest dla nas chaotyczny i nieprzewidywalny. Z chaosu w pewnym sensie wynika porządek. Widząc ten porządek, harmonię, warto sobie zdać sprawę z tego, że w naszym świecie tak naprawdę nic nie jest chaotyczne. Wszystko jest podporządkowane prawom natury. Wszystko jest uregulowane i przewidywalne. Kłopot w tym, że my tego porządku często nie dostrzegamy.

 

Tekst ukazał się w Tygodniku Gość Niedzielny

 

1 komentarz do Ład czy chaos?

UWAGA KONKURS!!!

Pytanie jest w zasadzie proste. Popatrzcie na to zdjęcie i zgadnijcie o czym będzie kolejny filmik. Odpowiedzi wpisujcie na FBkowym profilu Nauka. To lubię. Pierwsza osoba, która zgadnie, dostanie ode mnie bożonarodzeniowy prezent, którym jest – do wyboru – któraś z moich książek: „Kosmos” albo „Nauka. To lubię. Od ziarnka piasku do gwiazd”. Książki oczywiście z dedykacją dla wskazanej osoby.

Rozstrzygnięcie konkursu !!!

Zanim ogłoszę wyniki, chcę napisać, że to pierwszy, ale nie ostatni konkurs jaki tutaj ogłoszę. Zachęcam Was do włączenia funkcji „obserwowania” na facebookowym profilu Nauka. To lubię, a wtedy nic Was już nie ominie.

*********

Nagrodą w konkursie była jedna z dwóch moich książek. Z dedykacją oczywiście.
W sumie padło ponad 50 odpowiedzi, choć niektóre były tak rozbudowane, że właściwie powinno się je uznać za wielokrotne.

Prawidłowa padła jedna odpowiedź, ale o tym na końcu. Przede wszystkim BARDZO serdecznie Wam dziękuję za wzięciu udziału w zabawie. Szczególnie chciałem podziękować: Pawłowi Grychowi, Tadeuszowi Marek i Maciejowi Mrowcowi. Tych trzech Panów próbowało powiązać temat przewijania niemowląt (puder) z magnetyzmem. Myślę, że to b.ciekawy kierunek badań. W wolnej chwili zajmę się tematem.

Mirosławowi Dworniczkowi dziękuję za totalnie abstrakcyjne (jak dla mnie) skojarzenie, że „talk” to po angielsku rozmowa. A więc tematem filmiku będzie rozmowa o magnetyzmie. 🙂

And the winner is… Beata Pawłowska za odpowiedź: „o ludziach-magnesach”. Pani Beato, GRATULUJĘ, będę się z Panią kontaktował na priv.

Jeszcze raz wszystkim dziękuję za wzięcie udziału w konkursie.

 

 

Od kilkunastu miesięcy, średnio raz w tygodniu, dodaję nowy filmik na kanał Nauka. To lubię. Przy okazji BARDZO zachęcam do subskrypcji tego kanału. Często, zanim wrzucę nowy filmik, na FBkowy profil kanału wrzucam zdjęcie albo zagadkę związaną z tematem filmiku. Zwykle temat zgadujecie od razu, ale tym razem może być trochę trudniej.

DSC_0168

Przyglądnijcie się dokładnie temu zdjęciu i powiedzcie o czym będzie najnowszy filmik. Żeby nie było wątpliwości. Na zdjęciu jest kompas i dziecięcy puder (talk). Propozycje wpisujcie na FBkowym profilu.

Pierwsza osoba, która udzieli poprawnej odpowiedzi (jeżeli nie będzie poprawnych odpowiedzi nagrodę dostanie najbardziej oryginalna) dostanie w prezencie – do wyboru – którąś z moich dwóch książek „Kosmos” lub „Nauka. To lubię. Od ziarnka piasku do gwiazd”. Książkę zadedykuję wskazanej osobie i prześlę.

okładka - Kosmos   okładka - piasek

Rozwiązanie konkursu jutro (w środę) przed południem. Wtedy też „uwolnię” filmik.

Powodzenia 🙂

 

 

1 komentarz do UWAGA KONKURS!!!

Bombardowanie z kosmosu

Małe asteroidy o średnicy około 1 metra wpadają w naszą atmosferę zadziwiająco często. NASA właśnie opublikowała raport dotyczący „bombardowania Ziemi” w latach 1994 – 2013.

Jednometrowe obiekty wpadają w atmosferę średnio co dwa tygodnie! Mniejszych obiektów nawet nie sposób policzyć. Miejsca w których dochodzi do kolizji są rozrzucone mniej więcej równomiernie po całej planecie. Z trwających 20 lat badań wynika, że w tym czasie zarejestrowano przynajmniej 556 przypadków bolidów, czyli dużych obiektów kosmicznych w atmosferze. Ich energia wynosi czasami setki miliardów dżuli. Jednym z nielicznych – w ostatnich latach – takich przypadków o którym mamy świadomość był meteor czelabiński, który w połowie lutego 2013 roku wywołał panikę nie tylko w Czelabińsku na Syberii. Jego energia wynosiła mniej więcej tyle ile energia pół miliona ton trotylu.

Meteor czelabiński zanim wszedł w ziemską atmosferę miał wielkość około 20 metrów. Rosnąca gęstość gazowej powłoczki Ziemi spowodowała jednak, że obiekt rozpadł się na mniejsze. To samo dzieje się z większością obiektów o średnicy około metra. Choć ich resztki nie „spalają” się w atmosferze całkowicie, zwykle nie są groźne dla ludzi. A wracając do wydarzenia z Czelabińska. Nawet eksperci uważali wtedy, że częstotliwość takich zdarzeń jest niewielka. Tymczasem okazuje się, że jest inaczej. Z danych NASA wynika, że obiekt podobny do czelabińskiego wchodzi w naszą atmosferę co kilka (a nie kilka tysięcy) lat. Obiekt wielkości boiska sportowego wchodzi w atmosferę średnio raz na 5000 lat. Obiekty wielkości samochodu osobowego „nawiedzają nas” średnio raz w roku. Obiekty mniejsze, o średnicy rzędu jednego metra wpadają średnio co dwa tygodnie. Te mniejsze, jeszcze częściej. Na powierzchnię Ziemi każdej doby spada ponad 100 ton kosmicznej materii. To, że mniejsze obiekty nie docierają do powierzchni planety to jasne. Ziemska atmosfera działa jak mechanizm hamujący. Ogromna energia kosmicznego obiektu jest „wytracana” ale nie znika, tylko zamieniana jest na ciepło, na ogrzewanie obiektu, a ten albo rozpada się na drobny maczek, albo po prostu topi się i wyparowuje. To dotyczy także obiektów dużych, tych metrowych. Przeważająca większość z nich rozpada się w górnych warstwach atmosfery pod wpływem dużej zmiany ciśnienia przy wchodzeniu atmosfery. Mniejsze obiekty albo topią się, albo spadają jako niegroźnie małe. Poza tym, 2/3 powierzchni planety pokryta jest oceanami, a całkiem spora pustyniami i lasami, w skrócie tereny niezamieszkałe stanowią dużą większość  obszarów Ziemi. Jakiekolwiek uderzenie pozostaje tam niezauważone.

Obiekty wielkości ziarenka piasku, o ile wejdą w ziemską atmosferę w nocy, są łatwo zauważalne nawet gołym okiem. Większe to tzw. bolidy, świecą jaśniej niż Wenus. Co ciekawe, to świecenie nie wynika z tarcia obiektu kosmicznego o cząsteczki gazów w atmosferze, tylko z silnego sprężenia powietrza przed czołem bolidu. Ogromny wzrost ciśnienia powoduje podniesienie temperatury nie tylko obiektu, ale także gazu. I to świecący gaz, a nie meteor jest tym co widać w nocy. Bolid czy meteor nagrzewa się do temperatury kilku tysięcy stopni Celsjusza. Szybkiej zmianie ciśnienia często towarzyszy także grom dźwiękowy.

NASA od wielu już lat obserwuje obiekty, które potencjalnie mogą zagrozić Ziemi (to tzw. NEO – Near Earth Object). Jako takie definiuje się te, które znajdują się w odległości mniejszej niż 50 milionów kilometrów od orbity Ziemi.Dla porównania średnia odległość Ziemia – Słońce wynosi około 150 mln kilometrów, a średnia odległość Ziemia Księżyc około 350 tys. kilometrów.

W obszarze szczególnego zainteresowania obserwatorów z NASA, tylko obiektów o średnicy 1km lub większej znajduje się około tysiąca. Ponad 950 z nich jest przez agencję (w ramach programu NEO) obserwowana. W najbliższym sąsiedztwie Ziemi ilość obiektów, których średnica wynosi 150 metrów i więcej, szacuje się na około 25 tysięcy, z czego ponad 22 tys. jest pod obserwacją.

 

Lista potencjalnie groźnych obiektów:

http://neo.jpl.nasa.gov/risks/

Więcej informacji:

http://science.nasa.gov/planetary-science/near-earth-objects/

 

 

Brak komentarzy do Bombardowanie z kosmosu

Uderzy czy nie?

19 października, o godzinie 20:28 czasu polskiego w pobliżu Marsa przeleci kometa C/2013 A1. Będzie tak blisko, że niewykluczona jest kolizja. Te w przeszłości się zdarzały. W lipcu 1994 roku z Jowiszem zderzyły się reszki komety Shoemaker-Levy 9. Nigdy wcześniej nie oglądaliśmy jednak zderzenia komety z Marsem.

Kometa C/2013 A1 została odkryta 3 stycznia 2013 roku przez Roberta McNaughta z Siding Spring Observatory w Australii. Jak wszystkie komety i ta narodziła się na samym skrawku Układu Słonecznego, w Obłoku Oorta. Nigdy wcześniej się stamtąd nie ruszała. W naszych okolicach pojawia się po raz pierwszy. Pierwszy i być może ostatni. Obliczenia trajektorii komety, które są prowadzone od momentu jej odkrycia, wskazują, że obiekt zbliży się do powierzchni Marsa na bardzo BARDZO małą odległość zaledwie 140 tysięcy kilometrów. Nigdy wcześniej żadna kometa nie zbliżyła się tak bardzo do którejś z planet wewnętrznych Układu Słonecznego. To tak, jak gdyby w pobliżu Ziemi przeleciał obiekt w odległości 1/3 odległości Ziemia – Księżyc!

PIA17833-CometSidingSpring-C2013A1-MarsEncounter-20140128

Okazji tak bliskiego przejścia nie można zmarnować, stąd niektóre sondy i łaziki pracujące na powierzchni albo na orbicie Marsa już są przygotowywane do wstrzymania swoich zwykłych zajęć i „zajęcia” się przelatującą kometą. I tak łazik Curiosity ma robić zdjęcia komecie z powierzchni Marsa, orbitalna sonda MAVEN zbada gazy pochodzące z jądra komety i jej warkocza oraz ich wpływ na górne warstwy marsjańskiej atmosfery. Mars Odyssey Orbiter zmierzy właściwości termiczne jądra, komy i warkocza.

Badanie komety może być (dla sond i łazików) niebezpieczne. W warkoczu komety lecą bowiem mniejsze odłamki, które mogą uszkodzić znajdujące się w ich polu rażenia urządzenia. Dlatego właśnie – o ile było to możliwe – orbity tych sond, które nie biorą udziału w badaniu komety, przeprogramowano tak, by w chwili największego zbliżenia komety z Marsem, były po drugiej stronie planety. Tak zmieniono orbitę np. sondy Mars Reconnaissance Orbiter.

Kometa, której wielkość ocenia się na od kilku do kilkudziesięciu kilometrów, w pobliżu Marsa przeleci z prędkością ponad 200 tys km/h. Czy grawitacja Marsa wystarczy by tak szybko poruszający się obiekt ściągnąć na swoją powierzchnię? To okaże się dopiero w niedzielę wieczorem. Gdyby jednak kometa uderzyła w powierzchnię Czerwonej Planety, biorąc pod uwagę jej masę, wielkość i energię, wybiłaby krater o średnicy ok. 800 km (odległość większa niż z Gdańska do Zakopanego) i głębokości 10 kilometrów (prawie tak głęboko jak największa głębia na Ziemi czyli Rów Mariański na Pacyfiku). W skrócie mówiąc, już w niedzielę, może powstać jeden z największych znanych nam kraterów w Układzie Słonecznym! O tym jakie byłyby skutki uderzenia takiej komety w Ziemię, nawet trudno mówić.

W momencie w którym kometa ewentualnie zderzy się z Marsem, planeta będzie z terenu Polski już niewidoczna. Zdąży zajść za horyzont. Krótko po zachodzie Słońca – o ile pogoda pozwoli – Marsa będzie można oglądać spoglądając w kierunku południowo – zachodnim. Może lepiej zerknąć, kolejnej nocy Mars, może już być inną planetą 🙂

Jedna z całkiem prawdopodobnych teorii mówi, że to komety z granic Układu Słonecznego przyniosły m.in. na Ziemię wodę. Być może wraz z wodą, przyniosły także zalążki życia.

Zobacz mój filmik na temat wody, komet i życia:

Brak komentarzy do Uderzy czy nie?

Jesteśmy dziećmi gwiazd

My i całe nasze otoczenie, jesteśmy zbudowani z atomów różnych pierwiastków. Te pierwiastki – w przeważającej części – powstały we wnętrzu gwiazdy, która w naszej okolicy wszechświata kiedyś świeciła. Innymi słowy, jesteśmy zbudowani z popiołów gwiazd.

Najlżejsze atomy powstały zaraz po Wielkim Wybuchu. Te cięższe, powstają cały czas we wnętrzach świecących gwiazd. Atomy najcięższe powstają w czasie śmierci dużych słońc.

Na początku był…

Wielki Wybuch. To początek wszystkiego co fizyczne. Materii, czasu i przestrzeni. Nie ma sensu rozważać gdzie miał miejsce. Zdarzył się wszędzie równocześnie. Wtedy cała przestrzeń skupiona była w jednym punkcie, nie było nic na zewnątrz, nie było nic poza. Od tego momentu zaczął się także liczyć czas. Nie ma sensu rozważanie co było przed Wielkim Wybuchem, bo nie istniało … przed. Już kilkadziesiąt sekund po Wielkim Wybuchu z kwarków powstały protony i neutrony. Po kolejnych kilku minutach te cząstki wraz z elektronami (które nie składają się z kwarków) powstał wodór, jego cięższa odmiana – deuter oraz hel, lit i beryl. Z tej grupy najcięższy jest beryl. Składa się z 4 protonów i 5 neutronów w jądrze i 4 elektronów krążących wokoło. Powstawanie najlżejszych atomów trwało nie więcej niż kilkanaście minut. W bardzo szybko rozszerzającym się wszechświecie cięższe niż beryl pierwiastki nie miały szans powstać, bo energia za bardzo zdążyła się już rozproszyć.

Przez kolejnych kilkaset milionów lat, cała materia we wszechświecie była zbudowana z zaledwie kilku pierwiastków. Gdyby tak pozostało do dzisiaj, układ okresowy pierwiastków miałby zaledwie kilka pozycji.

I wtedy pojawiły się gwiazdy

Choć na początku swojego istnienia wszechświat był jednorodny, po jakimś czasie zaczęły w nim powstawać lokalne zagęszczenia. Te grawitacyjnie przyciągały swoje otoczenie. W środku tak zagęszczającej się materii rosło ciśnienie i temperatura. Im więcej materii się ze sobą zlepiało, tym większe ciśnienie (a więc i temperatura). Temperatura rosła aż do chwili gdy przyszła gwiazda „zapalała się”. Co to oznacza ? Gwiazdy czerpią energię z reakcji w której małe atomy łączą się w większe. Żeby jednak ta reakcja zastartowała, potrzeba bardzo wysokiej temperatury. Gdy ta została osiągnięta, gwiazda zaczynała świecić. Lekkie atomy łączyły się w cięższe, co dawało ogromną ilość energii. Ta energia daje gwiazdom życie, to dzięki niej gwiazdy świecą.

I tak, czasami przez miliardy lat lekkie atomy łączą się w gwiazdach w cięższe, te cięższe w jeszcze cięższe i jeszcze cięższe. Z wodorów powstaje hel, potem węgiel. Później tworzy się tlen, krzem, neon czy magnez. Każdy cięższy pierwiastek powstaje z połączenia się (fuzji albo inaczej syntezy) tych lżejszych. Ale we wnętrzu gwiazd nie powstają wszystkie znane z układu okresowego pierwiastki. Czym większy atom, tym więcej energii potrzeba do jego stworzenia. Ostatnim jaki może powstać we wnętrzu gwiazdy jest żelazo. Ma 26 protonów i 30 neutronów w jądrze, oraz 26 elektronów krążących wokoło. Gwiezdny piec jest za mały, by wytworzyć cokolwiek cięższego. Jak zatem powstają te naprawdę wielkie pierwiastki ?

Potrzebna jest śmierć

Duża gwiazda kończy swój żywot jako kula żelaza (żelaza, bo to ono jest najcięższym pierwiastkiem jaki może powstać w gwieździe). Ale to nie koniec życia gwiazdy. Przed nami najlepsze! Następuje największy bodaj kataklizm z jaki można sobie wyobrazić. Gwiazda wybucha jako supernowa. To dzieje się w zaledwie kilka sekund. Eksplozja jest tak duża, że zewnętrzne warstwy gwiazdy wyrzucane są w przestrzeń z prędkością rzędu dziesiątków tysięcy kilometrów na sekundę. To chwila, w której gwiazda może świecić jaśniej niż cała galaktyka w której się znajduje. Z zapisków w starych kronikach wynika, że w 1054 roku na dziennym niebie, oprócz Słońca, widoczny był efekt wybuchu jednej z supernowych. Przez 23 doby ludzie widzieli dwa „słońca”! Ten efekt równocześnie obserwowali chińscy astronomowie, arabscy mędrcy i Indianie Nimbres mieszkający na terenie obecnego Meksyku. Dzisiaj po tej supernowej został rozszerzający się obłok rozżarzonego gazu tworzący Mgławicę Kraba.

Crab_NebulaW czasie samego wybuchu energia eksplozji jest tak wielka, że dochodzi do produkcji najcięższych z występujących we wszechświecie pierwiastków. Także w tym przypadku powstają one z połączenia elementów lżejszych. To właśnie w czasie tylko niezwykle krótkich chwil powstaje np. ciężki, bo składający się aż 238 neutronów i protonów uran. Ale także ołów czy złoto. To ostatnie, choć wydobywane jest na Ziemi, powstało w czasie wybuchu gwiazdy, której teraz już nie ma. Te najcięższe pierwiastki w wyniku eksplozji zostają rozrzucone wokół eksplodującej gwiazdy. Wokół w kosmicznej skali. Wspomniana Mgławica Kraba ma średnicę około 11 lat świetlnych ( 100 bilionów kilometrów) i co sekundę powiększa się o 1500 kilometrów.

Człowiek, ale także wszystko to co wokoło widzimy zbudowane jest z cegiełek – dosłownie – wypalonych we wnętrzu gwiezdnego pieca. Te cięższe budujące nas elementy nie zaistniałyby gdyby nie dochodziło do gwałtownego i widowiskowego wybuchu gwiazdy supernowej. Jesteśmy – nie tylko w przenośni – dziećmi gwiazd. Korzystamy z tego co one wytworzyły, a gdy nasza dzienna gwiazda Słońce dożyje wieku sędziwego, budujące nas cegiełki na powrót zostaną rozsypane w kosmosie. Może wykorzysta je kto inny?

2 komentarze do Jesteśmy dziećmi gwiazd

Wahadła Foucaulta w Polsce

Wahadła Foucaulta w Polsce

Woda spływając tworzy wir. Nie tylko woda skręca w czasie ruchu. Także prądy powietrza, które tworzą wiry w atmosferze. Podobnie dzieje się np. z krążkiem uderzonym przez hokeistę, albo z kulą wystrzeloną z pistoletu.

To efekt Coriolisa, który występuje w obracających się układach odniesienia. Dobrze widać to na wahadle Foucault. W 1851 roku francuski fizyk i astronom Jean Foucault zaprezentował w Paryskim Obserwatorium Astronomicznym wahadło, które zmieniając płaszczyznę wahania dowodziło wirowania Ziemi wokół własnej osi.

O co chodzi? Gdy na długiej linie zawiesimy spory obciążnik i wahniemy nim, z czasem zauważymy, że zmienia on płaszczyznę wahania. Tak jak gdyby coś ją przesuwało. Najłatwiej to zauważyć rozstawiając wokół wahadła znaczniki, które z czasem będą się jeden po drugim przewracać. Dlaczego ma to świadczyć o ruchu wirowym Ziemi? Jeżeli wahadło jest odpowiednio długie, a jego obciążnik wystarczająco ciężki, wpływ otoczenia na ruchy wahadła są znikome. Z punktu widzenia kogoś, kto stoi na Ziemi, wahadło wyraźnie zmienia płaszczyznę wahania. Ruchu Ziemi nie widać, bo na niej stoimy, jesteśmy względem niej w spoczynku. Z innego punktu widzenia kogoś, kto znajduje się w innym układzie odniesienia sprawa wygląda jednak zupełnie inaczej. Tutaj płaszczyzna wahania jest cały czas taka sama.

Gdyby Ziemia była w spoczynku płaszczyzna wahania nie zmieniałaby się. Skoro płaszczyzna się zmienia, znaczy to, że Ziemia wiruje. Zresztą ruch wirowy nie jest jedynym. Ziemia krąży wokół Słońca z prędkością ponad 100 000 km/h, cały Układ Słoneczny krąży wokół centrum galaktyki z prędkością prawie miliona km/h, a galaktyka w której się znajdujemy porusza się z prędkością ponad 2 mln km/h.

Czytając ten tekst pokonałaś / pokonałeś kilkadziesiąt tysięcy kilometrów… siedząc cały czas w tym samym miejscu 🙂

 

Najdłuższe wahadło Foucaulta w Polsce znajduje się w krakowskim Kościele św. św. Piotra i Pawła. Demonstracje odbywają się w każdy czwartek.

Miejsce Miasto Długość (m) Masa (kg)
Kościół św. Piotra i Pawła Kraków 46,5 25
Centrum Nowoczesności Młyn Wiedzy Toruń 33,5 35
Wieża Radziejowskiego – dawna dzwonnica Frombork 28,5 46
Wieża Dzwonów na Zamku Książąt Pomorskich Szczecin 28,5 76
Wydział Matematyczno-Przyrodniczy Uniwersytetu Jana Kochanowskiego Kielce 27
Dziedziniec Politechniki Gdańskiej Gdańsk 26 64
Centrum Nauki Kopernik Warszawa 16 242
Wydział Fizyki, Astronomii i Informatyki Stosowanej Uniwersytetu Mikołaja Kopernika Toruń 16 29
Wydział Fizyki Uniwersytetu im. Adama Mickiewicza Poznań 10 52
Planetarium Śląskie Chorzów

źródło: Wikipedia

 

 

 

 

 

3 komentarze do Wahadła Foucaulta w Polsce

Type on the field below and hit Enter/Return to search