Nauka To Lubię

Oficjalna strona Tomasza Rożka

Tag: planeta

Zdjęcia z eksplozji Antaresa

NASA ujawniła 85 zdjęć ze startu i eksplozji rakiety Antares. Niektóre zapierają dech w piersiach.

Kilka tygodni temu, na FB.com/NaukaToLubie informowałem, że Amerykańska Agencja Kosmiczna NASA udostępniła w serwisie zdjęciowym Flickr zdjęcia wysokiej jakości zrobione w trakcie trwania programu lotów księżycowych Apollo.

Tym razem NASA udostępniła 85 zdjęć na których widać nieudany start zakończony eksplozją rakiety Antares. Zdjęć nie powstydził by się najlepszy scenarzysta filmów science-fiction. Niestety fotografie, które pokazuję poniżej nie zostały stworzone na komputerze.

Rakieta Antares eksplodowała 15 sekund po starcie, który miał miejsce 28 października 2014. Zapasy, które przewoziła miały być dostarczone na pokład Międzynarodowej Stacji Kosmicznej. W sumie stracono ponad 2 tony zaopatrzenia dla ISS, a także sprzęt naukowy i eksperymenty studenckie. Zniszczeniu uległ także satelity Arkyd 3, RACE, GOMX 2 i 26 nanosatelitów Flock-1d.

>>> Przy okazji zapraszam na profil FB.com/NaukaToLubie (kliknij TUTAJ). To miejsce w którym staram się na bieżąco informować o nowościach i ciekawostkach ze świata nauki i technologii.

6_33_gallery_wide 7_25_gallery_wide 8_25_gallery_wide 9_19_gallery_wide 10_15_gallery_wide 11_17_gallery_wide 12_8_gallery_wide-2  13_7_gallery_wide 14_6_gallery_wide 15_4_gallery_wide

 

>>> Zapraszam na profil FB.com/NaukaToLubie (kliknij TUTAJ). To miejsce w którym staram się na bieżąco informować o nowościach i ciekawostkach ze świata nauki i technologii.

Brak komentarzy do Zdjęcia z eksplozji Antaresa

Wszechświaty równoległe?

Pracujący w Kalifornii astrofizyk, analizując mapę mikrofalowego promieniowania tła zauważył na niej dziwne struktury. Naukowiec uważa, że to światło które pochodzi z wszechświatów równoległych.

Pracujący w Kalifornii astrofizyk, Ranga-Ram Chary, analizując mapę mikrofalowego promieniowania tła zauważył na niej dziwne struktury. Tam gdzie na mapie miało być ciemno, pojawiały się jasne plamy. Naukowiec uważa, że najbardziej prawdopodobnym wytłumaczeniem jest to, że światło które widzi pochodzi z wszechświatów równoległych.

Czy to możliwe? Tak. Żadna teoria nie zabrania istnienia wszechświatów równoległych do naszego. Nie zabrania także istnienia wszechświatów starszych od tego w którym my żyjemy. Tyle tylko, że to nie jest żaden dowód za tym, że takie światy rzeczywiście istnieją.

Czym jest mikrofalowe promieniowanie tła, zwane inaczej promieniowaniem reliktowym? To echo Wielkiego Wybuchu. Brzmi abstrakcyjnie. Około 380 tysięcy lat po Wielkim Wybuchu, a więc w bardzo BARDZO wczesnej fazie rozwoju naszego wszechświata, temperatura materii obniżyła się do około 3000 Kelwinów a to spowodowało, że zupa materii i energii (a tym właśnie był wczesny wszechświat) zaczęła się rozdzielać. Fotony oddzieliły się od materii, a ta zaczęła się skupiać w pragalaktyki. Od tego czasu te pierwotne fotony przemierzają wszechświat we wszystkich kierunkach, a my dzięki temu jesteśmy w stanie zobaczyć, jak ten wczesny wszechświat wyglądał. Na mapie mikrofalowego promieniowania tła widać bowiem mniejsze i większe skupiska materii. To są miejsca w których zaczęły powstawać galaktyki i ich gromady. Promieniowania reliktowego jest bardzo mało (w każdym centymetrze sześciennym świata jest około 300 tworzących go fotonów), ale za to jest ono wszędzie. Otacza nas ze wszystkich stron. W skrócie mówiąc to promieniowanie to nic innego jak resztki światła, które emitował rozgrzany i potwornie ściśnięty młody wszechświat. Tak jak żarzące się włókno żarówki czy rozgrzany do czerwoności rozpalony w ogniu metalowy pręt. Poświata Wielkiego Wybuchu wydostała się z gorącej zupy materii dopiero, gdy zaczął się z niej formować przezroczysty gaz atomów. Szacuje się, że było to ok. 380 tyś lat po Wielkim Wybuchu.

A wracając do wszechświatów równoległych. Ich istnienia nie możemy wykluczyć, ani potwierdzić. Przynajmniej na razie. Tajemnicze plamy o których wspomniałem wcześniej nie są żadnym dowodem. W najlepszym wypadku będą argumentem za tym, by jeszcze raz, jeszcze dokładniej przeanalizować wyniki badań, które przeprowadza się nieustannie od kilkudziesięciu lat. Zdaniem naukowca, który zauważył tajemnicze plamy, są to ślady materii, która pochodzi z innego świata, na dodatek takiego w którym mają obowiązywać inne niż u nas prawa fizyki. To ostatnie stwierdzenie jest – delikatnie mówiąc – słabo udokumentowane. Badacza poniosła chyba fantazja. Dobrze jest pamiętać, że w XXI wieku nie jesteśmy w stanie powiedzieć z czego zbudowane jest ponad 90 proc. Naszego własnego wszechświata. Ciemna energia i ciemna materia to ogromne znaki zapytania dla kosmologów. Zanim więc zaczniemy dowodzić istnienia innych wszechświatów, będzie trzeba rozwikłać zagadkę tego w którym my żyjemy.

>>> Zapraszam na profil FB.com/NaukaToLubie (kliknij TUTAJ). To miejsce w którym staram się na bieżąco informować o nowościach i ciekawostkach ze świata nauki i technologii.

3 komentarze do Wszechświaty równoległe?

Fagi – dobre wirusy

– Jak to się dzieje, że ci ludzie nie chorują – zastanawiał się widząc Hindusów kąpiących się i pijących wodę z Gangesu. Rzeki, która jest ściekiem. Więcej! wszystko wskazuje na to, że oni są przez to zdrowsi !

Bakterie stają się dla nas coraz groźniejsze. Coraz częściej zdarza się, że nie dają im rady nawet najbardziej zaawansowane terapie antybiotykowe. Sytuacja wymaga podjęcia niestandardowych metod. A może przeciwnie, wymaga powrotu do źródeł?

Ta historia rozpoczyna się w Indiach ostatnich lat XIX wieku. To wtedy przypłynął tam młody brytyjski biochemik i bakteriolog Ernest Hanbury Hankin. Ma jeden cel, walkę z cholerą, która miejscami przybiera rozmiary epidemii. Sukcesów nie ma praktycznie żadnych, a jego desperację potęguje fakt, że w Indiach zdają się nie działać reguły, których nauczył się w Anglii. Młody badacz zauważa bowiem, że na cholerę bardzo rzadko chorują ci, którzy kąpią się w rzece Ganges. Dla Hindusów sprawa jest oczywista, wody rzeki są święte, a każdy kto się w nich kąpie jest „chroniony”. Dla naukowca, sprawa jest trudna do zrozumienia. Przecież Ganges to ściek! To miejsce które powinno być źródłem problemu, a nie lekarstwem. Ku konsternacji większości Europejczyków, a już na pewno tych, którzy mieli wykształcenie medyczne czy biologiczne, Hindusi wodę z Gangesu pili. I? I nic im się nie działo. Jak to możliwe? Brytyjski naukowiec uważał, że w rzece musi być coś, co pijących jej wodę uodparnia. Fenomen dotyczył nie tylko wody w Gangesie, ale także w innych rzekach, równie zanieczyszczonych.

W 1896 roku Ernest Hanbury Hankin opublikował pracę naukową, w której stawiał tezę, że, w badanej przez niego wodzie istnieją czynniki antybakteryjne, które są na tyle małe, że nie sposób zatrzymać ich nawet na najdrobniejszych filtrach. Praca nie została jednak zauważona. Dopiero 20 lat później odkryto co tym czynnikiem jest. Dwa zespoły badaczy, brytyjski i francuski, odkryły bakteriofagi, czyli wirusy, które niszczą bakterie. Nazwa bakteriofag oznacza dosłownie „zjadacze bakterii”. W rzeczywistości wirusy nie pożerają bakterii. Ale o tym za chwilę. Dalsze badania pokazały, że w zasadzie każda bakteria ma swojego faga, czyli wirus, który bez większych problemów może sobie z nią poradzić. Pierwszy przypadek uleczenia wirusami zakażenia bakteryjnego (konkretnie chodziło o infekcję laseczką czerwonki, czyli siejącą śmierć dezynterią) miał miejsce w 1915 roku.

ganges

Zagadka: znajdź głowę chłopaka w śmieciach

Pierwszy nazwę bakteriofag zastosował pracujący w Paryżu Kanadyjczyk, Félix d’Herell. Nie jest ona do końca ścisła, bo sugeruje, że wirusy pożerają bakterie. W rzeczywistości wirusy niczego nie zjadają. Nie są organizmami żywymi, więc nie potrzebują źródła energii do zaspokajania swoich potrzeb. Jak w takim razie zabijają? Bakteriofagi, jak zresztą wszystkie wirusy, komórki żywych organizmów wykorzystują. Wirusy są kapsułkami zawierającymi materiał genetyczny. Nie potrafią same się poruszać. Posiadają jednak „klucze” do żywych komórek. Każda żywa komórka w swojej ścianie ma receptory. To coś w rodzaju zamka do drzwi. Ten, kto posiada klucz, może wejść do środka. Wirusy posiadają klucze, czyli białka pasujące do receptorów. Gdy cząsteczka wirusa znajdzie się w bezpośredniej bliskości komórki, jest bardzo prawdopodobne, że dojdzie do adsorpcji. Wirus otwiera zamek. Chwilę później następuje penetracja. Specjalną igiełką fag wkłuwa się do wnętrza bakterii i wstrzykuje tam swój materiał genetyczny. Komórka (w przypadku fagów komórka bakteryjna) nie ma pojęcia, że jest zainfekowana. Przecież wirus miał „legalne klucze”. Gdy materiał genetyczny znajdzie się w środku, dochodzi do tzw. replikacji genomu. Komórka replikuje wirusy z taką prędkością, że wkrótce zostaje – dosłownie – rozerwana z powodu ich natłoku w swoim wnętrzu. Od momentu „włożenia klucza do zamka” do unicestwienia bakterii mija nie więcej niż 30 minut! Każda zainfekowana komórka wyprodukuje kilkadziesiąt wirusów. A każdy z nich gotowy jest do ataku na nową bakterię.

W naturalnych warunkach pomiędzy bakteriami i wirusami ustala się pewna równowaga, ale gdyby tak wirusy antybakteryjne namnażać i traktować jako najlepszy z dostępnych antybiotyków? Wirusami leczono zanim, zanim ktokolwiek wiedział, czym są ci „niewidzialni” zabójcy bakterii. Félix d’Herelle leczył fagami śmiertelnie chorych na czerwonkę. „Ozdrowienie” następowało po kilkudziesięciu godzinach. Dzisiaj do koncepcji leczenia wirusami coraz częściej się wraca. Antybiotyki wydają się skuteczne, ale tylko na krótką metę. Bakterie potrafią się na nie uodparniać. W Polsce jedna trzecia szczepów dwoinki zapalenia płuc jest odporna na penicylinę. Na fagi nie da się uodpornić, bo te mutują tak samo szybko jak same bakterie. W Polsce znajduje się jeden z dwóch na świecie (i jedyny w Europie) ośrodek naukowy, który prowadzi terapię bakteriofagami. Kilka lat temu rozmawiałem z jego szefem, profesorem Andrzejem Górskim. Powiedział mi wtedy, że do Laboratorium Bakteriofagowego w Instytucie Immunologii i Terapii Doświadczalnej PAN we Wrocławiu zgłaszają się setki osób cierpiących na zakażenia, których żadne antybiotyki nie potrafią wyleczyć. Naukowcom z Wrocławia udaje to w ponad 80 procentach. W porównaniu z terapią antybiotykami, fagi są tańsze, a na pewno nie mniej skuteczne. Ponadto leczenie fagami nie powoduje skutków ubocznych, bo działanie wirusów jest ściśle ukierunkowane i wybiórcze. Określony bakteriofag atakuje tylko jeden gatunek bakterii. W ten sposób po terapii fagami oszczędzamy te „dobre bakterie”, np. z wnętrza układu pokarmowego. Tymczasem antybiotyki tak nie potrafią. – Czasami wystarczy kilkadziesiąt godzin, by osoba od lat cierpiąca na zakażenie uwolniła się od kłopotu. Leczymy nawet infekcje wywołane przez szczepy gronkowca złocistego – śmiercionośne bakterie, będące największym postrachem oddziałów intensywnej terapii – mówił mi prof. Górski.

Skoro mają tyle zalet, dlaczego bakteriofagami nie leczy się powszechnie? Przeszkodą jest prawo. Formalnie (w Unii Europejskiej i USA) przed skomercjalizowaniem, terapia musi być zarejestrowana, a jeszcze wcześniej poprzedzona badaniami klinicznymi. I tutaj pojawiają się problemy formalne. Terapia fagami nie jest zunifikowana, tylko po to by była skuteczna musi być tworzona dla każdego pacjenta osobno. Tego typu postępowanie wymyka się jednak normom, jakie ustalają prawnicy i urzędnicy. Nie bez znaczenia jest pewnie fakt, że przemysł farmaceutyczny czerpie ogromne korzyści z produkcji antybiotyków. Tańsza i w wielu przypadkach skuteczniejsza metoda leczenia fagami może być traktowana jako niechciana konkurencja. – Terapia fagowa to z formalnego punktu widzenia wciąż eksperyment, a do zaakceptowania nowości potrzeba czasu – powiedział mi kilka lat temu prof. Górski. Od tego czasu nic się nie zmieniło.

Drugi – poza Polską – ośrodek leczący fagami znajduje się w stolicy Gruzji, Tbilisi. Założył go zresztą Félix d’Herelle, ten sam, który nadał nazwę bakteriofagom. Ten zagorzały komunista pracował w Związku Radzieckim do śmierci. Gruziński instytut nie podlega pod prawo europejskie i amerykańskie, więc ma większą swobodę w działaniu, niż ośrodek we Wrocławiu. Kilka lat temu, Instytut z Gruzji założył filię w Meksyku, gdzie nie obowiązuje amerykańskie prawo, a bogatym (i chorym) Amerykanom znacznie łatwiej dojechać tam niż do Gruzji.

 

1 komentarz do Fagi – dobre wirusy

Co by się stało…

…gdyby uderzyła w nas asteroida albo kometa? Właśnie jedna z nich przelatuje rekordowo blisko Ziemi. Za pomocą prostych symulatorów (linki w tekście) można sobie wyobrazić rozmiar kataklizmu.

…gdyby uderzyła w nas asteroida albo kometa? Jedna właśnie przelatuje obok nas w rekordowo małej odległości zaledwie 500 tysięcy kilometrów od nas. Skutki kolizji zależą od wielu czynników, w tym od struktury obiektu, jego wielkości, energii ale także kąta pod jakim obiekt wszedłby w ziemską atmosferę. Za pomocą prostych symulatorów można sobie wyobrazić rozmiar kataklizmu.

Co nam może grozić?

Według NASA to największe zbliżenie tak dużego obiektu od 2006 roku. Asteroida 2015 TB 145 została zauważona dość późno bo zaledwie kilka tygodni temu. Porusza się względem Ziemi z prędkością ponad 125 tys km/h a jej rozmiar wynosi około 300 metrów na 600 metrów.Tak późna obserwacja może dziwić, bo obiekty tych rozmiarów śledzone są czasami przez całe lata. Tym razem jest inaczej, bo asteroida znajduje się na dość niestandardowej orbicie. Z tego powodu NASA obiekt uznała za niebezpieczny. Nawet największe komputery Agencji nie są w stanie dokładnie wyliczyć drogi po której asteroida będzie się poruszała. Różne obliczenia wskazują jednak, że minie Ziemię w odległości około 500 tysięcy kilometrów. To niemalże o włos. Dla porównania odległość pomiędzy Ziemią a Księżycem wynosi niecałe 400 tysięcy kilometrów.

Eksperci z NASA uspokajają, że do kolizji nie dojdzie, co by się stało, gdyby jednak… W poniższej tabelce na czerwono zaznaczyłem skutki jakie wywołałoby uderzenie w Ziemię takiej asteroidy jak ta, która właśnie nas mija.

Gdyby asteroida miała średnicę do 25 metrów, takie obiekty uderzają w Ziemię średnio raz na 150 lat, najprawdopodobniej w całości spaliłaby się w ziemskiej atmosferze. Zagrożenie związane z takim „spotkaniem” byłoby zerowe. Meteor czelabiński, który wszedł w ziemską atmosferę 15 lutego 2013 roku miał nie więcej niż 20 metrów średnicy. W wyższych warstwach atmosfery obiekt rozpadł się na drobne kawałki i większość z nich wyparowała w drodze do powierzchni Ziemi. te nieliczne, które „przetrwały” lekko uszkodziła kilka tysięcy budynków (w dość ciasno zabudowanym mieście) i niewielkie obrażenia około tysiąca osób. W przeważającej większości, chodziło o rany spowodowane odłamkami szkła. Straty zostały spowodowane przez falę uderzeniową, a nie odłamki meteorytu.Tak duży obiekt jak meteor czelabiński ostatni raz wszedł w ziemską atmosferę w 1908 roku, czego skutkiem była katastrofa tunguska.

A co z większymi obiektami?

obiekt czas skutki
do 50 m co 1500 lat zniszczenia obejmują średniej wielkości miasto, pojawiają się pożary i fale tsunami
do 150 m co 20 000 lat zniszczenia obejmują kilkaset kilometrów kwadratowych
do 300 m co 100 000 lat totalne zniszczenia w promieniu 100 km, szkody w promieniu kilkuset kilometrów
do 600 m co 200 000 lat tsunami na całej planecie, zniszczenia obszaru porównywalnego z Polską
do 1000 m co 1 000 000 lat poważne zmiany klimatyczne odczuwalne na całej planecie, zniszczony obszar porównywalny z całą Europą
do 5000 m co 20 000 000 lat globalne zniszczenie, pyły powstałe w wyniku kolizji zasłaniają Słońce, wieloletnia zima na całej planecie
powyżej 10 000 m co 100 000 000 lat po nas…

 

 

 

 

 

 

 

 

 

 

W Układzie Słonecznym znajdują się miliony, miliardy obiektów, które potencjalnie mogłyby nam zagrozić. Grawitacyjną ochronę nad naszą małą planetą sprawuje jednak Słońce i dwa gazowe giganty, czyli Jowisz i Saturn. To one ściągają na siebie przeważającą większość obiektów, które mogłyby uderzyć w Ziemię. Warto także zdawać sobie sprawę z tego, że odległości w kosmosie są… prawdziwie kosmiczne. Nawet jeżeli mówimy o tak bliskim przelocie jak ten aktualny. Spróbowałem to pokazać w jednym z moich filmików.

Asteroida w nas (nie) uderzy – Nauka. To lubię.

miniatura

Dane w powyższej tabelce są mocno przybliżone, oddają jednak skalę zagrożenia. Dla osób bardziej zainteresowanych polecam dwa symulatory/kalkulatory, dzięki którym można policzyć i zobaczyć zagrożony przez kosmiczny obiekt obszar.

– Pierwszy symulator jest dla mnie zaawansowanych:

uderzenie

– Drugi dla osób, które nieco bardziej chcą się zagłębić w problem:

uderzenie2

>>> Zapraszam na profil FB.com/NaukaToLubie (kliknij TUTAJ). To miejsce w którym staram się na bieżąco informować o nowościach i ciekawostkach ze świata nauki i technologii.

2 komentarze do Co by się stało…

Orionidy nadlatują !!!

Już za chwileczkę, już za momencik… a tak właściwie od kilku dni Ziemia w swoim ruchu wokół Słońca przelatuje przez chmurę kawałków komety Halley’a. Maksimum tych zderzeń nastąpi z środy na czwartek.

Ziemia z resztkami komety Halley’a „spotyka się” kilka razy w roku. W październiku skutkuje to deszczem Orionidów, na przełomie kwietnia i maja Eta Akwadydów, a w pierwszych dniach sierpnia Akwarydów. Dzisiaj w nocy jest maksimum roju Orionidów.

Poruszająca się w kierunku Słońca kometa (nie tylko kometa Halley’a) topiąc się pozostawia na swojej drodze niewielkie skalne kawałki, z których jest posklejana. Powstaje wtedy ślad, który znaczy drogę po której kometa się poruszała. W ciągu roku Ziemia wielokrotnie wlatuje w tak pozostawioną „ścieżkę” (u dołu tego wpisu wypisałem listę największych rojów meteorytów jakie można oglądać w Polsce).

Pozostałości komet z którymi Ziemia się „zderza” to pył i małe okruchy skalne. W ziemskiej atmosferze pozostawiają widoczny gołym okiem świetlny ślad nawet te, które są wielkości ziarenek pisaku. To dzięki grubej ziemskiej atmosferze możemy oglądać – o ile pogoda na to pozwoli – ciekawe widowisko. Nie musimy przy tym chować się pod dach 😉 , choć gdyby nie chroniąca nas atmosfera byłoby to konieczne, bo drobne cząstki pyłu i większe okruchy skalne wpadają w nią nawet z prędkością 75 km/s. Wtedy ocierając się i zderzając z cząsteczkami powietrza silnie rozgrzewają swoją powierzchnię. Zderzenia te są tak intensywne i jest ich tak dużo, że powierzchnia obiektu zaczyna się topić i wrzeć. Część w ten sposób „nabytej” energii przekazana zostaje do otaczającego meteor powietrza. To nagrzewa się i świeci a my widzimy „spadającej gwiazdy”.

Znakomita większość „spadających gwiazd” spala się całkowicie w ziemskiej atmosferze. Co więcej to co obserwujemy gołym okiem, to zaledwie ułamek wszystkich spadających na Ziemię meteorów. Większość z nich  jest na tyle mała, że ich „spalania” nie widać gołym okiem. Szacuje się, że w ciągu doby na powierzchnię Ziemi spada aż 100 ton tego niezauważalnego pyłu. Corocznie – w ściśle określonych porach – różnych rojów pojawia się na naszym niebie ok. 20. Niektóre z nich widoczne są na jednej półkuli a inne – tak jak Orionidy – na obydwu. Do ich obserwacji nie trzeba kosztownych urządzeń i o ile pogoda dopisze – i dodatkowo noc będzie bezksiężycowa – powinno być widać spadające gwiazdy. Uważny obserwator może ich zauważyć nawet 15 w ciągu jednej godziny.

Najobfitsze roje meteorytów występujące na półkuli północnej (w Polsce).  
Nazwa i okres występowania    
Kwadrantydy (1-6 I)    
Eta Akwarydy (24 IV – 20 V)    
Delta Akwarydy (15 VII – 20 VIII)    
Geminidy (7-16 XII)    
Perseidy (23 VII – 20V III)    
Orionidy (16-27 X)    
Taurydy (20 X- 30XI)    
Leonidy (15-20 XI)    

 

>>> Zapraszam na profil FB.com/NaukaToLubie (kliknij TUTAJ). To miejsce w którym staram się na bieżąco informować o nowościach i ciekawostkach ze świata nauki i technologii.

Brak komentarzy do Orionidy nadlatują !!!

Co tam się dzieje? Komety czy Obcy?

Wokół jednej z setek tysięcy gwiazd, które obserwuje teleskop Kepler krążą duże obiekty. Naukowcy nie widzą czym one są, ani jak powstały. Internety już mówią o tworach obcych cywilizacji.

Wiecie co to jest Brzytwa Ockhama? To zasada zgodnie z którą przy „wyjaśnianiu zjawisk należy dążyć do prostoty, wybierając takie wyjaśnienia, które opierają się na jak najmniejszej liczbie założeń i pojęć”. Trudno obcą cywilizację uznać za najbardziej oczywisty powód niezrozumiałych obserwacji astronomicznych. Oczywiście nie można jej też całkowicie wykluczyć.

Co konkretnie tak zadziwiło astronomów? W 2009 roku Teleskop Kosmiczny Keplera wśród setek tysięcy gwiazd wypatrzył KIC 8462852. Ta nie świeciła jednak tak jak inne słońca. Coś w sposób nieregularny zakłócało jej obserwację. Tym „czymś” jest duża ilość niewielkich, ale bardzo gęstych obiektów. – Prawdę mówiąc, światło emitowane przez KIC 8462852 było najdziwniejszą rzeczą, jaką zaobserwował Kepler od początku swojego istnienia – powiedziała badaczka z Yale Tabetha Boyajian. Kepler pracuje na orbicie od kilku lat. Inny badacz, Jason Wright, astronom z Penn State University powiedział, że był pod wrażeniem tego, jak niesamowicie to wyglądało. – Obca cywilizacja to ostatnia hipoteza, jaką powinniśmy w takim przypadku rozpatrywać, ale to coś wyglądało tak, jak gdyby stworzyli to właśnie kosmici. (oryginał wypowiedzi : „I was fascinated by how crazy it looked”. “Aliens should always be the very last hypothesis you consider, but this looked like something you would expect an alien civilization to build.”).

Jako że zdjęcia pochodzą sprzed kilku lat, badacze twierdzą, że bardzo dokładnie sprawdzili sprzęt i nie ma mowy o usterce czy pomyłce. – Tam na prawdę krąży ogromna ilość obiektów, ściśniętej materii – powiedziała Boyajian. Czym te obiekty mogą być? No właśnie tutaj zaczyna się kłopot. Bo lista naturalnych wytłumaczeń tego fenomenu jest bardzo krótka. W zasadzie, choć i to jest bardzo mało prawdopodobne, podobny efekt dałyby tylko komety. Być może inna gwiazda przyciągnęła w stronę KIC 8462852 sznur komet. Trudno nawet oszacować prawdopodobieństwo takiego zdarzenia, bo… nigdy wcześniej niczego podobnego nie zaobserwowano.

I co teraz? Dane są analizowane, a gwieździe wokół którejś coś krąży od stycznia będą się przyglądały ziemskie radioteleskopy. Gwiazda KIC 8462852 na nocnym niebie znajduje się pomiędzy gwiazdozbiorami łabędzia i lutni. Patrząc tam można sobie przez chwile pomyśleć…. że ktoś patrzy stamtąd w naszym kierunku. Nie, no błagam, musi być jakieś bardziej przyziemne wytłumaczenie 😉

Zapraszam na profil FB.com/NaukaToLubie (kliknij TUTAJ). To miejsce w którym staram się na bieżąco informować o nowościach i ciekawostkach ze świata nauki i technologii.

2 komentarze do Co tam się dzieje? Komety czy Obcy?

A co gdyby Mars zzieleniał?

Wiadomo, Ziemia jest niebieska a Mars czerwony. Tak przynajmniej te planety wyglądają z kosmosu. Ale czy tak było zawsze? Mars mógł być kiedyś zielony. W końcu wiemy ponad wszelką wątpliwość, że była tam i wciąż jest płynna woda. Jak wyglądałbym Mars, gdyby były na nim rzeki, jeziora, morza i oceany?

Kilkanaście dni temu świat obiegła wiadomość, że na Marsie znaleziono ciekłą wodę. O tym, że na Czerwonej Planecie jest woda – wiedzieliśmy od dawna. Widzieliśmy ją zamarzniętą na biegunach planety. Podejrzewaliśmy, że jest także pod powierzchnią w formie wiecznej zmarzliny. Co więcej, podejrzewaliśmy, że czasami ta woda wypływa małymi strumyczkami z oświetlonych promieniami Słońca zboczy gór i kraterów. Podejrzenia jednak to nie to samo co fakty i niezbite dowody. Dzisiaj wiemy jednak, że – przynajmniej tym razem – podejrzenia były słuszne. Tam rzeczywiście nie tylko była, ale wciąż jest całkiem sporo wody.

Mars jest czerwony, bo pokrywający planetę pył jest bogaty w rdzawego koloru tlenki żelaza. Jeżeli planeta boga wojny kiedykolwiek była zielona to nie z powodu odbijających zielone światło minerałów, tylko z powodu życia. O ile było ono takie samo jak to ziemskie. Życie potrzebuje płynnej wody. Z tym akurat – jak się okazuje – w przypadku Marsa nie ma problemu i najpewniej nigdy nie było. Skąd przypuszczenie, że wody na Marsie kiedyś było znacznie, znacznie więcej niż tej, która znajduje się tam dzisiaj? Wystarczy sprawnym (naukowym) okiem rzucić na powierzchnię Czerwonej Planety. Pełno tam struktur do złudzenia przypominających wyschnięte koryta rzek, wąwozy, strumyki a nawet wodospady. Sam amerykański łazik Curiosity, wylądował w dawnym korycie rzeki, w którym głębokość wody sięgała dwóch metrów. Są też ogromne przestrzenie położone znacznie poniżej średniego poziomu gruntu planety. Te do złudzenia przypominają wyschnięte morza i oceany. Te mniejsze zagłębienia to wypisz wymaluj puste jeziora. A teraz zamknijmy oczy i pofantazjujmy. Jak wyglądałby Mars, gdyby, tak jak na Ziemi, płynnej wody było na nim pod dostatkiem?

mars-kevin-gill-01Wygląda jak Ziemia

Na pewno nie byłby czerwony. Może byłby niebieski, może zielony. Spróbujmy wyobrazić sobie Marsa sprzed miliardów lat. Kevin Gill, amerykański informatyk i entuzjasta astronomii wykorzystując zaawansowaną technologię cyfrową, trójwymiarowe zdjęcia Marsa oraz dokładne pomiary jego topografii stworzył obrazy planety z czasów, gdy – tak jak Ziemia – był ona planetą pełną płynnej wody. Gill poszedł w swoim fantazjowaniu o krok dalej. W swoim komputerowym modelu założył, że na Marsie – gdy była na nim woda – rosła bujna roślinność. I znowu z pomocą przyszła mu technologia cyfrowa. Posiłkując się danymi z Ziemi, marsjańskie drzewa i rośliny „posadził” tam, gdzie dostęp do wody i światła był najłatwiejszy. Autor symulacji wziął nawet pod uwagę wysokość nad poziomem marsjańskiego morza (w wysokich partiach gór roślin nie ma) oraz fakt, że najwyższa średnioroczna temperatura panuje na równiku, a najniższa na biegunach. Także od tego zależy wegetacja. Jeżeli jest woda, jeżeli jest atmosfera, muszą być także chmury. I one zostały naniesione na obraz Marsa z przeszłości. Jak więc wyglądał Mars kiedyś? Jak mógł wyglądać? Prawdę mówiąc prawie tak samo jak Ziemia. Trzeba się mocno przyglądać wirtualnemu obrazowi Marsa by zorientować się, że nie patrzy się na zrobione z orbity zdjęcie Ziemi. Wyżyny i niziny na Marsie występują w podobnych proporcjach co na Ziemi. Na stworzonych w komputerze obrazach widać wyraźnie najdłuższą dolinę w układzie słonecznym – Vallis Marineris – oraz szczyty ogromnych wulkanów Olympus Mons, Pavonis Mons, Ascraeusa Mons i Arsia Mons.

mars-water-2A może go dostosować?

Praca Gill’a nie może być uznana za w pełni naukową. Ale nie ma wątpliwości, że bardzo porusza wyobraźnię. Mars rzeczywiście mógł kiedyś wyglądać tak, jak „zaprojektował” go Kevin Gill. Jego praca w pewnym sensie pokazuje jednak nie tylko przeszłość (przy spełnieniu kilku warunków), ale może pokazywać także przyszłość. Być może w przyszłości ludzie skolonizują Czerwoną Planetę. Jej zaludnienie będzie niemożliwe jeżeli wcześniej planetę odpowiednio dostosujemy. Oczywiście można sobie wyobrazić budowę systemu szklarni w których ludzie, zwierzęta i rośliny będą żyły w równowadze podobnej do tej jaka panuje na Ziemi, ale jednak łatwiej chyba będzie taką równowagę stworzyć nie pod szklanym sufitem, tylko na powierzchni całej planety. Sprawa nie jest prosta i jest całkowicie poza zasięgiem naszych dzisiejszych możliwości, ale może warto zastanowić się nad czymś co niektórzy nazywają terraformowaniem obcych globów. Chodzi o takie ich „przerobienie” czy dostosowanie, by człowiek mógł na nich funkcjonować bez urządzeń technicznych takich jak sztuczna atmosfera w zamkniętej przestrzeni, kombinezony i maski. Jak Marsa przekształcić w Ziemię? Przede wszystkim trzeba na nim stworzyć atmosferę. To – przynajmniej teoretycznie – mogłyby zrobić żyjące na powierzchni gruntu bakterie. Trzeba je więc tam wysłać. Gdyby po setkach tysięcy lat atmosfera rzeczywiście na Marsie powstała, trzeba byłoby ją ogrzać. Wprowadzić do niej gazy cieplarniane tak, by energia słoneczna była na Czerwonej Planecie zatrzymywana. To spowodowałoby wzrost temperatury i „wypłynięcie” spod gruntu lub spłynięcie z biegunów ciekłej wody. Teraz pozostaje obsadzenie planety roślinami i gotowe. Proste prawda? 😉

PS. Woda, która dzisiaj płynie na Marsie jest słona. Prawdę mówiąc, znaleziono ją właśnie po śladach soli. Czy byłaby ona zdatna do picia? Gdyby ją oczyścić, jak najbardziej. Gdyby tego nie zrobić, gdyby spróbować wypić ją taką jaka wypływa ze zboczy, skończyłoby się… jeszcze większym pragnieniem. Spróbuj wypić szklankę mocno posolonej wody.

Zapraszam na profil FB.com/NaukaToLubie (kliknij TUTAJ). To miejsce w którym staram się na bieżąco informować o nowościach i ciekawostkach ze świata nauki i technologii.

 

 

1 komentarz do A co gdyby Mars zzieleniał?

Bajkał – zimne morze

Nad Bajkałem byłem w zimie. Śnieg mienił się jak diamenty, termometr wskazywał prawie minus 30 st C, a woda parowała tak, jak gdyby była gorąca.

Nad Bajkałem byłem w zimie. Śnieg mienił się jak diamenty, termometr wskazywał prawie minus 30 st C, a woda parowała tak, jak gdyby była gorąca.

W zasadzie była gorąca. Była o około 40 st. C cieplejsza niż otoczenie. Gorące lata na Syberii nagrzewają ogrom wody w Bajkale. Gdy przyjdzie zima, trzeba miesięcy, by jezioro tę energię oddało. Mimo kilkudziesięciostopniowego mrozu Bajkał zwykle zamarza dopiero na przełomie stycznia i lutego. Ale nawet gdy taflę pokryje czasami wielometrowa warstwa lodu, Bajkał nie przestaje czarować. Powolne zamarzanie wody powoduje, że zdążą z niej „uciec” wszystkie bąbelki powietrza. W efekcie lód staje się idealnie przezroczysty. W przeciwieństwie do lodu, który powstaje, gdy woda zamarza szybko. Ten ostatni jest matowy, jak gdyby mleczny. Wystarczy zobaczyć kostki lodu w zamrażalniku.

P1020173

 

 

 

 

 

 

Z pary odrywającej się od powierzchni wody, tworzą się nisko zawieszone chmury. Wznoszą się coraz wyżej, aż w końcu znikają gdzieś za horyzontem. Parująca woda osiada także na wszystkim co znajduje się w pobliżu brzegu jeziora.

Dziedzictwo przyrody

Nie ma przesady w stwierdzeniu, że Bajkał odkryli Polacy. Odkryli dla nauki. Mowa tutaj o polskich zesłańcach, głównie po powstaniu styczniowym. Oni jako pierwsi przeprowadzili profesjonalne i obiektywne badania samego jeziora i jego otoczenia, flory i fauny, a także pierwsze badania klimatyczne rejonu Bajkału. I tak, dzięki pracom Benedykta Dybowskiego, lekarza i przyrodnika, wiemy dzisiaj, że w jeziorze i jego najbliższym sąsiedztwie żyje 1500 gatunków zwierząt i około 1000 gatunków roślin. Prawie 80 procent z nich to endemity, czyli gatunki niewystępujące nigdzie indziej na świecie.

Tylko tutaj żyje nerpa, czyli słodkowodna foka, i omul – jedyna na świecie słodkowodna ryba z rodziny łososiowatych. Przykłady można długo mnożyć. Inny Polak, Aleksander Czekanowski, geolog i meteorolog, odkrył ogromne pokłady węgla i sporządził pierwsze profesjonalne archiwum danych pogodowych, z kolei Jan Czerski, geolog i paleontolog, jako pierwszy dokładnie opisał pasma górskie, znajdujące się wokół Bajkału. Ostatni z wielkich polskich badaczy, Wiktor Godlewski, jako pierwszy sporządził mapę dna jeziora. Do dzisiaj okazuje się, że zrobione 150 lat temu badania są potwierdzane pomiarami nowoczesnymi.

Bajkał zajmuje powierzchnię 31 500 kilometrów kwadratowych i wywiera ogromny wpływ na klimat dużego obszaru Syberii. Zimą podnosi temperaturę, latem ją obniża. Podnosi wilgotność atmosfery, a to ma ogromny wpływ na ilość opadów. To dzięki temu wokół jeziora występuje bardzo bogate i różnorodne życie. Samych roślin wodnych na brzegach jeziora żyje kilkaset gatunków. O bogactwie przyrody można pisać bez końca. Może wystarczy wspomnieć, że w 1996 roku Bajkał wraz z przyległymi obszarami został wpisany na listę światowego dziedzictwa przyrodniczego UNESCO.

Nieodrobiona lekcja

Ogromne bogactwo przyrody i krystalicznie czysta woda nie są oczywiście dane na zawsze. W 2013 roku zamknięto ogromny kombinat papierniczy, który regularnie wylewał do Bajkału ścieki. Nadal pracuje jednak wiele innych zakładów, także produkujących nawozy sztuczne. Do jeziora, pośrednio przez wpływające do niego rzeki, albo bezpośrednio, swoje ścieki wylewają miasta z dużego obszaru. Kilka lat temu istniało ogromne ryzyko wycieku do wód Bajkału ropy z rurociągu Syberia–Pacyfik. Ostatecznie jego trasę zmieniono, tak by rura przechodziła w pewnym oddaleniu od akwenu.

Zagrożeniem – bardziej dla terenów przybrzeżnych niż samego jeziora – jest turystyka. Bajkał każdego roku odwiedza kilkaset tysięcy ludzi. Widok ludzi myjących samochody w płytkich wodach jeziora, wycinających drzewa, po to, by założyć dziki kamping, czy urządzających sobie rajdy samochodowe po obszarach porośniętych zagrożonymi gatunkami roślin, nie jest niczym szczególnym. W oczy rzucają się także góry pozostawionych przez turystów śmieci. Ostatnio do tych zagrożeń doszło jeszcze jedno. Od wielu lat w Bajkale jest coraz mniej wody. Tegorocznej zimy jej poziom jest tak niski, że władze na Syberii ogłosiły stan wyjątkowy. W ciągu roku poziom wody spadł o 40 centymetrów. Ostatni raz taka okoliczność miała miejsce ponad 60 lat temu. Sytuacja jest dość trudna, ale wszyscy czekają do kwietnia. To wtedy powoli zaczynają topnieć śniegi w otaczających jezioro górach, a we wpływających do Bajkału rzekach przybywa wody. W kwietniu okaże się więc, czy niski poziom był tylko anomalią, czy jest trwałym trendem. Gdyby chodziło o ten drugi przypadek, trudno sobie wyobrazić zmiany – te krótkoterminowe i długoterminowe – jakie mogą czekać Syberię.

Nie do końca wiadomo, co jest powodem ubytku wody. Jak zawsze w takich sytuacjach czynników jest zapewne kilka. Ostatnie lato na Syberii było suche, ale tym nie da się wytłumaczyć aż tak dużego ubytku. Wiadomo też, że brzegi jeziora oddalają się od siebie, co w dłuższej perspektywie czasu musi mieć wpływ na poziom wody. Eksperci wskazują także na rabunkową gospodarkę wodną dużych zakładów przemysłowych i miast. Na rzekach, które doprowadzają wodę do jeziora, funkcjonują elektrownie wodne, a po to, by nieprzerwanie działały, trzeba budować zbiorniki retencyjne. Te mają wpływ na ilość wody w jeziorze. Niski poziom wody w Bajkale przyczynia się nie tylko do rozchwiania równowagi ekologicznej dużego obszaru, ale także może mieć wpływ na dostawy ciepła i prądu do miast, które wybudowane są wzdłuż brzegów rzeki Angara, w tym do sześciusettysięcznego Irkucka. Choć porównanie Bajkału do występującego dzisiaj w szczątkowej formie Jeziora Aralskiego jest mocno przesadzone, może warto by wyciągnąć wnioski z tego, co zdarzyło się na terenach dzisiejszego Kazachstanu i Uzbekistanu. Działalność człowieka w zaledwie kilkadziesiąt lat spowodowała praktycznie zniknięcie olbrzymiego jeziora, a także dewastację, a właściwie zamianę w pustynię ogromnych obszarów lądu.

P1020180
O Bajkale słów kilka

Bajkał może być jednym z najstarszych zbiorników wodnych na naszej planecie. Powstał kilkadziesiąt milionów lat temu w wyniku trzęsienia ziemi. To wtedy pomiędzy płytą amurską i płytą euroazjatycką powstało ogromne zagłębienie (ryft bajkalski), które zaczęło wypełniać się wodą. I nadal się wypełnia. Ten proces nie jest zauważalny gołym okiem, no chyba że… Pod koniec XIX wieku w rejonie Bajkału wystąpiło silne trzęsienie ziemi. W jego wyniku jezioro w jednej chwili powiększyło się. Powstała głęboka na 11 metrów zatoka Prował. Takie sytuacje to jednak rzadkość. Brzegi jeziora oddalają się od siebie, tak jak gdyby ciężar wody je rozsuwał. Płyty amurska i euroazjatycka odsuwają się. Każdego roku jezioro jest szersze o kilka centymetrów. Dzisiaj Bajkał ma objętość 23 400 kilometrów sześciennych (23,4 biliona metrów sześciennych wody). Powierzchnia jeziora stanowi 10 proc. powierzchni całej Polski, a jego długość (636 km) jest zbliżona do odległości pomiędzy Trójmiastem a Bieszczadami w linii prostej. Bajkał jest najgłębszym jeziorem świata, miejscami dno znajduje się około 1700 metrów poniżej tafli wody. Dla porównania, Bałtyk w najgłębszym miejscu ma 459 metrów. W Bajkale znajduje się około 20 proc. słodkiej wody całej planety.

Brak komentarzy do Bajkał – zimne morze

Papier czy plastik ?

Używanie której torby na zakupy ma mniejszy wpływ na środowisko – co byś odpowiedział? Pewnie, że papierowej. Ja bym taki całkiem pewny tego nie był.

Jedno jest pewne. Reklamówki czy ogólnie tworzywa sztuczne mogą być dla środowiska sporym wyzwaniem. Nie rozkładają się, w niektórych warunkach mogą być trujące. Np. wtedy gdy zostają spalone. Polska, na tle krajów europejskich, jest rekordzistą pod względem ilości zużywanych torebek foliowych. Tak jak średnia unijna wynosi niecałe 200 reklamówek na mieszkańca na rok, tak w Polsce zużywamy ich 466. Na drugim – niechlubnym miejscu – są Węgrzy z 425 torebkami na mieszkańca w ciągu roku. Ale np. nasi zachodni sąsiedzi, Niemcy, statystycznie zużywają tylko 71 foliówek. W takich krajach jak Dania czy Finlandia, jednorazówki praktycznie w ogóle nie są znane. Gdyby na sprawę spojrzeć w kontekście całej Unii, okazuje się, że Europejczycy rocznie wyrzucają około 8 miliardów torebek plastikowych. Samo wyrzucanie nie jest jednak problemem, o ile miejscem do którego reklamówki trafiają jest kosz na odpady z tworzyw sztucznych. Kłopot zaczyna się wtedy, gdy torby foliowe trafiają do lasu, pieca albo na wysypisko śmieci.

Polska na czele

Unia Europejska chce by do 2019 roku o 80 proc spadło zużycie torebek foliowych. Do 2017 r. zużycie reklamówek ma spaść o 50 proc. Chodzi o torebki jednorazowe, te z najcieńszego materiału. Łatwo powiedzieć, ale jak zrobić? No po brukselsku – chciałoby się rzec. Po prostu zakazać. Tyle tylko, że to nic nie da, a może nawet sytuację pogorszyć. Mowa bowiem cały czas o torebkach bardzo cienkich. Tych z grubszego tworzywa Unia nie chce zakazywać. Jeżeli w sklepie nie będzie jednorazówek, większość klientów zechce kupić torbę plastikową (teoretycznie) wielokrotnego użytku. Przy kolejnych zakupach torba zapewne zostanie jednak w domu, a przy kasie zostanie kupiona kolejna. Negatywny wpływ reklamówek z grubszego tworzywa na środowisko jest większy. I nawet gdyby za reklamówki wielokrotnego użytku trzeba było płacić… Czy kwota kilku czy kilkunastu groszy jest na tyle wysoka, by nauczyć klientów chodzenia na zakupy z własną torbą? To raczej mało prawdopodobne.

Alternatywą dla plastiku są torby materiałowe albo papierowe. Te pierwsze są bardzo trwałe. Nasze babcie i mamy często same robiły takie torby np. na szydełku, czy szyły je z niepotrzebnych już skrawków materiału. To było racjonalne zarówno ekologicznie jak i ekonomicznie. Tyle tylko, że dzisiaj tego nikt nie robi. Co z papierem? To mit, że torba papierowa jest dla środowiska neutralna. Prawdę mówiąc pod wieloma względami może być bardziej obciążająca niż plastikowa. Produkcja torby papierowej powoduje o 70 proc. większe zanieczyszczenie powietrza (1) oraz o 80 proc. większą emisję gazów cieplarnianych (2) niż produkcja torby plastikowej. Papier w trakcie produkcji o 50 proc. bardziej (3) zanieczyszcza wodę niż plastik. Produkcja torby papierowej pochłania cztery razy więcej energii (4) i trzy razy więcej wody (5) niż produkcja torby plastikowej. Proces recyklingu papieru zwykle kosztuje więcej energii niż produkcja nowej torby (6). Potrzeba ponad 90 proc. więcej energii (7) by przetworzyć kilogram papieru niż kilogram plastiku.

Babcie miały rację

Coś, co jest często wymieniane jako zaleta papierowych toreb czy opakowań, może być równocześnie ich wadą. Papier jest nietrwały. Innymi słowy, wytworzenie papierowej torby kosztuje energię i wodę, oznacza także korzystanie z wielu środków chemicznych. I to wszystko po to, by torba była wykorzystana tylko jeden raz! To prawda, że torby papierowe szybko się rozkładają. Ale ten rozkład w pewnym sensie oznacza marnotrawstwo. Pod tym względem dużo lepiej korzystać z toreb plastikowych. Jest tylko jeden warunek. Gdy taka torba ulegnie  zniszczeniu, powinna zostać przetworzona. W środowisku naturalnym będzie bowiem zalegać przez dziesiątki a nawet setki lat. To nie produkt jest problemem, tylko sposób w jaki z niego korzystamy.

Plastikowe śmieci stanowią około 20 proc. odpadów na wysypiskach śmieci. Torby foliowe około 1 proc. Są lekkie i dlatego są rozwiewane przez wiatr. Drażnią oko w lesie czy na drzewach. Drażnią nos, gdy są spalane. Ale ich użycie i wykorzystanie to nie ślepa uliczka konsumpcjonizmu. Opakowania plastikowe nie mają sobie równych! To dzięki nim produkty żywnościowe zachowują dłużej świeżość. Samochody zrobione z blachy i drewna byłyby drogie i niebezpieczne. W szpitalach bez tworzyw sztucznych nie dałoby się zachować sterylności. Są trwałe i to w pewnym sensie przysparza im wrogów. Bo w świecie w którym żyjemy to nie trwałość się liczy, tylko częsta zamiana. I tu pojawia się problem. Bo za chęcią zmiany nie idzie w parze świadomość segregowania śmieci. I świadomość tego, że tworzywa sztuczne są cennym surowcem wtórnym. Można je wykorzystać jako paliwo lub przerobić na granulat i używać do produkcji worków na śmieci, ubrań a nawet płyt chodnikowych. Wyrzucanie plastików na wysypiska czy do lasu jest nie tylko karygodne z ekologicznego punktu widzenia, ale przede wszystkim ekonomicznego. Tworzywa sztuczne, także te z których wykonane są woreczki foliowe, są magazynem energii i surowców. W końcu tworzy się je z węgla i ropy naftowej.

Podsumowując (8): Zakazywanie produkcji czy wydawania w sklepach plastikowych torebek nie ulży środowisku, a może pogorszyć jego stan. Bo choć cieniutkich torebek będzie mniej, ich miejsce zajmą torby papierowe albo plastikowe zrobione z grubej folii. A negatywny wpływ na środowisko naturalne tych ostatnich jest dużo większy niż foliówek (9). Jakie jest zatem wyjście? Edukacja i segregacja. No i powrót do czasów naszych babć, które na zakupy zawsze chodziły ze swoją siatką.

13 komentarzy do Papier czy plastik ?

Co powiedzieli na Księżycu?

Wreszcie wiadomo, co powiedział pierwszy człowiek, stawiając stopę na Księżycu. Przez cztery dziesięciolecia byliśmy w błędzie, choć złe tłumaczenie na polski wpadkę Armstronga tuszowało. A było tak.

Wreszcie wiadomo, co powiedział pierwszy człowiek, stawiając stopę na Księżycu. Przez cztery dziesięciolecia byliśmy w błędzie, choć złe tłumaczenie na polski wpadkę Armstronga tuszowało. A było tak.

Apollo 11 wystartował 16 lipca 1969 roku. Po 4 dniach, 4 godzinach i 20 minutach lądownik LM z Nailem Armstrongiem i Edwinem Aldrinem odłączył się od modułu dowodzenia, który przez następnych ponad 27 godzin orbitował wokół Srebrnego Globu. 20 lipca „Orzeł wylądował” w okolicach Morza Spokoju. Odpoczynek, posiłek, kontrola wszystkich systemów lądownika oraz ustawienie ich do pozycji startowej – w końcu po 6 godzinach i 40 minutach od wylądowania astronauci wyszli na zewnątrz, a świat usłyszał… I tutaj zaczynają się rozbieżności. Na Ziemi, w kwaterze NASA, wśród trzasków i gwizdów transmisji radiowej usłyszano: that’s one small step for man, one giant leap for mankind. Ale to zdanie nie ma sensu. Oznacza mniej więcej tyle co: to mały krok dla ludzkości, ale ogromny skok dla ludzkości. Czyżby Armstrong czegoś zapomniał? W jego wypowiedzi brakuje jednej litery. Litery „a”. Bo gdyby powiedział: „that’s one small step for a man, one giant leap for mankind”, oznaczałoby: „to mały krok dla człowieka, ale ogromy skok dla ludzkości”.

– Mam nadzieję, że historia wybaczy mi zgubienie jednej sylaby – mówił Armstrong. Równocześnie podkreślał, że wydaje mu się, że pechowe „a” powiedział, stawiając lewą nogę na Księżycu. I miał rację. Wymyślone przez sztab ludzi zdanie (choć Armstrong twierdzi, że sam na nie wpadł) zostało wypowiedziane prawidłowo, tylko usłyszane błędnie. Winę ponosi transmisja radiowa, której jakość w 1969 roku była co najmniej wątpliwa. Zgubioną literkę znalazł Peter Ford, informatyk z Australii i właściciel firmy Control Bionics. Jego praca polega na tworzeniu systemów, które osobom głuchoniemym umożliwiają porozumiewanie się ze światem. Według Forda, pierwsza część sławnego zdania trwała 3,5 sekundy, a to przy ówczesnej technologii komunikacji radiowej przynajmniej o 10 razy za szybko, żeby „a” na Ziemi zostało usłyszane. To że nie było słyszalne, nie oznacza jednak, że nie było „obecne” w ścieżce dźwiękowej. Po dwóch tygodniach poszukiwań, Ford znalazł ślad niesłyszalnego „a”. – Nie mieściło mi się w głowie, że osoba tak opanowana i precyzyjna jak Armstrong mogła nie zapamiętać poprawnie jednego zdania – powiedział pytany o powody rozpoczęcia analizy słów z Księżyca. Jedna litera może czasami bardzo dużo zmienić.

kamera

Choć od lądowania na Księżycu minęło już ponad 45 lat, do dzisiaj misje Apollo mogą być źródłem zaskoczenia. Kilkanaście dni temu dokonano odkrycia niemalże archeologicznego. Takie odkrycia zwykle kojarzą się z wykopaliskami czy przeszukiwaniem ruin, ale na pewno nie z porządkami w szafie. Tym razem było jednak inaczej. Wdowa po astronaucie Neilu Armstrongu, tym samym, który jako pierwszy człowiek stawiał nogę na Księżycu, znalazła w jego szafie kamerę, którą zarejestrowano pierwsze kroki ludzi na Srebrnym Globie. Kamera nie była elektroniczna jak te dzisiaj używane, a obraz rejestrowała na 16mm taśmie filmowej. Urządzenie i wiele innych pamiątek z lotu Apollo 11 kobieta znalazła na dnie szafy w płóciennej torbie. Zanim Armstrong wyszedł z lądownika, trzymaną w ręku kamerą rejestrował moment zbliżania się lądownika „Eagle” (Orzeł) do powierzchni Księżyca. – Ta kamera zarejestrowała jedne z najważniejszych zdjęć XX wieku – powiedział Allan Needell z National Air and Space Museum, instytucji, której wdowa po Armstrongu przekazała cenne znalezisko.

Neil Armstrong zmarł w 2012 r.

10 komentarzy do Co powiedzieli na Księżycu?

Żyć albo nie żyć

Na Marsie znajdowane są kolejne dowody na to, że nie tylko było tam sporo wody, ale występowało także życie. Niewykluczone, że wciąż tam się znajduje.

Na Marsie znajdowane są kolejne dowody na to, że nie tylko było tam sporo wody, ale występowało także życie. Niewykluczone, że wciąż tam się znajduje.

Badania kosmosu bardzo rzadko dają jednoznaczną odpowiedź na postawione pytanie. To raczej sztuka zbierania skrawków informacji, z których żadna nie jest rozstrzygająca, ale wszystkie razem dają obraz sytuacji.

Woda była czy nie?

Tak jest niemal ze wszystkim. Ale zatrzymajmy się na Marsie. Czy jest woda na Marsie? Tak, jest. Wiemy to dzisiaj, ale musiały minąć długie lata, by móc tak jednoznacznie na to pytanie odpowiedzieć. Bo czy dowodem jest to, że z orbity widać struktury, które wyglądają jak wyschnięte koryta rzek? Czy dowodem jest to, że gdzieniegdzie – na zdjęciach z orbity – widać pojawiające się jak gdyby strużki wody? Szczególnie na nasłonecznionych zboczach gór. Czy dowodem na istnienie zamarzniętej wody są czapy czegoś białego na marsjańskich biegunach albo po prostu teoria, która mówi, że woda na Marsie być powinna? Żaden z wyżej wymienionych faktów sam w sobie o niczym nie świadczy. Ale wszystkie one razem powodują, że dzisiaj fakt istnienia wody na Czerwonej Planecie nie jest podawany w wątpliwość. Do tego dochodzi jeszcze jeden eksperyment, a mianowicie wykrycie pary wodnej w bardzo rzadkiej marsjańskiej atmosferze. A co z życiem?

Tym dawnym i tym obecnym? Sytuacja wygląda bardzo podobnie. To, że w znalezionym na Ziemi meteorycie pochodzącym z Marsa są ślady funkcjonowania żywych organizmów, o niczym nie musi świadczyć. Bakterie mogły do niego wejść, gdy skała była już na Ziemi. Istnienie wody i warunków (temperatura, promieniowanie, ciśnienie), które umożliwiały istnienie życia, także nie jest żadnym dowodem. Podobnie jak to, że na Marsie znajdowane są skały niemal identyczne jak skały osadowe pochodzenia biologicznego na Ziemi. Na to nakłada się teoria, która mówi, że w części, a być może nawet w całości życie czy elementy składowe życia na Ziemię przyniosły komety. Ale czy z tego faktu wynika, że na Marsie było życie? Może rzeczywiście komety tam uderzały, ale nie da się sprawdzić, czy najprostsze komórki tam się rozwinęły. I podobnie jak z wodą: żaden z tych argumentów sam z siebie o niczym nie świadczy, ale wszystkie równocześnie… Badania kosmiczne są jak puzzle – żaden nie zdradzi, co kryje cały obraz, ale im więcej mamy ich w ręku, tym więcej wiemy o świecie, który opisują. Właśnie znaleziono kolejny klocek. Niezwykle ważny i pasujący do poprzednich. Tym klockiem jest metan.

Co z tym życiem?

Ściślej rzecz biorąc, nie tyle metan, ile szybkie zmiany jego stężenia. O tym, że w niezwykle rzadkiej marsjańskiej atmosferze znajdują się niewielkie ilości metanu, wiedziano od dawna. Problemem było jego pochodzenie. Metan może powstawać na wiele różnych sposobów, ale na Ziemi niemal wszystkie związane są z działalnością organizmów żywych. Metan – zwany czasami gazem błotnym – składa się z atomu węgla i czterech połączonych z nim atomów wodoru (jego wzór to CH4). Jest bezwonny i bezbarwny. Skąd się wziął na Marsie? To jest właśnie pytanie za milion dolarów. A może nawet za 100 milionów. Amerykański łazik marsjański Curiosity nad wywierconym przez siebie otworem wykrył dziesięciokrotny wzrost stężenia metanu. Otwór nie był zbyt głęboki, metan zaczął się ulatniać z gruntu, który znajduje się zaraz pod powierzchnią. Do odkrycia doszło podczas badań wewnątrz 154-kilometrowego krateru Gale. W warunkach ziemskich metan jest w 95 proc. pochodzenia organicznego i związany ściśle z cyklem życiowym roślin i zwierząt. Ten fakt o niczym jeszcze nie przesądza. Po pierwsze dlatego, że pozostałe 5 proc. to produkcja metanu w procesach geologicznych. A po drugie kto powiedział, że znamy wszystkie procesy produkcji metanu? Być może na Marsie mają miejsca takie, których na Ziemi nie ma. – Te okresowe znaczne wzrosty zawartości metanu w atmosferze, tj. szybki wzrost, a później spadek, wskazują, że ich źródło musi być stosunkowo niewielkie – przypuszcza Sushil Atreya z Uniwersytetu Stanu Michigan, który bierze udział w projekcie Curiosity. – Może być wiele źródeł, biologicznych i niebiologicznych, takich jak np. reakcje zachodzące między wodą i skałami – dodał.

Podsumowując. Co wiemy nowego? Jeden z marsjańskich łazików wykrył szybko zmieniające się stężenie metanu. Czy to znaczy, że znaleziono tam życie? Nie! Czy to znaczy, że było tam kiedyś życie? Nie! W takim razie co to znaczy? Tylko tyle, albo aż tyle, że mamy kolejny kawałek układanki. Nie znamy jeszcze pełnego obrazu, ale wydaje się, że jest na nim planeta, która kiedyś obfitowała zarówno w płynną wodę, jak i w życie. Planeta, na której to życie przetrwało do dzisiaj.

Brak komentarzy do Żyć albo nie żyć

Ład czy chaos?

Chaos i ład – choć wydają się przeciwstawne, w naturze pięknie się przenikają. Ład wynika z chaosu, a chaos kroczy przed harmonią. Wystarczy spojrzeć na piaskową wydmę, płatek śniegu czy którykolwiek układ planetarny.

Co było pierwsze: ład czy chaos? W życiu codziennym chaos powstaje z ładu, ale we wszechświecie w różnych skalach kolejność może być odwrotna. Gwiazdy i układy planetarne powstają z chaotycznej chmury drobinek, ta zaś z eksplozji gwiazdy. Tylko czy taka chmura jest rzeczywiście chaotyczna? Nie da się przewidzieć ruchu każdego z jej atomów, ale to nie znaczy, że nie działają w niej prawa fizyki. Z czasem to one wprowadzają porządek. Z tego porządku rodzą się nowe światy. Ale czy w nich panuje ład i porządek?

Góra piasku

Z naszego punktu widzenia niekoniecznie. Na przykład ruch planet, księżyców i wszystkich innych obiektów w Układzie Słonecznym wydaje się uporządkowany i przewidywalny. Ale gdyby tak było, jak należałoby tłumaczyć, skąd wzięły się kratery, które świadczą o kolizjach, do jakich dochodziło w przeszłości i wciąż dochodzi? Skąd pojawiające się co jakiś czas „alarmy”, że do Ziemi zbliża się groźna asteroida albo planetoida? Czy to wszystko rzeczywiście działa jak w szwajcarskim zegarku? Tak, ale złożoności tego mechanizmu nie jesteśmy (jeszcze?) w stanie pojąć. Zdarzenia w kosmosie, a wśród nich zderzenia między kosmicznymi obiektami, są elementem porządku, którego my nie dostrzegamy. Ta swego rodzaju ślepota to problem nie tylko kosmicznych skal. Mamy kłopot z ogarnianiem świata w każdej skali. Z tych ograniczeń wynika to, że dość często mylimy chaos z porządkiem. Jak to możliwe?

Wyobraźmy sobie niewielki fragment pustyni i wietrzny dzień. Pojedyncze ziarenka piasku są unoszone i opadają. Jedne blisko siebie, inne dalej. Jedne w powietrzu przebywają chwilę, inne przez długi czas. Nie ma najmniejszych szans, by przewidzieć ruch wspomnianych ziarenek. On zależy od tak wielu czynników, że największe komputery na Ziemi nie poradziłyby sobie z takim wyzwaniem. Gdy patrzy się na ten obraz, aż ciśnie się na usta słowo „chaos”. Czy ruch ziarenek piasku podrywanych przez wiatr jest przypadkowy? Na pewno jest (dla nas) nieprzewidywalny, ale nie chaotyczny. Jest w nim porządek i rządzą nim prawa fizyki. Nie trzeba wierzyć na słowo, wystarczy poczekać, aż wiatr ustanie, a wtedy naszym oczom ukaże się wydma. Ta potrzebuje swego rodzaju nieporządku. Wydma nigdy nie powstanie na idealnie płaskiej powierzchni. Potrzebna jest przeszkoda. Lokalne zaburzenie porządku. Po co? By wyhamować wiatr. Tylko wtedy niesiony przez niego piasek opadnie. Jedno ziarenko, później drugie, kolejne…

(Nie)porządek na zimno

Wystarczy rzut oka na wydmę, by zobaczyć porządek. Wydmy zawsze mają jedno zbocze łagodne, a drugie strome. Łagodnym odwrócone są w kierunku wiejącego wiatru. Rozpoznajemy wydmy poprzeczne, seify, barchany czy wydmy gwiaździste. Ich kształt zależy od wielu czynników. Wśród nich są ukształtowanie terenu, siła i kierunek wiatru oraz rodzaj (właściwości) piasku. Zależności między tymi czynnikami są tak skomplikowane, że nawet największe komputery nie są w stanie tego ogarnąć. Ale o żadnym chaosie nie ma tu mowy. Tak samo jak nie ma mowy o chaosie w procesie tworzenia się kryształów. Chyba najlepszą ilustracją jest powstawanie płatków śniegu. Nie mogłyby się pojawić w idealnie czystym powietrzu, w którym nie byłoby chociażby najmniejszego pyłku. Woda w pewnej temperaturze zamarza – to jasne – ale może przechodzić w stan stały na dwa sposoby. Lód to cząsteczki wody, które zamarzły w nieuporządkowaniu. Śnieg to kryształy wody, a więc cząsteczki, które zamarzając, zdążyły się uporządkować, znaleźć się na swoich miejscach. Płatek śniegu to nieprzewidywalny porządek. Nie ma dwóch takich samych śnieżynek, ale to nie zmienia faktu, że wszystkie są stworzone według konkretnego wzoru. Każdy płatek śniegu ma kształt sześciokąta foremnego, figury, która ma sześć kątów (wierzchołków) i której wszystkie boki są równej długości. Dlaczego? Bo cząsteczki wody w krysztale łączą się ze sobą szóstkami. Połączenie „na płasko” sześciu cząsteczek wody musi utworzyć sześciokąt, w którym w wierzchołkach są atomy tlenu. I choć płatki śniegu są sześcioramiennymi gwiazdkami, każda jest nieco inna, bo każdy płatek ma inną historię, przechodzi inną drogę w chmurze. Nie da się jej przewidzieć ani odtworzyć. Rządzi nią zbyt wiele zmiennych, ale czy można powiedzieć, że w chmurze śniegowej panuje chaos? Idealnie regularne, symetryczne i uporządkowane płatki śniegu świadczą o czymś zupełnie innym. Tak samo jak idealnie „dostrojone” do siebie planety w systemach planetarnych, które powstały z chmury materii. Czy istnieją dwie takie same gwiazdy? Czy istnieją dwa takie same układy planetarne? Nie. Każdy jest inny, mimo że wszystkie powstały na podstawie tych samych zasad fizyki.
Za mało wiemy

Co ciekawe, nie do przewidzenia czy nie do opisania jest nie tylko proces, w którym coś powstaje (układ planetarny, wydma, kryształ…), ale także sam moment, w którym to powstawanie się zaczyna. Zainicjowanie wielu procesów wiąże się z nieprzewidywalną sytuacją. W przypadku płatka śniegu musi być pyłek, jakieś zanieczyszczenie. Podobnie sprawa się ma ze wszystkimi kryształami. Woda w garnku nie zacznie się gotować, o ile na ściankach garnka nie znajdzie się jakaś mała rysa. W idealnie gładkim garnku idealnie czysta woda może być w stanie ciekłym nawet wtedy, gdy jej temperatura dawno przekroczyła 100 st. C. Lawina rozpoczyna się od niewielkiego zaburzenia. Podobnie jak burza. Pioruny uderzają w sposób nieprzewidywalny, ale na pewno nie przypadkowy. Choć kształt błyskawic zdaje się na to nie wskazywać, w rzeczywistości ładunki elektryczne obierają drogę, która gwarantuje najmniejszy opór elektryczny. Skąd ładunki wiedzą, w którą stronę się przemieszczać? Przed właściwym wyładowaniem z chmury wylatuje niewielka „paczka” ładunków, która sprawdza drogę o najmniejszym oporze. Ładunki z błyskawicy, którą widzimy, są prowadzone niemalże jak po sznurku. Wszystko w idealnym porządku, według ściśle określonych reguł. Choć z zewnątrz wygląda to na chaos i przypadek.

Układ Słoneczny potrzebuje 250 mln lat, by zrobić pełny obrót wokół centrum galaktyki Drogi Mlecznej. Ten ruch ma oczywiście swoje konsekwencje. Zmieniające się kosmiczne otoczenie powoduje, że naruszana jest subtelna równowaga między Słońcem a pozostałymi obiektami w naszym układzie planetarnym. Tego oczywiście nie da się przewidzieć, ale zdarza się, że to naruszenie równowagi skutkuje wzmożoną aktywnością komet. Te częściej niż zwykle wylatują w kierunku Słońca. Zwiększa się przez to szansa na kolizję z Ziemią. Co oznaczałoby takie zderzenie? Chaos? To chyba nie jest dobre słowo. Dzięki takim kolizjom w przeszłości dzisiaj na Ziemi jest woda. Patrząc na przepiękny krajobraz z wodą, piaskiem i palmami w tle, warto sobie zdać sprawę, że tę wodę przyniosły komety, piasek to skruszone skały, a palma czy jakikolwiek inny żywy organizm na tej planecie są zbudowane z cząsteczek chemicznych, których ruch wciąż jest dla nas chaotyczny i nieprzewidywalny. Z chaosu w pewnym sensie wynika porządek. Widząc ten porządek, harmonię, warto sobie zdać sprawę z tego, że w naszym świecie tak naprawdę nic nie jest chaotyczne. Wszystko jest podporządkowane prawom natury. Wszystko jest uregulowane i przewidywalne. Kłopot w tym, że my tego porządku często nie dostrzegamy.

 

Tekst ukazał się w Tygodniku Gość Niedzielny

 

1 komentarz do Ład czy chaos?

Bombardowanie z kosmosu

Małe asteroidy o średnicy około 1 metra wpadają w naszą atmosferę zadziwiająco często. NASA właśnie opublikowała raport dotyczący „bombardowania Ziemi” w latach 1994 – 2013.

Jednometrowe obiekty wpadają w atmosferę średnio co dwa tygodnie! Mniejszych obiektów nawet nie sposób policzyć. Miejsca w których dochodzi do kolizji są rozrzucone mniej więcej równomiernie po całej planecie. Z trwających 20 lat badań wynika, że w tym czasie zarejestrowano przynajmniej 556 przypadków bolidów, czyli dużych obiektów kosmicznych w atmosferze. Ich energia wynosi czasami setki miliardów dżuli. Jednym z nielicznych – w ostatnich latach – takich przypadków o którym mamy świadomość był meteor czelabiński, który w połowie lutego 2013 roku wywołał panikę nie tylko w Czelabińsku na Syberii. Jego energia wynosiła mniej więcej tyle ile energia pół miliona ton trotylu.

Meteor czelabiński zanim wszedł w ziemską atmosferę miał wielkość około 20 metrów. Rosnąca gęstość gazowej powłoczki Ziemi spowodowała jednak, że obiekt rozpadł się na mniejsze. To samo dzieje się z większością obiektów o średnicy około metra. Choć ich resztki nie „spalają” się w atmosferze całkowicie, zwykle nie są groźne dla ludzi. A wracając do wydarzenia z Czelabińska. Nawet eksperci uważali wtedy, że częstotliwość takich zdarzeń jest niewielka. Tymczasem okazuje się, że jest inaczej. Z danych NASA wynika, że obiekt podobny do czelabińskiego wchodzi w naszą atmosferę co kilka (a nie kilka tysięcy) lat. Obiekt wielkości boiska sportowego wchodzi w atmosferę średnio raz na 5000 lat. Obiekty wielkości samochodu osobowego „nawiedzają nas” średnio raz w roku. Obiekty mniejsze, o średnicy rzędu jednego metra wpadają średnio co dwa tygodnie. Te mniejsze, jeszcze częściej. Na powierzchnię Ziemi każdej doby spada ponad 100 ton kosmicznej materii. To, że mniejsze obiekty nie docierają do powierzchni planety to jasne. Ziemska atmosfera działa jak mechanizm hamujący. Ogromna energia kosmicznego obiektu jest „wytracana” ale nie znika, tylko zamieniana jest na ciepło, na ogrzewanie obiektu, a ten albo rozpada się na drobny maczek, albo po prostu topi się i wyparowuje. To dotyczy także obiektów dużych, tych metrowych. Przeważająca większość z nich rozpada się w górnych warstwach atmosfery pod wpływem dużej zmiany ciśnienia przy wchodzeniu atmosfery. Mniejsze obiekty albo topią się, albo spadają jako niegroźnie małe. Poza tym, 2/3 powierzchni planety pokryta jest oceanami, a całkiem spora pustyniami i lasami, w skrócie tereny niezamieszkałe stanowią dużą większość  obszarów Ziemi. Jakiekolwiek uderzenie pozostaje tam niezauważone.

Obiekty wielkości ziarenka piasku, o ile wejdą w ziemską atmosferę w nocy, są łatwo zauważalne nawet gołym okiem. Większe to tzw. bolidy, świecą jaśniej niż Wenus. Co ciekawe, to świecenie nie wynika z tarcia obiektu kosmicznego o cząsteczki gazów w atmosferze, tylko z silnego sprężenia powietrza przed czołem bolidu. Ogromny wzrost ciśnienia powoduje podniesienie temperatury nie tylko obiektu, ale także gazu. I to świecący gaz, a nie meteor jest tym co widać w nocy. Bolid czy meteor nagrzewa się do temperatury kilku tysięcy stopni Celsjusza. Szybkiej zmianie ciśnienia często towarzyszy także grom dźwiękowy.

NASA od wielu już lat obserwuje obiekty, które potencjalnie mogą zagrozić Ziemi (to tzw. NEO – Near Earth Object). Jako takie definiuje się te, które znajdują się w odległości mniejszej niż 50 milionów kilometrów od orbity Ziemi.Dla porównania średnia odległość Ziemia – Słońce wynosi około 150 mln kilometrów, a średnia odległość Ziemia Księżyc około 350 tys. kilometrów.

W obszarze szczególnego zainteresowania obserwatorów z NASA, tylko obiektów o średnicy 1km lub większej znajduje się około tysiąca. Ponad 950 z nich jest przez agencję (w ramach programu NEO) obserwowana. W najbliższym sąsiedztwie Ziemi ilość obiektów, których średnica wynosi 150 metrów i więcej, szacuje się na około 25 tysięcy, z czego ponad 22 tys. jest pod obserwacją.

 

Lista potencjalnie groźnych obiektów:

http://neo.jpl.nasa.gov/risks/

Więcej informacji:

http://science.nasa.gov/planetary-science/near-earth-objects/

 

 

Brak komentarzy do Bombardowanie z kosmosu

Jak zbudować kuchenkę słoneczną?

Kuchenka słoneczna może działać cały rok. Co prawda zimą czy jesienią gotowanie w niej potraw zajmie nieco więcej czasu, ale wciąż jest możliwe. W takim urządzeniu gotuje bowiem nie wysoka temperatura otoczenia, tylko promienie słoneczne. Warunkiem działania kuchenki jest więc bezchmurne niebo, a nie upał.

Słońce dostarcza na powierzchnię Ziemi ogromną ilość energii. Co prawda tylko jej część przedziera się przez atmosferę, ale to i tak bardzo dużo. Gdyby wydobyć wszystkie paliwa kopalne (węgiel, ropę i gaz), zmagazynowana w nich energia równałaby się energii dostarczanej Ziemi przez Słońce zaledwie przez 50 dni.

Energię słoneczną wykorzystują rośliny w procesie fotosyntezy. My budujemy elektrownie słoneczne, ale w ten sposób na prąd czy ciepło przerabiamy zaledwie tysięczne części energii jaka dociera do powierzchni Ziemi. Jednym ze sposobów jej wykorzystania jest wybudowanie kuchenki słonecznej. Urządzenia, które wykorzystuje energię niesioną przez promienie Słońca do podnoszenia temperatury w garnku czy na patelni.

1. Umieść jeden karton w drugim, a pomiędzy ścianki włóż pogniecione gazety. Będą służyły jako izolator.

1

2. Wewnętrzny karton wyłóż czarnym matowym papierem lub folią. Następnie wytnij z kartonu cztery kwadraty, których bok będzie tej samej długości co bok większego kartonu. Przyklej do jednej z powierzchni kwadratów aluminiową srebrną folię. Staraj się aby folia była gładka, by nie miała żadnych nierówności. Ma być jak lustro.

2

3. Przyklej kartonowe kwadraty do brzegów większego kartonu tak, by były skierowane folią do góry…

3

4. … a następnie umieść je pod kątem 45 st. do pionu (albo podłoża). Boki kuchenki można podtrzymać na drewnianych nóżkach, albo na sznurkach, łączących je ze sobą. Kąt 45 st. gwarantuje, że największa ilość promieni słonecznych będzie kierowana do środka kuchenki, a to oznacza najwyższą temperaturę w jej środku.

4

5. Kuchenka gotowa. Możesz do niej włożyć garnek z daniem, które ma być ugotowane.

5

Co ważne, kuchenka może działać nie tylko latem. Co prawda zimą czy jesienią gotowanie w niej potraw zajmie więcej czasu, ale wciąż jest możliwe. W solarnej kuchence gotuje bowiem nie wysoka temperatura otoczenia, tylko promienie słoneczne. Warunkiem działania kuchenki jest więc bezchmurne niebo, a nie upał.

Rysunki w artykule pochodzą z serwisu wikiHow.com

3 komentarze do Jak zbudować kuchenkę słoneczną?

Type on the field below and hit Enter/Return to search