Nauka To Lubię

Oficjalna strona Tomasza Rożka

Tag: wynalazek

Robot obiad ci poda

W pierwszych dniach stycznia, na kampusie George Mason University’s w USA pojawiło się 25 robotów dostarczających żywność. Udało im się dokonać niemożliwego. Dzięki nim, studenci zaczęli normalnie się odżywiać.

W pierwszych dniach stycznia, na kampusie George Mason University’s w USA pojawiło się 25 robotów dostarczających żywność. Roboty wbudował i dedykowaną aplikację napisał start-up Bay Area należący do Starship Technologies.
Po trzech miesiącach trwania eksperymentu okazało się, że dzięki robotom studenci zaczęli lepiej się odżywiać. Z badań przeprowadzonych przed eksperymentem wynika, że prawie 90 proc. młodych ludzi rezygnuje z jedzenia śniadania nie z powodu braku pieniędzy, tylko braku czasu. W skrócie, gdy mamy do wyboru dłuższy sen albo śniadanie, wybieramy spanie. Chyba każdy z nas tak by wybrał.
Tymczasem okazuje się, że dzięki robotom, studenci zaczęli jeść śniadania. To samo dotyczy ciepłych posiłków w porze obiadu. I w tym przypadku chodziło o brak czasu. Ale urządzenie, które dotrzymuje kroku najbardziej zabieganym skutecznie przekonało młodych ludzi do tego by zamówić ciepły posiłek, z dostawą dokładnie do miejsca które w danym momencie wydaje się być optymalne. Czasami mamy po prostu ochotę posiedzieć na ławce w parku, a czasami pracę do wykonania w budynku oddalonym od stołówki. Tymczasem robot dojeżdża do każdego miejsca w kampusie w czasie nie dłuższym niż 15 minut.
O tym jak ważne jest regularne spożywanie posiłków powie każda mama, ale też każdy lekarz czy naukowiec zajmujący się żywieniem. To szczególnie istotne gdy organizm się rozwija i wtedy kiedy musi sprawnie analizować i uczyć się. Źle odżywieni studenci mają mniejsze osiągnięcia naukowe i sportowe. Częściej zapadają na różnego rodzaju choroby. Przy czym (może w przeciwieństwie do czasów zamierzchłych) złe nawyki żywieniowe dzisiejszych żaków nie wynikają z biedy czy dostępności jedzenia, a z braku czasu.
 
Biznesowo projekt skonstruowany jest następująco. Student płaci za posiłek kwotę taką samą jaką zapłaciłby w stołówce. Do tego – za dostarczenie – doliczana jest opłata 1,99 USD. Ta opłata jest zyskiem firmy dostarczającej roboty. Z kolei uczelnia ma swój udział w firmie przygotowującej posiłki. Uczelnia zarabia, bo sprzedaje się więcej posiłków. Zadowoleni są także studenci, bo… co to za przyjemność chodzić głodnym. W skrócie, rzadko spotykana sytuacja win-win.
W dłuższej perspektywie odpowiednio odżywieni studenci mogą mieć wpływ na lepsze wyniki samego uniwersytetu. Nie mówiąc już o tym, że uczelnia która ma w swojej ofercie taką ofertę może przyciągnąć do siebie więcej kandydatów, a to zawsze podnosi poziom nauczania. Już dzisiaj wiadomo, że podobny system zostanie wprowadzony na kolejnym amerykańskim uniwersytecie Flagstaff z Północnej Arizony. Po kampusie tej uczelni będzie jeździła flota 30 robotów Starship Technologies.
Zobaczcie sami jak to działa:

1 komentarz do Robot obiad ci poda

Chiny na Marsie, Mars w Chinach

Cóż tam, panie, w polityce? Chińczyki trzymają się mocno!? Oj mocno.
I to nie tylko w polityce, ale także w nauce. Chiny właśnie otwarły zaawansowany ośrodek w który będą symulowali warunki marsjańskie, kilka tygodni temu chiński lądownik Cheng4 wylądował na „odwrotnej” stronie Księżyca, a to dopiero początek!

W chińskim mieście Mang, położonym tuż przy granicy z Birmą, powstała bardzo zaawansowana makieta marsjańskiego miasta (bazy). W zasadzie tak zaawansowanej bazy nie ma chyba nigdzie indziej. Celem budowy tego ośrodka jest z jednej strony przyciągnięcie turystów i edukacja, z drugiej ćwiczenie ekspertów i symulowanie tego co czeka nas na czerwonej Planecie. W ośrodku będą także prowadzone badania naukowe, w tym badania człowieka. Równocześnie może w nim pracować około 60 osób.

Ośrodek otwarto w zeszły piątek, a koszt jego budowy wyniósł prawie 25 milionów dolarów. Pieniądze nie pochodziły jednak z kasy państwa. Wyłożył je prywatny donator.

Miejsce w którym ośrodek powstał, jego otoczenie, przypomina to czego można się będzie spodziewać na Marsie. Sucha, piaszczysto-kamienista okolica ułatwi prowadzenie treningów i urealni symulacje. Oczywiście na powierzchni Marsa będzie znacznie, znacznie trudniej, z powodu bardzo rzadkiej atmosfery, niskiego ciśnienia i nieporównywalnie większej amplitudy temperatury. I być może najważniejsze. na Marsie panuje wysoki poziom promieniowania kosmicznego, przed którym, na Ziemi chroni nas atmosfera i pole magnetyczne planety. Te różnice nie zmieniają jednak tego, że zdobycie Marsa przez człowieka musi być poprzedzone budowaniem ośrodków szkoleniowych i baz na Ziemi. Jest jeszcze jeden cel ich budowy. Takie miejsca inspirują młodych ludzi. A to bardzo ważne przy budowaniu planu podboju kosmosu. Te inspiracje u niektórych zostaną wykorzystane i rozwinięte w życiu zawodowym, a u innych przekonają że rozwój nauki i technologii ma ogromny sens.

Odwrócona strona Księżyca. Zdjęcie zrobione z pokładu lądownika Cheng4. Widać na nim łazik Yutu-2 zmierzający w kierunku krateru Aitken.

Kto pierwszy będzie na Marsie? Amerykanin? Chińczyk? A może zostanie zorganizowana wspólna misja? W to ostatnie najtrudniej mi uwierzyć. Chiński program kosmiczny rozwija się w zawrotnym tempie. Sukces goni sukces. Żeby to zrozumieć, musimy zdawać sobie sprawę z tego, że pierwszy Chińczyk znalazł się na orbicie dopiero w 2003 roku, 42 lata później niż pierwszy Rosjanin (Gagarin) i pierwszy Amerykanin (Shepard). Dzisiaj, Chiny dawno wyprzedziły Rosję i gonią Amerykę. Kilka tygodni temu, chiński lądownik Cheng4, wylądował na „odwrotnej” stronie Księżyca. W miejscu w którym wcześniej nikt nie lądował. To nie był błachy sukces. Odwrócona od Ziemi strona Księżyca jest jedynym miejscem w całym Układzie Słonecznym (a może i całym kosmosie), do którego nigdy bezpośrednio nie dotrą fale radiowe z Ziemi. A to oznacza, że komunikacja z Cheng4 musiała się odbywać za pomocą satelitów pośredniczących.

To lądowanie pokazuje, że dzisiaj Chińczyków stać już na oryginalność. Nie budują swojego programu kosmicznego na wzór i podobieństwo innych (choć na początku ich rozbiegu tak właśnie było). To jasne jak Słońce, że chcąc lądować na obcych globach, trzeba to poćwiczyć na naszym Księżycu. Jest najbliżej, więc jest oczywistym poligonem testowym. W kierunku Księżyca swoje sondy wysyłali Amerykanie, Rosjanie, ale także Chińczycy, Japończycy, Irańczycy, a w przyszłym miesiącu ma tam lecieć sonda izraelska. Na powierzchni globu lądowali Amerykanie i Rosjanie (Japończycy i Irańczycy swoje sondy rozbijali o powierzchnię Księżyca). Wszyscy jednak wybierali widoczną stronę naszego satelity. Choć nie wszystkie jej kawałki zostały zbadane, generalnie jest ona bardzo dobrze poznana. Chińczycy swoje pierwsze lądowanie także odbyli po widocznej stronie Księżyca, ale kolejne, to sprzed kilku tygodni, postanowili zrobić po stronie niewidocznej. Amerykanie czy Rosjanie lądowali na Srebrnym Globie wielokrotnie. Chińczycy teraz zrobili to po raz drugi. I podnieśli sobie poprzeczkę lądując tam, gdzie nikt inny nie wylądował. Samo lądowanie to jedno, ale misja ma bardzo ciekawy i oryginalny program naukowy. Łącznie z testowaniem czy na Księżycu mogłyby się rozwijać rośliny i zwierzęta.

Tamta strona Księżyca jest wciąż zagadką i choć sam satelita jest blisko Ziemi a jego zdjęcia (a więc i mapy) są bardzo wysokiej jakości, odwrócona strona Księżyca jest niezbadana. Biorąc pod uwagę, że jest inna niż ta strona którą widzimy, w pewnym sensie, Chińczycy wylądowali na zupełnie innym globie.

Co teraz? Jeszcze w tym roku na Księżyc poleci kolejna sonda, której celem będzie przywiezienie księżycowych próbek. W kolejnym roku zaplanowane jest lądowanie na Marsie. Z kolei za 2,5 roku, jeżeli wszystko pójdzie zgodnie z planem, na orbitę zostaną wyniesione i złożone elementy chińskiej stacji orbitalnej Tiangong. Stacji, która będzie miała stałą załogę.

Program kosmiczny Chin to typowy przykład syndromu młodszego brata. Młodsze rodzeństwo rozwija się szybciej i często dochodzi dalej, bo przyglądając się starszemu, nie popełnia błędów i korzysta z doświadczeń. Ma też większy rozmach i stać je na większą fantazję i oryginalność. Zdarza się, że takie podejście pozwala młodszemu prześcignąć starszego. Mimo tego, że ten starszy ma większe doświadczenie.

Brak komentarzy do Chiny na Marsie, Mars w Chinach

Najbardziej cieszą nas zielone

Czym jest piękno nauki? Dla jednych to prostota matematycznych formuł, dla innych zaś piękne przekroje geologicznych struktur. Piękne mogą być wykresy, ale także obrazy spod mikroskopu i teleskopu kosmicznego.

Czym jest piękno nauki? Dla jednych to prostota matematycznych formuł, dla innych zaś piękne przekroje geologicznych struktur. Piękne mogą być wykresy (szczególnie te wielowymiarowe), ale także obrazy spod mikroskopu i teleskopu kosmicznego. Piękne są zdjęcia motylich skrzydeł i zdjęcia chmur zrobionych z orbity. Patrząc na te obrazy, wykresy, czasami bardzo dziwne, stosowane tylko w języku matematyki, znaki… doceniamy nie to, czym one są, ale to, jakie one są. Nie musimy chyba wiedzieć, co obraz, wykres czy formuła konkretnie przedstawiają. Za serce łapie nas to, co w nich ulotne i subiektywne. Połączenie nauki ze sztuką jest tak naturalne, jak wschód i zachód Słońca. Jak to, że w niższej temperaturze para wodna kondensuje i tworzy niepowtarzalne kryształy wody, czyli piękne płatki śniegu. I czy na prawdę trzeba rozumieć zasady symetrii i znać wykres przemian fazowych, aby docenić ich piękno?

Fundacja Badań i Rozwoju Nauki zorganizowała aukcję charytatywną, podczas której zlicytowane zostaną intrygujące zdjęcia wysp trzustkowych wykonane przez mikroskop fluorescencyjny. Uzyskane w ten sposób środki zostaną przeznaczone na rozbudowę Laboratorium Biodruku Tkankowego, które umożliwia realizację projektów związanych z biodrukowaniem tak tkanek, jak i całych organów.

Druk 3D w medycynie to rewolucja, na progu której stoimy. Dzięki niej – „na miarę” i z własnych komórek – będzie można drukować tkanki i organy. Dzisiaj osoby z uszkodzonym sercem, nerką czy trzustką muszą, czasami miesiącami, czekać na dawcę. Ale przyszłość rysuje się inaczej! Już dzisiaj można drukować substancjami, które są szkieletem, rusztowaniem dla żywych komórek. W ten sposób od 2013 roku zaczęto drukować pokiereszowane czy stracone w wyniku wypadku syntetyczne chrząstki uszu lub nosa. Potem zaczęto drukować kości.

Po elementach drukowanych z materiałów sztucznych (choć biokompatybilnych) przyszedł czas na drukowanie żywymi komórkami. Trzy lata temu grupie badaczy z amerykańskiego Wake Forest Baptist Medical Center udało się wydrukować warstwę skóry wprost na oczyszczoną ranę pacjenta. Z kolei naukowcy z dwóch amerykańskich uczelni (University of Pennsylvania oraz MIT) już jakiś czas temu wydrukowali z żywych komórek naczynia krwionośne. A w San Diego jedna z firm stworzyła technologię, która umożliwia drukowanie… wątroby.

Drukowanie całych narządów jest sporym wyzwaniem. Drukarka nie może nakładać kolejnych warstw żywych komórek, ponieważ pomiędzy nimi muszą zostać wprowadzone naczynia krwionośne. W przypadku takich narządów jak wątroba, mamy dodatkowo do czynienia z wieloma rodzajami komórek. Ale te ograniczenia udaje się coraz częściej przezwyciężać.

W polskiej Fundacji Badań i Rozwoju Nauki, w konsorcjum Bionic, naukowcy starają się wydrukować w pełni działającą, żywą trzustkę. Brzmi to abstrakcyjnie, ale co do zasady jest dość proste. W drukarce, w odpowiednich pojemnikach, umieszcza się żywe komórki produkujące insulinę, komórki śródbłonka do tworzenia naczyń, a także zawiesinę tzw. macierzy zewnątrzkomórkowej, czyli rusztowania, które następnie utrzyma całość. Kolejny krok nie różni się od „zwykłego” drukowania 3D. Drukarka warstwa po warstwie układa zawartość poszczególnych pojemników. Następnie tak wydrukowany organ umieszcza się na kilka dni w inkubatorze i… trzustka gotowa!

Przed polskimi naukowcami przełomowa próba. W najbliższych tygodniach chcą – jako pierwsi na świecie – wydrukować w pełni unaczynnioną trzustkę. Prototyp narządu zostanie umieszczony w bioreaktorze i poddany kolejnym testom. Gdy te przebiegną pomyślnie, przyjdzie czas na testy na zwierzętach, którym zostanie wszczepiony w pełni funkcjonalny, całkowicie wydrukowany narząd. To będzie prawdziwy przełom w medycynie, którego wypatrują miliony, nie mogących się doczekać na dawcę, chorych. W biodruku nie chodzi jednak tylko o to, aby każdy potrzebujący natychmiast otrzymał organ do przeszczepu. W tej technologii, tkanki czy narządy, mogą być drukowane z namnożonych komórek pacjenta, a to oznacza, że znika ryzyko odrzucenia przeszczepu. Nadzieje są ogromne. A niecierpliwym polecam poważniejsze traktowanie filmów czy książek science – fiction. W wielu z nich – chociażby w serialu „Star Trek” – części uszkodzonego ciała były replikowane. Po prostu.

To przyszłość, choć wierzę, że wcale nie odległa. Na kolejne badania potrzebne są oczywiście pieniądze. Fundacja Badań i Rozwoju Nauki pozyskuje je z różnych źródeł. Jednym z nich będzie właśnie organizowana aukcja, podczas której zlicytowane zostaną piękne obrazy. I chyba wcale nie trzeba rozumieć w detalach, jakie funkcje w organizmie spełnia trzustka, jaka jest jej struktura i czym dokładnie są wyspy trzustkowe. Wystarczy patrzeć na ich zdjęcia i zachwycać się. Tak jak obrazami galaktyk, kolonii koralowców czy warstw skał osadowych.

Aukcja charytatywna “Najbardziej cieszą nas zielone” ma charakter otwarty. Wymaga jedynie wcześniejszej rejestracji na stronie aukcji.

Wydarzenie odbędzie się 14.03.2019 r., o godz. 18:30, w Sali Konferencyjnej Instytutu Chemii Przemysłowej przy ul. Rydygiera 8 w Warszawie.

Szczegóły na: https://fundacjabirn.pl/aukcja/

Brak komentarzy do Najbardziej cieszą nas zielone

Najgroźniejsza broń biologiczna

Gdybym miał powiedzieć, którego rodzaju broni masowego rażenia boję się najbardziej, powiedziałbym, że biologicznej. Moim zdaniem, jest ona bardziej perfidna, niż chemiczna i atomowa.

Gdybym miał powiedzieć, którego rodzaju broni masowego rażenia boję się najbardziej, powiedziałbym, że biologicznej. Moim zdaniem jest ona bardziej perfidna niż broń jądrowa i chemiczna.

Zobacz odcinek:       https://youtu.be/raMiib2O28k

Tworząc ranking najgroźniejszych rodzajów broni zacząłem się zastanawiać, jakie kryteria powinienem wziąć pod uwagę. Na pewno skalę i skuteczność rażenia, koszty produkcji i dostępność komponentów, zaawansowanie technologiczne i łatwość zatrudnienia specjalistów. Nie bez znaczenia jest także to czy po użyciu można zająć zdobyty teren, czy też trzeba latami czekać, aż „czynnik zabijający” się zneutralizuje.

Organizmy chorobotwórcze, które wywołują tak groźne choroby jak cholerę, ospę, dur brzuszny, plamisty, dżumę czy żółtą febrę, a także grypę można zdobyć stosunkowo łatwo w licznych bankach genetycznych, znajdujących się przy dużych ośrodkach naukowych. Znane są przypadki kiedy państwom rządzonym przez dyktatorów, chorobotwórcze bakterie czy wirusy dostarczała firma kurierska. Koszty produkcji broni biologicznej są bardzo małe.

Do rozmnażania bakterii wystarczy wiedza zdobyta na podstawowym kursie biologii, a można to robić w niewielkim laboratorium, które można umieścić właściwie wszędzie. Do rozmnażania na masową skalę groźnych organizmów można użyć kadzi, które wykorzystuje się np. do … warzenie piwa.

Broń biologiczna jest bardziej perfidna niż chemiczna. Można rozsiać nad wybranym terenem bakterie, które np., zniszczą uprawy i doprowadzając mieszkańców do głodu, albo gospodarkę do upadku. To się nazywa terroryzm socjoekonomiczny. W taki sam sposób można zabić wszystkie zwierzęta hodowlane. Zarazki nie muszą być zrzucane z samolotów, mogą być roznoszone przez owady czy gryzonie. W rzeczywistości historia zna takie przypadki.

W 1940 roku, na chińskie miasta, Japończycy rozrzucili zakażone dżumą pchły, wywołując epidemię. Ale to nie był pierwszy przypadek użycia broni biologicznej. W starożytności zatruwano studnie wrzucając do nich zdechłe zwierzęta, a nierzadko zdarzało się, że w czasie oblężenia z katapult w kierunku miast wystrzeliwano zwłoki ludzi czy zwierząt, które zmarły na jakąś chorobę zakaźną. W czasie jednej z wojen pod koniec XV wieku Hiszpanie skazili wino w Neapolu krwią trędowatych.

Bardzo trudno powiedzieć kiedy po raz ostatni mieliśmy do czynienia z atakiem bronią biologiczną. W zależności od wykorzystanego patogenu, od ataku do epidemii może minąć nawet kilka tygodni. W innych przypadkach skutki chorobotwórcze mogą nastąpić niemalże natychmiast po ataku. Nawet gdybyśmy wiedzieli że właśnie zrzucono na nas, wpuszczono do wody w wodociągach, albo do wentylacji w budynku chorobotwórcze bakterie, niewiele możemy zrobić. Szybka i wysoka dawka antybiotyków? Tak, ale tylko wtedy, gdy wiemy czym zaatakowano. A określenie tego wcale nie jest takie proste. Testy wyszkolonych grup ludzi (muszą jeszcze znajdować się gdzieś w pobliżu) mogą trwać nawet kilka godzin, a jest to czas w którym większość bakterii już się w organizmie „zadomowiła”. Nawet jednak, gdyby od razu było wiadomo jakimi bakteriami zaatakowano, z symulacji robionych w USA wynika, że skuteczny atak biologiczny bakteriami wąglika tylko na jedno większe miasto zaowocowałby zużyciem całych krajowych zapasów antybiotyków w ciągu dwóch tygodni.

A co się stanie gdy na czynnik biologiczny nie ma antybiotyków? Jeden z twórców radzieckiego programu broni biologicznej Ken Alibek po ucieczce do USA mówił wprost, że celem radzieckich naukowców pracujących nad bronią biologiczną było produkowanie takich bakterii i wirusów, na które nie ma szczepionek ani antybiotyków. W praktyce jedna grupa naukowców produkowała metodami inżynierii genetycznej zabójczy organizm, a druga próbowała znaleźć antidotum. Jak się to NIE udawało, uznawano czynnik za idealny do użycia. Usilnie pracowano – a może dalej się to robi – nad zwiększeniem tzw. wirulencji bakterii czy wirusów, których naturalną szkodliwość uznano za niewystarczającą. Wirulencja to zdolności do wniknięcia, namnożenia się oraz uszkodzenia tkanek. Stwarzano także szczepy, które w naturze nie występują, łącząc np. najbardziej groźne cechy dwóch bakterii. Można było mieć pewność, że wróg na pewno nie ma na taki czynnik ani szczepionki ani antybiotyku. W ten sposób powstawały nowe odmiany wirusa ospy i wirusa Marburg.

Broń biologiczna jest groźniejsza od chemicznej jeszcze pod jednym względem. Jest samopowielająca się. Jej zabójcze działanie może się potęgować z biegiem czasu.Drobnoustroje rozsiane podczas ataku biologicznego rozmnażają się w organizmach ofiar i dalej rozprzestrzeniają się same. Tak właściwie wcale nie trzeba dużej ilości bakterii, żeby zarazić sporą grupę ludzi. Niewielka ilość bakterii wąglika – które w formie przetrwalnikowej wyglądają jak kakao – można przetransportować wszędzie. Nawet najbardziej drobiazgowe kontrole nic tutaj nie pomogą.

Broń biologiczna ma jednak dosyć istotną wadę z punktu widzenia prowadzenia wojny. Na długi czas może skazić zaatakowany teren. Brytyjczycy w czasie testów skuteczności laseczek wąglika pod koniec II Wojny Światowej skazili na 50 lat tereny szkockiej wyspy Gruinard. Oczywiście z punktu widzenia terrorystów, skażenie to żadna wada. Terroryści zwykle nie zajmują zaatakowanych przez siebie terenów.

Podsumowując. Broń biologiczna jest łatwa w użyciu i transporcie. Można ją – np. wąglik – przesłać nawet listem. Sama się powiela a jej wyprodukowanie – mówię tutaj o najbardziej dostępnych szczepach – nie wymaga dużej wiedzy. Dla terrorystów jest mniej dostępna niż niektóre trujące gazy, a jej sporym minusem jest to że zostawia za sobą skażony teren. Z kolei plusem jest to, że używający tej broni może zostać niewykryty. Śmierć ludzi, zwierząt, zagłada upraw może wystąpić wiele dni a nawet tygodni po użyciu tej broni.

Brak komentarzy do Najgroźniejsza broń biologiczna

Najnowocześniejsza broń chemiczna

Jak działa broń chemiczna? Szybko i boleśnie. Bardzo boleśnie i bardzo okrutnie. Gdy po raz pierwszy na masową skalę zastosowali ją Niemcy w czasie I Wojny Światowej, cześć niemieckich dowódców meldowała do sztabu, że stosowanie takiej broni to hańba dla prawdziwych żołnierzy.

Jak działa broń chemiczna? Szybko i boleśnie. Bardzo boleśnie i bardzo okrutnie. Gdy po raz pierwszy na masową skalę zastosowali ją Niemcy w czasie I Wojny Światowej, cześć niemieckich dowódców meldowała do sztabu, że stosowanie takiej broni to hańba dla prawdziwych żołnierzy.

Teoretycznie broni chemicznej nie wolno badać ani produkować. Tak mówią międzynarodowe traktaty. W praktyce w ostatnich latach miało miejsce przynajmniej kilka ataków chemicznych. Ostatni, kilka tygodni temu miał miejsce w Syrii. Sposoby działania broni chemicznej są różne bo wiele zależy od zastosowanej substancji. Generalnie jednak wszystkie gazy bojowe dzieli się na pięć kategorii.

I Wojna Światowa. Jeden z pierwszych (a może pierwszy) atak gazowy z użyciem chloru. Gaz wypuszczano z butli zakopanych w ziemi.

Pierwszym gazem bojowym zastosowanym na polu walki był chlor. Wykorzystali go Niemcy podczas I Wojny Światowej. Chlor, ale też fosgen należy do środków krztuszących. Ich działanie polega głównie na podrażnieniu i paraliżu dróg oddechowych. W skutek tego dochodzi do ich śmiertelnego oparzenia wewnętrznych organów. Środki działające na drogi oddechowe są mało skuteczne, gdy żołnierze mają maski. W pierwszej wojnie światowej maski wprowadzono jednak dopiero po tym jak dziesiątki tysięcy ludzi w konwulsjach udusiło się w okopach.

Druga grupa to środki duszące. Wbrew nazwie nie chodzi jednak o sparaliżowanie układu oddechowego, ale o zablokowanie hemoglobiny, cząsteczki znajdującej się w czerwonej krwince, której celem jest roznoszenie tlenu po organizmie. Człowiek oddycha normalnie, ale w ciągu kilkudziesięciu sekund i tak się dusi. Tlen nie jest z płuc transportowany, a dość okrutna śmierć następuje z powodu obumierania mózgu. Środkiem duszącym jest Cyklon-B, którym zabijano w komorach gazowych, ale także cyjanowodór, który Niemcy stosowali w czasie II wojny światowej.

Trzecia i chyba najgroźniejsza bo najskuteczniejsza grupa to środki paralityczno-drgawkowe. Blokują one komunikację pomiędzy komórkami nerwowymi. To tak jak gdyby duży organizm jakim jest miasto odciąć od sieci elektrycznej i telekomunikacyjnej. Totalny chaos informacyjny i paraliż. Przykładami środków paralityczno-drgawkowych są tabun, sarin, soman czy VX. Sarinu użyły kilka lat temu wojska rządowe w Syrii. W wyniku ataku zmarło około 1700 cywilów.

Grupę czwartą stanowią środki parzące. Takim jest np. gaz musztardowy zwany także Iperytem od nazwy miejscowości w Belgii, gdzie w I Wojnie Światowej został po raz pierwszy użyty. W ciągu kilkunastu minut zmarło wtedy w męczarniach kilkadziesiąt tysięcy Brytyjczyków i Francuzów. W wyniku jednego ataku. Grupa podobna a może i większa zmarła w kolejnych dniach i tygodniach. Niemieccy naukowcy szukali gazu, który będzie zabijał przez skórę nawet tych,
którzy mają maski. I tak wynaleźli gaz musztardowy.

I ostatnia grupa to środki halucynogenne. One nie zabijają, ale powodują czasową niedyspozycję. Do tej grupy zalicza się LSD czy BZ, czyli Chinuklidynobenzylan, który był stosowany przez Amerykanów w Wietnamie.

Bojowym środkiem trującym może być wiele związków, które powszechnie są wykorzystywane w przemyśle chemicznym czy medycynie. Ich nie trzeba produkować, je wystarczy kupić i użyć. Dobrym przykładem może być fosgen. Wykorzystuje się go w przemyśle tekstylnym i farmaceutycznym. Gdyby wpuścić go do wentylacji wieżowca, jeden litr w kilka chwil uśmierciłby on tysiące ludzi. Inny przykład to jad kiełbasiany inaczej zwany botuliną. W medycynie kosmetycznej niewielkie ilości tej toksyny wstrzykuje się pod skórę by pozbyć się zmarszczek. To tzw. botox. Dorosły człowiek umiera w męczarniach po wchłonięciu milionowych części grama tej trucizny. Cyjanowodór używa się w przemyśle a iperytem
traktowano komórki rakowe.
Broń chemiczna – z punktu widzenia atakującego – ma wiele innych zalet. Tak szybko jak się pojawia, tak samo szybko znika. Np. sarin jest niebezpieczny zaledwie przez 4 godziny. Iperyt staje się nieszkodliwy po najwyżej kilku dniach. Dodatkową zaletą broni chemicznej jest to, że po jej użyciu wybucha panika. A skutki paniki mogą być groźniejsze od samego ataku.

Reasumując. Z trzech broni masowego rażenia, czyli broni jądrowej, biologicznej i chemicznej, to ta ostatnia jest najtańsza w produkcji i wymaga najmniejszej wiedzy. Choć to dotyczy raczej ataków terrorystycznych, w niektórych sytuacjach wcale nie trzeba się o trujący gaz starać, a wystarczy w odpowiednim momencie wysadzić cysternę przewożącą chemikalia. Cysterny z chlorem czy amoniakiem przejeżdżają przez centra wielu dużych miast.
Ostatnie ataki bronią chemiczną miały miejsce w Syrii, gdzie armia rządowa przy współpracy z armią rosyjską zrzuciła na miasto Duma kilka, może kilkanaście ładunków wypełnionych gazem. Świadkowie mówili, że w powietrzu zaczął się unosić jabłkowy zapach. To sarin. Najpierw pojawia się poczucie niepokoju, potem zwężone źrenice, drgawki, ślinotok i paraliż mięśni, w tym mięśni oddechowych, w końcu śmierć w konwulsjach. Podobnie opisywano ataki, jakie przed wielu laty przeprowadzali na kurdyjskie wioski żołnierza Saddama Husajna.

Profesor Fritz Haber, twórca pierwszych gazów bojowych. Z wykształcenia chemik, po I Wojnie Światowej został uhonorowany Nagrodą Nobla z chemii.

I na koniec jeszcze jedno.
Broń chemiczną zawdzięczamy prof. Fritzowi Haberowi. Po przegranej przez Niemcy I wojnie, Haber był pewien aresztowania i sądu wojennego. Tymczasem rok po zakończeniu wojny, został laureatem nagrody Nobla z chemii. Dzięki tej nagrodzie i powszechnemu szacunkowi Heber mógł kontynuować swoje prace a w ich efekcie wynalazł m.in. cyklon B.

5 komentarzy do Najnowocześniejsza broń chemiczna

Robimy krzywdę naszym dzieciom

Dzieci w ostatnich klasach szkół podstawowych są przeciążone pracą. Nie mają czasu na pogłębianie swoich zainteresowań. Chcielibyśmy, żeby ciekawość dodawała im skrzydeł, tyle tylko, że ich plecaki są tak ciężkie, że nie sposób oderwać się z nimi od twardej ziemi.

Dzieci w ostatnich klasach szkół podstawowych są przeciążone pracą. Nie mają czasu na pogłębianie swoich zainteresowań. Chcielibyśmy, żeby ciekawość dodawała im skrzydeł, tyle tylko, że ich plecaki są tak ciężkie, że nie sposób oderwać się z nimi od twardej ziemi.

Kiedyś postanowiłem zapytać kilka osób o źródło ich pasji. Pisałem wtedy książkę o wybitnych polskich naukowcach, o badaczach, którzy uprawiają naukę na światowym poziomie. Co otworzyło ich głowy? Co napędzało ich do zdobywania wiedzy? Co spowodowało, że zainteresowali się genetyką, meteorologią, medycyną, fizyką,…? Okazało się, że za każdym razem była to książka. Nie szkoła, tylko książka wykraczająca poza szkolny program. Czasami podarowana przez rodziców, czasami znaleziona w bibliotece, czasami otrzymana jako nagroda w jakimś konkursie.

Szkoła może człowieka zainspirować, ale sama szkoła to za mało, żeby podtrzymać tę inspirację. Historie naukowców z którymi rozmawiałem były niemal identyczne. Najczęściej książkę, która jak się później okazywało miała wpływ na kierunek rozwoju zawodowego, ci ludzie dostawali gdy byli jeszcze w szkole podstawowej. To wtedy rodzą się pasje, które – jeżeli odpowiednio prowadzone i podsycane – pozostają na całe życie. Po latach nie pamiętamy prawych dopływów Wisły, długości głównych rzek w Polsce czy rodzajów gleb. Po latach pamiętamy okładkę książki, która zmieniła sposób w jaki postrzegamy świat. Pamiętamy rozkład ilustracji na poszczególnych stronach i kolor grzbietu.

Rozmowy z naukowcami o książkach przypominają mi się za każdym razem, gdy muszę swoim dzieciom zabraniać czytania książek. Czy dobrze robię? Uczniowie w 7 klasie mają w tygodniu 38 godzin lekcji. To prawie tyle ile etat dorosłego człowieka. Ja w ich wieku miałem w tygodniu o około 10 godzin mniej! Po powrocie do domu, dzieci muszą odrobić zadania domowe i przygotować się do sprawdzianów i kartkówek na kolejne dni. Ich plecaki są tak ciężkie, że około czwartku słyszę, że bolą je już plecy. Gdy kolejny dzień wracają o 15:30, znowu po ośmiu lekcjach, wyglądają nie jak dzieci, tylko jak cyborgi. Nie mają nawet siły na to, żeby pobiegać. Czy w Ministerstwie Edukacji naprawdę nie ma nikogo kto wie, że taki wysiłek jest ponad dziecięce możliwości? Gdy chcą psychicznie odpocząć, gdy chcą zrobić coś innego niż nauka i przeglądanie zeszytów – przynajmniej moje dzieci – biorą do ręki książkę. Tyle tylko, że w trakcie tygodnia wybór jest prosty. Jak będą czytały, nie zdążą się nauczyć na sprawdzian. Albo będą rozwijały pasje, albo będą – często tylko pamięciowo – przyswajały szkolne informacje. W takim trybie nie ma czasu na naukę instrumentu, na kółka zainteresowań czy pójście do muzeum. W takim trybie nie ma czasu na zabawę. Naprawdę nie wiecie państwo z Ministerstwa, że zabawa rozwija? W takim trybie z trudem udaje się znaleźć czas na dodatkowy angielski. Ale tylko wtedy, gdy obiad będzie zjedzony w biegu, niemalże na stojąco.

Czego oczekujemy od młodego człowieka? Tego, żeby umiał czy tego, żeby rozumiał? Tego, żeby ciekawość dodawała mu skrzydeł, czy tego, żeby plecak pokrzywił mu kręgosłup? Chcemy tworzyć armię zmęczonych robotów czy nowoczesne społeczeństwo ciekawych świata ludzi, którzy z pasją budują rakiety, badają geny, piszą wiersze i odkrywają nowe lądy? Czy ktokolwiek w Ministerstwie Edukacji zadaje sobie takie pytania? Robimy krzywdę naszym dzieciom.

Tomasz Rożek

 

Tekst ukazał się w tygodniku Gość Niedzielny

25 komentarzy do Robimy krzywdę naszym dzieciom

Fajerwerki – gra świateł

Podobno czarny proch wymyślili Chińczycy. Nie po to jednak by używać go na polu walki, ale by się nim bawić. Jak ? Budując sztuczne ognie.

Pierwsze fajerwerki budowano by odstraszać złe duchy. Spalano suszone łodygi bambusowe by wydawały charakterystyczne trzaski. Później wypełniano je różnymi substancjami. Rozrywka zaczęła się wraz z rozwojem chemii. A właściwie nie tyle rozwojem ile świadomością. Odkrywano coraz to nowe substancje czy związki, których wcześniej nikt nie podejrzewał o wybuchowe konotacje. Dziś wiele z nich znaleźć można w petardach, bombkach czy rakietach. W Polsce pokazy sztucznych ogni odbyły się po raz pierwszy w 1918 r., kilka dni po ogłoszeniu niepodległości. Trwały wtedy zaledwie 3 minuty. Pierwsze znane pokazy sztucznych ogni zorganizowano na dworze cesarskim w Chinach w roku 468 p.n.e.

>>> Więcej naukowych ciekawostek na FB.com/NaukaToLubie

To wszystko fizyka …

Wybuchające na niebie sztuczne ognie to jedna z lepszych ilustracji tzw. zasady zachowania pędu. To dokładnie ta sama reguła, która tłumaczy dlaczego wyskakując z pokładu łódki na brzeg czy molo powodujemy, że łódka zaczyna odpływać. No właśnie, dlaczego ? Bo – jak powiedziałby fizyk – w układzie w którym nie działają siły zewnętrzne, pęd układu musi zostać zachowany. Oczywiście w wyżej opisanym przykładzie z łódką i jej pasażerem działają siły zewnętrzne – siły oporu, ale są one małe i można je pominąć. Tak więc jeżeli pasażer łódki wskakuje z jej pokładu na molo – łódka zaczyna się poruszać w przeciwnym kierunku. Można by powiedzieć, że ruch łódki równoważy ruch jej pasażera. Im z większym impetem wyskoczy on z łódki, tym szybciej sama łódka zacznie odpływać w przeciwnym kierunku. Co to wszystko ma wspólnego z fajerwerkami ? Człowiek płynący na łódce to układ składający się z dwóch elementów. Petarda rozrywana nad naszymi głowami, to układ składający się z setek a może nawet tysięcy elementów. Ilość nie gra jednak tutaj roli. Fizyka pozostaje taka sama. Każdy wybuch jest w pewnym sensie symetryczny. Jeżeli kawałek petardy leci w prawo, inny musi – dla równowagi – lecieć w lewo. Jeden do przodu, to inny do tyłu. W efekcie malujące się na ciemnym niebie wzory mają kształty kul, okręgów czy palm. Zawsze są jednak symetryczne. Zawsze takie, że gdyby potrafić cofnąć czas, wszystkie te ogniste stróżki spotkałyby się w punkcie znajdującym się dokładnie w środku, pomiędzy nimi.

… czy może chemia ?

Najczęściej występującą barwą na pokazach sztucznych ogni jest pomarańcz i czerwień. Pojawiają się też inne kolory. Skąd się biorą ? Wszystko zależy od tego z czego zrobiona, a właściwie z dodatkiem czego zrobiona jest petarda. Jej zasadnicza część to środek wybuchowy, ale czar tkwi w szczegółach. I tak, za często występujący pomarańcz i czerwień odpowiedzialny jest dodany do materiału wybuchowego wapń i bar. Inny pierwiastek – stront powoduje, że eksplozja ma kolor żółty, z kolei związki boru i antymon, że zielony. Ale to dopiero początek kolorowej tablicy Mendelejewa. Bo płomienie może barwić także rubid – na kolor żółto fioletowy, cez na kolor fioletowo-niebieski i bar na kolor biały. Potas spowoduje, że niebo stanie się liliowe, a miedź, że niebieskie. W produkcji fajerwerków wszystkie chwyty są dozwolone – o ile wykonuje je specjalista pirotechnik. Bo o efekt toczy się gra. Tak więc mieszanie poszczególnych związków jest nie tyle wskazane, ile wręcz pożądane. Jedno jest pewne. Specjalista spowoduje, że w czasie pokazu na niebie będzie można podziwiać więcej barw niż w łuku tęczy. Będą się pojawiały dokładnie w tym momencie, w którym chce je przedstawić twórca sztucznych ogni. Niebo z liliowego, przez zielony może stać się krwisto czerwone, aż na końcu spłonie intensywnym pomarańczem. A wszystko wg wyliczonego co do ułamka sekundy scenariusza. Ale czy na pewno tylko o kolory chodzi ? Co z dymem ? Co z hukiem ?

>>> Więcej naukowych ciekawostek na FB.com/NaukaToLubie

To sztuka!

Prawdziwy mistrz dba nie tylko o efekty wizualne, ale także dźwiękowe w czasie pokazu fajerwerków.  Żeby petarda zdrowo nadymiła trzeba zaopatrzyć się w zapas chloranu potasu, laktozę i barwniki – w zależności od oczekiwanego koloru dymu. Petardy błyskowe będą wypełnione magnezem, a hukowe i świszczące będą zawierały duże ilości nadchloranów i soli sodu i potasu. Można też wyprodukować mieszaninę iskrzącą, a wtedy przyda się węgiel drzewny albo oświetlającą. W praktyce – szczególnie w ładunkach profesjonalnych – różnego rodzaju mieszanki stosuje się razem. Nie wszystkie, w jednym worku, ale ułożone w odpowiedniej kolejności.

Można zapytać jak zadbać o chronologię w czasie trwającej ułamki sekund eksplozji ? To jest właśnie sztuka. Ładunek pirotechniczny wygląda trochę jak cebula. Składa się z wielu warstw. Petarda najpierw musi wznieść się w powietrze. Ani nie za wysoko, ani za nisko. W pierwszym wypadku efekt wizualny będzie marny, a w drugim – gdy wybuchnie zbyt blisko widzów – może dojść do tragedii. Prawdziwa magia zaczyna się, gdy ładunek jest już wysoko nad głowami. Poszczególne warstwy zapalają się od siebie i w zaplanowanej wcześniej kolejności wybuchają. Widz z zapartym tchem podziwia gęste kule rozrastającego się we wszystkich kierunkach różnokolorowego ognia, albo błysk i kilka opadających w bezwładzie długich ognistych języków. Gdy wszystko wydaję się być skończone, nagle pojawiają się migoczące gwiazdki, albo wirujące wokół własnych osi ogniste bombki. Po nich jest ciemność i cisza. Do następnej eksplozji, innej niż poprzednia. Innej niż wszystkie poprzednie.

Sztuczne ognie można sprowadzić do chemii materiałów wybuchowych. Można też powiedzieć, że są wręcz encyklopedycznym przykładem znanej każdemu fizykowi zasady zachowania pędu. Ale tak naprawdę sztuczne ognie to czary.

Kolory sztucznych ogni:

karminowy: lit, bar i sód

szkarłatny: bar 

czerwono-żółty: wapń i bar

żółty: stront, śladowe ilości sodu i wapnia

biały: cynk i bar

szmaragdowy: miedź i tal

niebiesko-zielony: związki fosforu ze śladowymi ilościami kwasu siarkowego lub kwasu borowego, związki miedzi

jaskrawy zielony: antymon

żółto-zielony: bar i molibden

lazurowy: ołów, selen i bizmut

jasnoniebieski: arszenik

fioletowy/liliowy: niektóre związki potasu z dodatkiem sodu i litu

purpurowy: potas, rubid i cez

1 komentarz do Fajerwerki – gra świateł

Za dużo liczb.

To nie tak, że nie mamy lekarstwa na raka z powodu prostej niewiedzy. To nie tak, że zatruwamy środowisko z powodu niedoborów energii. Dzisiejszy świat cierpi z powodu nadmiaru. Niemal wszystkiego. Szczególnie nadmiaru danych.

To nie tak, że nie mamy lekarstwa na raka z powodu prostej niewiedzy. To nie tak, że zatruwamy środowisko z powodu niedoborów energii. Dzisiejszy świat cierpi z powodu nadmiaru. Niemal wszystkiego.

Lek na raka, szczepionka przeciwko malarii czy panaceum na choroby serca i nadwagę nie zostaną odkryte, dopóki nie nauczymy się wyciągać wniosków z bardzo dużej ilości danych. Danych wszelakiego rodzaju. Statystycznych, środowiskowych czy tych medycznych. Danych jest tak wiele, że nie sposób sobie z nimi poradzić. Chyba że do ich analizy zatrudnimy komputery.

Lek z komputera

W zasadzie od wielu lat to się już dzieje. Z danych, które do nich napływają, komputery wyciągają wnioski, a te są następnie wykorzystywane w życiu codziennym. Tak, to komputery regulują światłami na skrzyżowaniach dużego miasta. To, czy włączyć na którymś zielone, czy pozostawić czerwone, zależy od natężenia ruchu w całym mieście, od priorytetowych szlaków komunikacyjnych, od prac drogowych na szlakach alternatywnych, a nawet od tego, czy w kierunku miasta zbliża się np. burza. Człowiek nie poradziłby sobie z tak dużą ilością danych, nie byłby w stanie podejmować na ich podstawie decyzji.

escherichia-coli-1441194-1279x1229

Takich przykładów jak ruch w mieście jest znacznie, znacznie więcej. Podobnie działają systemy ruchu lotniczego, ale także linie produkcyjne w fabrykach czy systemy do analizy danych w laboratoriach naukowych, np. podczas projektowania leków. Żeby wprowadzić na rynek nowy lek, trzeba sprawdzić tysiące, a czasami miliony różnych kombinacji cząsteczek chemicznych. Każda najmniejsza zmiana budowy cząsteczki chemicznej leku, czasami oznaczająca „przestawienie” jednego atomu, może zmieniać jego działanie. Nie sposób eksperymentalnie sprawdzić wszystkich możliwych kombinacji, bo trwałoby to latami i kosztowałoby miliardy. Także tutaj z pomocą przychodzą komputery, które same dochodzą do pewnych wniosków, same domyślają się efektu. Do ostatecznego sprawdzenia pozostają tylko te wersje cząsteczki chemicznej, które – zdaniem oprogramowania – budzą największe nadzieje. I tak, od ruchu ulicznego, poprzez medycynę, bezpieczeństwo, fizykę (nikt już dzisiaj nie projektuje eksperymentów naukowych bez wcześniejszego uruchomienia symulacji komputerowych oraz systemów analizujących ogromne pakiety danych), telekomunikację, po zmiany społeczne… Wszędzie mamy za dużo danych, za dużo informacji, z którymi jakoś musimy sobie poradzić. Na szczęście nie jesteśmy sami, pomaga nam w tym tak zwana sztuczna inteligencja.

Podatki w Brazylii

Dlaczego tak zwana? Bo pomiędzy inteligencją człowieka czy nawet zwierzęcia a inteligencją maszyny jest sporo różnic. U nas inteligencja wiąże się w jakiś sposób ze świadomością i emocjami. U maszyn tylko (albo aż) – z umiejętnością uczenia się i wyciągania wniosków. Wielu ludzi boi się sztucznej inteligencji, bo przypisuje jej cechy, które mają inteligentni ludzie. Inteligentni, choć nie zawsze prawi. Stąd wizje buntujących się komputerów czy systemów, które mają swoje własne zdanie. Oczywiście odmienne od naszego. Ten bunt – jak się obawiamy – nie będzie polegał na tym, że nasze komputery zaczną nam robić głupie żarty, tylko na tym, że np. system komputerowy odetnie zasilanie energetyczne dużego miasta. To byłaby prawdziwa tragedia, tyle tylko, że w praktyce taka sytuacja dzisiaj jest niemożliwa. Nie dlatego, że systemy komputerowe nie rządzą zasilaniem, ale dlatego, że nie mają one woli i świadomości. Nie robią z własnej inicjatywy niczego, na co nie pozwoli im programista. Człowiek inteligentny to ktoś, o kim powiemy, że jest samodzielny i aktywny. Sztuczna inteligencja jest czymś, co jest bierne i podporządkowane człowiekowi. Owszem, radzi sobie świetnie z tasowaniem dużej ilości informacji, z sortowaniem ich i wyciąganiem z nich wniosków, ale nie potrafi choć na milimetr wyjść poza to, na co pozwoli jej programista.

Polska firma Cognitum stworzyła system, który jako jeden z najlepszych na świecie potrafi znajdować regularności czy wzory w dużych zbiorach danych. Jak mówią jego twórcy, ich system „pozwala wiązać fakty w morzu danych”. I robi to tak dobrze, że został włączony w ogromny program, którego celem jest wykrywanie nieprawidłowości podatkowych w… Brazylii. Wyłudzenia podatków można wykryć, analizując faktury, tyle tylko, że w tak dużym kraju jak Brazylia codziennie dochodzi do milionów transakcji. To powoduje, że w praktyce praca człowieka, a nawet tysiąca ludzi, jest skazana na porażkę. Co innego, jeśli chodzi o system komputerowy, który te faktury sprawdza i wyłapuje nieprawidłowości. W czasie rzeczywistym! Dzięki polskim programistom powstał system, który zainstalowano w urzędach skarbowych w całym kraju. Wyłapuje on nieprawidłowości od razu po tym, jak faktura zostanie wczytana do systemu. Co ciekawe, człowiek posługujący się systemem wcale nie musi być programistą. Z programem może się porozumieć, wpisując komendy w języku nieodbiegającym od tego, którym posługujemy się w rozmowie z innymi ludźmi. Może też te komendy po prostu wymówić. Program zrozumie.

Samo z siebie?

Ważną cechą systemu zaprojektowanego przez Cognitum jest to, że uczy się i potrafi wyciągać wnioski. Dzięki temu, jeżeli ktoś choć raz zastosował jakąś metodę na oszukanie urzędu podatkowego i ten trik zostanie wykryty, ta sama sztuczka już nigdy więcej się nie uda. Podobne metody można stosować do walki z bakteriami. One też mogą atakować na wiele różnych sposobów. Człowiek próbuje przewidzieć wszystkie drogi ataku, ale sprawdzenie tych scenariuszy trwałoby bardzo długo. Co innego, gdy do pomocy zaprosi się odpowiednio zaprojektowany system komputerowy. Mówimy o nim, że jest wyposażony w sztuczną inteligencję, ale tak naprawdę powinno się mówić o programach wyposażonych w umiejętność nauki i wyciągania wniosków.

digital-dreams-1155928-1280x960

Nasz mózg działa inaczej niż komputer, a inteligencja u ludzi i ta sztuczna, czyli komputerowa, to dwie różne rzeczy. Dlaczego tak się dzieje? Dlaczego komputerom nie potrafimy nadać cech naszej inteligencji, z poczuciem osobowości i z własnymi celami włącznie? Po pierwsze, wcale nie jestem przekonany, że to dobry pomysł. A po drugie… Trudno nadawać maszynom cechy, których nie rozumie się u siebie. Nie wiemy, czym jest świadomość, poczucie odrębności. Nie potrafimy tego zdefiniować na poziomie nauk ścisłych. Nie wiemy, które „obwody” w naszym mózgu za to odpowiadają, a więc nie wiemy, jak tą cechą obdarzyć maszyny. Czy kiedyś tę barierę przełamiemy? Czy kiedyś maszyny staną się naprawdę (tak po ludzku) inteligentne? Nie da się tego wykluczyć. Przy czym dzisiaj wydaje się, że są dwie drogi do osiągnięcia tego celu. Będzie to możliwe, gdy sami zrozumiemy, na czym polega nasza świadomość. Gdy tak się stanie, będziemy mogli podjąć decyzję, czy nowo poznaną cechą obdarować maszyny. Jest jednak jeszcze druga opcja. Być może świadomość i poczucie odrębności pojawiają się „same z siebie”, gdy mózg staje się skomplikowany. Może to efekt skali? Może wraz z rozbudową systemów informatycznych, wraz z coraz większym skomplikowaniem programów samoświadomość maszyn pojawi się sama? Bez naszego bezpośredniego udziału i bez naszej wiedzy?

Współczesny świat produkuje tak wiele informacji, że bez pomocy programów, które się uczą i które wyciągają z tej nauki wnioski, nie jesteśmy już w stanie funkcjonować. Tego już się nie cofnie. A jaka będzie przyszłość? Okaże się jutro.

 

Tekst ukazał się w tygodniku Gość Niedzielny
Brak komentarzy do Za dużo liczb.

Szkodliwe szufladki

Wściekam się, że nauk ścisłych w szkole często uczy się w tak nieatrakcyjny sposób. Jaki jest tego efekt? Na hasło „jestem fizykiem” widzę w oczach wielu (zbyt wielu) młodych ludzi przerażenie pomieszane ze współczuciem. Już słyszę jak w myślach mówią „mój Boże, jakie on musiał mieć nieszczęśliwe życie”.

Wściekam się, że nauk ścisłych w szkole często uczy się w tak nieatrakcyjny sposób. Kogo to wina? Wszystkich po trochu. Ale nie o tym chcę pisać (a przynajmniej nie tym razem). Wiem za to jaki jest efekt. Otóż na hasło „jestem fizykiem” widzę w oczach wielu (zbyt wielu) młodych ludzi przerażenie pomieszane ze współczuciem. Już słyszę jak w myślach mówią „mój Boże, jakie on musiał mieć nieszczęśliwe życie”.

>> Polub FB.com/NaukaToLubie i pomóż mi tworzyć stronę pełną nauki. 

W czym jest problem z nauczaniem przedmiotów ścisłych? Otóż z tym, że niewielu udaje się nimi zaciekawić. Dlaczego fizyka jest nudna? Bo ciągle wzory. A chemia? Bo nic nie kapuję z tych doświadczeń. To może biologia? A kogo interesują pantofelki?

Myślę, że jednym z głównych problemów… mój były szef, wybitny fizyk, który jako pierwszy człowiek na świecie wyprodukował kompletny atom antymaterii mawiał, że nie ma problemów, są tylko wyzwania… no to jeszcze raz. Myślę, że jednym z głównych wyzwań jakie stoją przed współczesną edukacją, jest zasypywanie szufladek, które sami stworzyliśmy w naszych mózgach, a teraz kopiujemy je do mózgów naszych dzieci. Chodzi mi o szufladki z napisem „fizyka”, „chemia”, „biologia”, „matematyka”. Małe, zainteresowane światem, dziecko nie rozróżnia dziedzin nauki. Dla niego jest nieistotne czy zmieniające kolor jesienne liście to domena biologii, chemii czy fizyki (prawdę mówiąc wszystkiego po trochu). Podobnie jak nie interesuje je czy spadającym z chmury deszczem powinien zajmować się fizyk czy chemik (podobnie jak poprzednio i jeden i drugi może o tym zjawisku sporo opowiedzieć). Dziecko interesuje znalezienie odpowiedzi, a nie to, kto jej udziela. Tymczasem my zamiast odpowiadać, zbyt wiele energii poświęcamy na to by dokładnie „rozdzielić kompetencje”.

Gdzie przebiega granica pomiędzy fizyką i chemią? A gdzie pomiędzy chemią i biologią? Czy cykle komórkowe to biologia czy chemia? A budowa materii? Atomy są chemiczne czy fizyczne? A potęgi? Powinien ich uczyć matematyk, fizyk czy chemik? W rzeczywistości uczy tego każdy na swój sposób, a uczeń – nie tylko ten, który miewa trudności z nauką – zastanawia się czy potęgi znane z matematyki, to te same o których słyszał na chemii czy fizyce? Na domiar złego, niektóre zjawiska zamiast pojawiać się równocześnie, na lekcjach np. chemii i fizyki wprowadzane są w sporych odstępach czasowych. To wszystko powoduje, że czym dłużej młody człowiek jest pod opieką systemu edukacji, tym większy ma problem z ogarnięciem nauk przyrodniczych jako całości. W pewnym sensie to powrót do dalekiej przeszłości, kiedy uważano, że prawa natury nie są uniwersalne. Że zasady, które rządzą zjawiskami przyrody nie wszędzie tak samo „działają”. Osobą, która dokonała przełomu, był Izaak Newton, lekarz, fizyk, filozof, ekonomista i teolog. Prawo powszechnego ciążenia jego autorstwa jako bodaj pierwsze pokazało, że „tutaj” czyli na Ziemi i „tam” czyli w kosmosie, obowiązują te same zasady. Że te same prawa opisują ruch planety wokół Słońca i ruch spadającego z drzewa jabłka. I pomyśleć, że 330 lat po opublikowaniu prac Newtona, nasz system edukacji wypuszcza „w świat” ludzi, którzy mają wątpliwości, czy gęstość oznaczana w chemii jako „d” a w fizyce jako ρ (ro), to ta sama wielkość.

Nasze wyobrażenie o świecie, nasza wiedza o nim jest weryfikowana praktycznie każdego dnia. Ale prawdziwe rewolucje zdarzają się stosunkowo rzadko. Kto tych rewolucji dokonuje? Czyimi rękami są one wprowadzane? Gdyby prześledzić historię nauki, dosyć szybko można dojść do wniosku, że rewolucje robią ci, którzy nie zostali zaszufladkowani, ci którzy potrafią się wznieść ponad tradycyjny – sztuczny i moim zdaniem mocno krzywdzący młodego człowieka – podział na przedmioty. Tak było nie tylko setki lat temu, kiedy jedna osoba studiowała tak różne (z dzisiejszego punktu widzenia) kierunki jak medycyna, filozofia, nauki przyrodnicze, teologia i prawo (Kopernik, Newton czy Kant), ale także w czasach nam bliższych (Hubble, Lemaitre, Rubin). Prawdziwych odkryć, prawdziwych rewolucji w nauce dokonują ci, którzy swoją wiedzą ogarniają wiele półek w bibliotece, a nie ci, którzy znają tylko kilka książek na wyrywki. Choćby znali je na pamięć. No bo na dobrą sprawę, czy jest sens czytać książki na wyrywki, czasami nie po kolei? Wydaje mi się, ba! jestem tego pewny, że opowiadana w książkach historia nabiera rumieńców, wciąga i inspiruje dopiero wtedy gdy jest opowiedziana w całości.

male wielkie odkrycia 1500px 3d

„Małe wielkie odkrycia – najważniejsze wynalazki, które odmieniły świat”. Steven Johnson

A skoro już piszę o książkach i półkach. Do przemyśleń nad systemem edukacji nakłoniła mnie lektura pewnej książki. Nakładem wydawnictwa Sine Qua Non właśnie ukazały się „Małe wielkie odkrycia – najważniejsze wynalazki, które odmieniły świat”. Bardzo żałuję, że w polskiej szkole w ten sposób nie uczy się nauk ścisłych. Jasne, na fizyce czy na chemii muszą być wzory i zadania z treścią, ale szkoda, że bardzo często przysypani rachunkami, zapominamy co tak właściwie liczymy. Steven Johnson, autor „Małe wielkie odkrycia…” napisał książkę, która pokazuje historię rozwoju naszej cywilizacji. Pokazuje zawiłą, ale równocześnie pasjonującą drogę jaką przechodzili ludzie ciekawi i uparci. Nie opisuje pojedynczych wynalazków, nie dzieli ich na te dokonane przez fizyków, chemików i biologów. Pokazuje historię dochodzenia do odkryć. Do wybudowania teleskopu przyczyniło się oblężenie, setki lat wcześniej, Konstantynopola. Do skonstruowania pierwszego mikroskopu, wynalezienie dużo wcześniej prasy drukarskiej. Ta książka jest pełna, tak zaskakujących „związków”. Nie będę więcej zdradzał. Powiem tylko, że te największe odkrycia nie byłyby możliwe, bez tych małych. Małych wcale nie znaczy banalnych i nudnych. Przeciwnie. Małych, znaczy tajemniczych, nieznanych i nieoczywistych.

>> Polub FB.com/NaukaToLubie i pomóż mi tworzyć stronę pełną nauki. 
7 komentarzy do Szkodliwe szufladki

Czy zgasną światła na Ziemi ?

Światowa konsumpcja energii do 2050 roku podwoi się. Jeżeli nie znajdziemy nowych źródeł – może nam zabraknąć prądu.

W Paryżu trwa międzynarodowy panel klimatyczny. Wiele wątków, wiele interesów, wiele sprzecznych celów. Energia jest tematem, który z klimatem wiąże się bezpośrednio. I pomijając kwestie emisji i CO2, warto zdać sobie sprawę z tego, że światowa konsumpcja energii do 2050 roku podwoi się. Jeżeli nie znajdziemy nowych źródeł – będzie kłopot.

Słońce jest dostawcą większości energii dostępnej dzisiaj na Ziemi. Dostarcza ją teraz i dostarczało w przeszłości nie tylko dlatego, że świeci, ale także dlatego że pośrednio powoduje ruchu powietrza (czyli wiatry) i wody (czyli fale). Dzisiaj dostępne źródła energii można więc podzielić na te zdeponowane przez Słońce w przeszłości – nazwane nieodnawialnymi –  i te udostępniane nam na bieżąco – czyli odnawialne. Z tego podziału wyłamuję się energetyka jądrowa, geotermalna i grawitacyjna oraz fuzja jądrowa.

Najefektywniejszym odbiornikiem energii słonecznej na Ziemi jest roślinność. Dzięki zjawisku fotosyntezy, gdy Słońce świeci – rośliny rosną. Rosną i rozprzestrzeniają się także dlatego, że wieje wiatr. Bardzo długo człowiek korzystał tylko z tego przetwornika energii słonecznej. Drzewo jednak wolniej rośnie niż się spala. Z biegiem lat było nas coraz więcej i coraz więcej energii potrzebował nasz przemysł. Wtedy zaczęło brakować lasów pod topór. Całe szczęście umieliśmy już wydobywać i spalać węgiel, ropę naftową i gaz. Ale w gruncie rzeczy to to samo, co spalanie drewna. Tyle tylko, że w przypadku drzewa energia słoneczna była „deponowana” na Ziemi przez kilka dziesięcioleci, a w przypadku węgla czy ropy – przez miliony lat.

Kłopot w tym, że spalanie kopalin jest toksyczne. Badania przeprowadzane w różnych krajach potwierdzają, że typowa elektrownia węglowa o mocy 1 GWe  powoduje przedwczesną śmierć od 100 do 500 osób. Nie są to ofiary związane z wydobywaniem węgla, czy jego transportem, a jedynie ci, którzy mieli wątpliwe szczęście mieszkać w sąsiedztwie dymiącego komina. Oczyszczanie spalin jest bardzo drogie, a usuwanie szkód środowiskowych związanych z wydobyciem kopalin, w zasadzie niewykonalne. Skoro więc nie paliwa tradycyjne, to może odnawialne?  Siłownie wykorzystujące energię wody, wiatru czy Słońca powinny być budowane jak najszybciej tam, gdzie jest to opłacalne. Nie ulega jednak wątpliwości, że nie wszędzie jest. W Islandii, bogatej w gorące źródła, aż 73 proc. całej produkcji energii stanowi energia odnawialna. W Norwegii (długa i wietrzna linia brzegowa) 45 proc energii produkują wiatraki, a w niektórych krajach Afryki ponad połowa całej wyprodukowanej energii jest pochodzenia słonecznego. Ale równocześnie w proekologicznie nastawionych – ale nie usytuowanych – Niemczech mimo miliardowych inwestycji i olbrzymiej ilości elektrowni wiatrowych zielona energia stanowi około 20 proc. całej zużywanej energii. W tych statystykach nie liczę biomasy, bo ta nie jest żadną energią odnawialną.

Energia zdeponowana przez Słońce w przeszłych epokach wyczerpuje się, a korzystanie z niej w dotychczasowy sposób jest zbrodnią na środowisku naturalnym, z kolei energii dawanej nam przez Słońce „on-line” jest za mało. No więc jaki jest wybór? Wydaje się, że dzisiaj istnieją dwa scenariusze. Obydwa opierają się na skorzystaniu z nieograniczonej energii zdeponowanej jeszcze w czasie Wielkiego Wybuchu. Ta energia nas otacza w postaci materii, ale nie na poziomie związków chemicznych, ale na poziomie pojedynczych jąder atomowych. Jak to rozumieć ? Zanim powstał węgiel kamienny czy ropa naftowa, strumień energii ze Słońca umożliwiał zachodzenie tutaj, na Ziemi, przemian chemicznych, dzięki którym np. rozwijała się bujna roślinność. Dzięki światłu, wodzie i dwutlenkowi węgla tworzą się węglowodany (cukry), białka i tłuszcze. W tych reakcjach nie tworzą się jednak nowe atomy. Dzięki energii z zewnątrz już istniejące łączą się w większe kompleksy. Energia jest zmagazynowana w połączeniach pomiędzy atomami, w wiązaniach.  Ale same pierwiastki też są magazynami energii – energii, która umożliwiła ich stworzenie – pośrednio czy bezpośrednio – w czasie Wielkiego Wybuchu.

Tę energię da się pozyskać na dwa sposoby. Pierwszy to fuzja jądrowa, a drugi to rozszczepienie jądra atomowego. W pierwszym przypadku energia jest uwalniana przez łączenie dwóch lżejszych elementów w pierwiastek cięższy. Część masy tych pierwszych jest zamieniana na energię, którą można zamienić na prąd elektryczny. Paliwem w takim procesie mogą być powszechnie dostępne w przyrodzie lekkie pierwiastki. Produktem końcowym reakcji – oprócz dużej ilości energii – jest nieszkodliwy gaz – hel. Niestety fuzja jądrowa to śpiew przyszłości. Choć naukowcy usilnie nad tym pracują, najwcześniej będziemy mieli do niej dostęp dopiero za kilkanaście, kilkadziesiąt lat. Drugi scenariusz jest w pewnym sensie odwrotnością fuzji jądrowej. W rozszczepieniu jądra atomowego pierwiastek ciężki zostaje rozerwany na elementy lżejsze. I to ten rozpad jest źródłem energii. Pierwsza elektrownia jądrowa została wybudowana w 1942 roku, a dzisiaj dzięki energetyce jądrowej niektóre kraje pokrywają ponad 75 % całego swojego zapotrzebowania na energię elektryczną.

Przewidywanie przyszłości zawsze obarczone jest spora niepewnością. W każdej chwili, może się okazać, że ktoś wymyślił zupełnie nową technologię pozyskiwania energii. Wtedy powyższe rozważania w jednej chwili mogą się stać nieaktualne. Jeżeli jednak nic takiego się nie stanie, nie ma wątpliwości, że z wyczerpaniem paliw kopalnych będziemy musieli się zmierzyć nie za kilkaset, ale za kilkadziesiąt lat. Oszczędzanie energii, zwiększanie efektywności jej wykorzystania nie zahamuje tego procesu tylko go nieznacznie opóźni. Od nas zależy czy na czas przygotujemy się do tej chwili, czy obudzimy się w świecie ciemnym, zimnym i brudnym. I wcale nie trzeba czekać na moment, w którym wyczerpią się pokłady węgla. W końcu „epoka kamieni łupanego nie skończyła się z powodu braku kamieni”.

 

 

 

Brak komentarzy do Czy zgasną światła na Ziemi ?

Technologia demencji z pomocą

To, że nasz świat się starzeje wiedzą wszyscy. Ale niewiele osób zdaje sobie sprawę z konsekwencji z jakimi się to wiąże. Przed ogromnymi wyzwaniami stoją służba zdrowia i publiczne usługi.  Ale także system ubezpieczeń społecznych i… architektura.

>>> Polub FB.com/NaukaToLubie to miejsce w którym komentuję i popularyzuję naukę.

Każdy chyba intuicyjnie czuje, czym jest tzw. inteligentny dom (mieszkanie). To miejsce – w największym skrócie – które dostosowuje się do człowieka. I to na każdym z możliwych poziomów. Do człowieka i dla człowieka. Inteligentne domy wiążą się z tzw. internetem rzeczy i w przyszłości będą czymś oczywistym nie tylko dla osób starszych. Tyle tylko, że tak jak osoba w pełni sił obejdzie się bez udogodnień w swoim mieszkaniu, tak osoba starsza, z ograniczeniami fizycznymi a czasami także psychicznymi, może mieć z tym problem.

Kilka lat temu pracujący w brytyjskim Uniwersytecie Bath uczeni zabrali się za urządzanie wnętrz. Tym razem zamiast architektów czy dekoratorów pierwsze skrzypce grali jednak inżynierowie i informatycy. I tak powstało być może pierwsze mieszkanie nafaszerowane nowoczesnymi technologiami, które zostało zaprojektowane specjalnie dla osób, które z powodu demencji czy urazów cierpią na zaniki pamięci.

Osoba cierpiąca na zaburzenia pamięci czy ograniczoną zdolność do zapamiętywania informacji jest uzależniona od innych. Ktoś musi przypilnować czy podopieczny sam nie wychodzi z domu (często nie zdając sobie sprawy dokąd się wybiera), sprawdzić czy zamknął okna (szczególnie, gdy na zewnątrz jest zimno) lub czy zgasił światła, gdy idzie spać. Ktoś musi także skontrolować czy wyłączył kuchenkę po podgrzaniu obiadu albo zobaczyć czy nie odkręcił wody nad umywalką w łazience, a potem o tym zapomniał. Te, czy też inne czynności nie są zwykle uciążliwe, ale wymagają przez cały czas obecności innych. Nie zawsze jest to jednak możliwe. Często w takich przypadkach – dla własnego bezpieczeństwa – osoby z zaburzeniami pamięci wysyłane są do domów opieki lub domów spokojnej starości. Tam całodobową opiekę zapewnia im profesjonalna kadra. Ale czy jest ona rzeczywiście zawsze potrzebna ? Na miejsca w tego typu ośrodkach trzeba czasami długo czekać, a biorąc pod uwagę tempo starzenia się społeczeństw, w przyszłości czas oczekiwania może być jeszcze dłuższy. Jest jeszcze coś. Nie ulega wątpliwości, że zmiana miejsca zamieszkania, a przez to także środowiska, czy kręgu znajomych wpływa bardzo niekorzystnie na osoby starsze.

Dlatego powstało pierwsze na świecie mieszkanie przyjazne i bezpieczne dla osób z zaburzeniami pamięci. Zainstalowany w nim system składa się z sensorów, które połączone są w sieć z urządzeniami najczęściej używanymi w gospodarstwie domowym. Do sieci podłączone są także wszystkie włączniki światła oraz urządzenia „mówiące” i wyświetlające komunikaty. Poza tym czujniki umieszczone są w drzwiach wyjściowych i wszystkich oknach. Sercem systemu jest komputer, który analizuje wszystkie dostarczane mu dane. To on decyduje, czy zwrócić się do właściciela mieszkania, czy – szczególnie wtedy gdy kolejne komunikaty nie przynosiły skutku – zadzwonić po pomoc.

Konstruktorzy systemu podkreślają, że dla osób starszych czy z różnego typu urazami równie ważne jak rzeczywista opieka jest poczucie bezpieczeństwa. Pewność, że w razie wypadku odpowiednie służby zostaną automatycznie powiadomione i przyjdą z pomocą. Wielką zaletą zaprojektowanego systemu jest to, że w przyszłości będzie go można zamontować w całości lub w częściach w już istniejących mieszkaniach. Dotychczasowe próby stworzenia „inteligentnych”, naszpikowanych elektroniką domów wiązały się z koniecznością budowy ich od samych niemalże fundamentów. Teraz jest inaczej. Osoba mająca coraz większe problemy z koncentracją będzie mogła zainstalować sobie komponenty systemu w swoim własnym mieszkaniu. Nie będzie się także musiała obawiać generalnego remontu ścian czy okien. Wszystkie urządzenia działają w technologii bezprzewodowej i przekuwanie się przez mury w czasie ich instalacji nie jest konieczne.

Co w takim razie potrafi inteligentne mieszkanie dla osób starszych ? Jednym z największych zagrożeń dla kogoś kto ma kłopoty z koncentracją jest zostawienie włączonej kuchenki elektrycznej lub gazowej. Jeżeli czujniki wykryją taką sytuację zasygnalizują głosowo, że powinna ona zostać wyłączona. Jeżeli pierwsze ostrzeżenie nic nie pomoże, system je powtórzy. Jeżeli nawet to nie da odpowiedniego rezultatu, kuchenka zostanie automatycznie wyłączona. To samo stanie się, gdy włączą się czujniki dymu zainstalowane nad kuchenką. W tym przypadku komputer natychmiast zadzwoni do odpowiednich służb i powiadomi je o zdarzeniu. Cały czas – nawet po wyłączeniu kuchenki – system sprawdza jaka jest temperatura grzejników. Tak długo jak są one gorące, na zainstalowanym nad kuchenką ekranie wyświetlane będzie ostrzeżenie o ryzyku oparzenia. Komputer główny cały czas „wie”, w którym pokoju przebywa właściciel mieszkania. Jeżeli w środku nocy wyjdzie z łóżka i będzie zmierzał w kierunku łazienki, automatycznie zapali się w niej światło. Jeżeli po skorzystaniu z toalety osoba wróci do łóżka, a zapomni zgasić światło – to, po kilku minutach wyłączy się ono samo. Podobnie jak samoczynnie zakręci się kurek z wodą, gdy umywalka czy wanna zostanie w całości napełniona. Gdy w nocy właściciel postanowi pospacerować po swoim mieszkaniu, w pokojach, do których wejdzie, automatycznie będą się włączały światła, a w  tych, z których wyjdzie wyłączały. Oczywiście światła będą też mogły być włączane i wyłączane „ręcznie”. Jeżeli „nocne zwiedzanie” będzie trwało zbyt długo, system przez zamontowane w mieszkaniu głośniki zwróci właścicielowi uwagę, że czas iść już spać. Jeżeli ani ten, ani powtórzony po kilku chwilach komunikat nie odniesie skutku, komputer skontaktuje się telefonicznie z opiekunem. Tak samo zresztą zareaguje, gdy podopieczny o nietypowych (zadanych wcześniej) godzinach otworzy drzwi wejściowe do swojego mieszkania i będzie miał zamiar wyjść na zewnątrz. System poprosi o wejście z powrotem, a jeżeli to nie pomoże, skontaktuje się  z opiekunem.

System można rozbudowywać według potrzeb osoby z niego korzystającej. Komputer będzie przypominał o zażyciu lekarstw zalecanych przez lekarza. O inteligentnym domu możemy mówić wtedy, gdy wszystko co automatyczne, połączone jest w zintegrowany system zarządzania i nadzoru. Gdy właściciel słucha jakiejś muzyki szczególnie często, system wie, że to jego ulubiona. Oczywiście ulubioną (nawet w zależności od pory dnia) można zdefiniować samemu. System też wie, że właściciel lubi kawę rano, ale po południu herbatę. To można także zaprogramować, albo poczekać, aż odpowiedni program sam się tego nauczy. Wiele pomysłów zaprojektowanych z myślą o osobach starszych – nie mam co do tego żadnych wątpliwości – znajdzie powszechne zastosowanie. Jak chociażby system, który z chwilą wyjścia domownika, automatycznie zamknie główny zawód wody i gazu, wyłączy wszystkie zbędne obwody elektryczne i uzbroi alarm. To wszystko może stać się wtedy gdy system czujników sam wykryje, że w domu już nikogo nie ma, albo wtedy gdy domownik na progu zawoła „wychodzę !”. W inteligentnym domu, głosem będzie można załatwić wszystko. Choć to wydaje się być udogodnienie dla wszystkich, dla starszych będzie to szczególnie istotne. Seniorzy często mają kłopoty ze wzrokiem i mniej precyzyjne palce niż osoby młode. Włączanie opcji na panelu czy klawiaturze może być dla nich kłopotliwe.

Co ciekawe, inteligentne domy są nie tylko bardziej przyjazne i bezpieczniejsze, ale także dużo oszczędniejsze w utrzymaniu. Oszczędzają wodę, energię elektryczną, gaz, ale przede wszystkim czas właścicieli. A to znaczy, że są odpowiedzią nie tylko na wyzwanie związane z średnim wiekiem społeczeństw uprzemysłowionych, ale także na wyzwanie związane z ochroną środowiska i oszczędzaniem energii.  

>>> Polub FB.com/NaukaToLubie to miejsce w którym komentuję i popularyzuję naukę.
1 komentarz do Technologia demencji z pomocą

Myśląca maszyna

Na samą myśl o tym, że komputer mógłby myśleć, myślącemu człowiekowi włosy stają dęba. A może wystarczy nauczyć maszynę korzystania z naszych myśli?

Myślenie maszyn to temat, który wywołuje sporo emocji. Czy zbudujemy kiedykolwiek sztuczny mózg? Czy maszyny (komputery, programy) mają świadomość? A może w przyszłości nas zastąpią? Cóż, zastępują już dzisiaj. I dobrze, że zastępują, w końcu po to je budujemy. Czy myślą? Nie da się odpowiedzieć na to pytanie, zanim nie sprecyzujemy dokładnie co to znaczy „myśleć”. Jeżeli oznacza „podejmować decyzje”, to tak, komputery potrafią to robić. Potrafią też się uczyć i wyciągać wnioski z przeszłości. Nie potrafią robić rzeczy abstrakcyjnych. I przede wszystkim nie mają poczucia osobowości, nie mają poczucia swojej odrębności i swoich własnych celów. Owszem maszyny robią wiele rzeczy celowych, ale realizują nie swoje cele, tylko cele konstruktora czy programisty.

Deep brain stimulator.

(credit:  Asylum Entertainment)

Deep brain stimulator.

(credit: Asylum Entertainment)

Łowienie sygnałów

Samoświadomość czy kreatywność wydają się być barierą, która jeszcze długo nie zostanie złamana. To czy powinna być złamana, to zupełnie inny temat. Ale być może nie ma potrzeby na siłę nadawać maszynom cech ludzkich mózgów, może wystarczy w jakiś sposób je z naszymi mózgami zintegrować? Różnice pomiędzy tym, jak działa nasz mózg i „mózg” maszyny są spore. Może warto się zastanowić nad tym, czy maszyna nie mogłaby w pewnym sensie skorzystać z tego co MY mamy w głowie. Ten sam problem można postawić inaczej. Czy nasz mózg jest w stanie dogadać się bezpośrednio z maszyną? Czy jest bezpośrednio w stanie przekazywać jej informacje albo nią sterować?

Słowo „bezpośrednio” ma tutaj kluczowe znaczenie. Nasze mózgi dogadują się z komputerem, ale pomiędzy umysłem a procesorem w maszynie jest cała masa stopni pośrednich. Np. palce piszącego na klawiaturze, sama klawiatura. W końcu język, w którym piszemy komendy (albo tekst). Te stopnie pośrednie powodują, że czas pomiędzy myślą, która zakwita nam w mózgu a jej „materializacją” bywa długi. Każdy stopień pośredni jest potencjalnym miejscem pojawienia się błędu. W końcu ile razy wpisywana przez klawiaturę komenda czy tekst zawierał literówki? Jest jeszcze coś. Nie każdy fizycznie jest w stanie obsługiwać komputer czy jakiekolwiek inne urządzenie elektroniczne. Zwłaszcza dla takich ludzi stworzono interfejs mózg – komputer (IBC). Urządzenie, które pozwala „zsynchronizować” mózg z komputerem, pozwalające wydawać komendy urządzeniom elektronicznym za pomocą fal mózgowych. Dzisiaj z IBC korzystają nie tylko niepełnosprawni, ale także gracze komputerowi. W przyszłości być może będzie to standardowy sposób obsługi elektroniki.

Jak to działa? Komórki nerwowe w mózgu człowieka porozumiewają się pomiędzy sobą poprzez przesyłanie impulsów elektrycznych. Te można z zewnątrz, czyli z powierzchni czaszki, rejestrować. W ostatnich latach nauczyliśmy się je także interpretować. To istne szukanie igły w stogu siana. Mózg każdej sekundy przetwarza miliony różnych informacji, przesyła miliony impulsów do mięśni rozlokowanych w całym ciele. Każdy taki sygnał pozostawia „ślad”, który można podsłuchać.

Neural net firing reversed.

(credit:  Asylum Entertainment)

Neural net firing reversed.

(credit: Asylum Entertainment)

Czujnik w okularach

Nie powiem, że potrafimy podsłuchać wszystko. To byłaby nieprawda. Mówiąc szczerze, jesteśmy dopiero na samym początku drogi. W przypadku IBC bardzo pomocna jest  świadomość użytkownika (pacjenta?) korzystającego z interfejsu. Człowiek ma bowiem zdolności do takiego aktywizowania mózgu, by sygnały z tym związane, można było wyraźniej „usłyszeć” na powierzchni czaszki. Dzięki temu, osoby sparaliżowane, myślami są w stanie poruszać mechanicznymi nogami (czyli tzw. egzoszkieletem) albo wózkiem inwalidzkim. W ten sam sposób człowiek ze sprawnie działającym mózgiem jest w stanie komunikować się z otoczeniem chociażby poprzez pisanie na ekranie, nawet gdy jest całkowicie sparaliżowany. Myśli o literach, a te wyświetlają się na odpowiednim urządzeniu.  W podobny sposób, w przyszłości być może będzie wyglądało sterowanie telefonem komórkowym czy jakimkolwiek innym urządzeniem. Pewną trudnością jest to, że – przynajmniej dzisiaj – po to, by wspomniane impulsy można było zarejestrować, do skóry głowy muszą być przyłożone elektrody. Albo korzystający z interfejsu człowiek musi mieć ubrany specjalny czepek z czujnikami. Ale w przyszłości być może wystarczą czujniki w okularach? Okularach, w których zainstalowana będzie kamera, a na szkłach wyświetlane będą dodatkowe informacje. Takie okulary już są i nazywają się GoogleGlass.

Złożony i skomplikowany

Interfejs mózg – komputer odbiera sygnały z powierzchni skóry, rejestruje je i interpretuje. Czy możliwe jest przesyłanie informacji w odwrotną stronę, czyli z jakiegoś urządzenia do mózgu? Na razie tego nie potrafimy, ale nie mam wątpliwości, że będziemy próbowali się tego nauczyć (znów, czy powinniśmy to robić, to zupełnie inny temat). To znacznie bardziej skomplikowane niż sczytywanie potencjałów elektrycznych z powierzchni czaszki. W którymś momencie tę barierę może przekroczymy i wtedy będziemy mieli dostęp do nieograniczonej ilości informacji nie poprzez urządzenia dodatkowe takie jak komputery, tablety czy smartfony. Wtedy do tych informacji będzie miał dostęp bezpośrednio nasz mózg. Na to jednak zbyt szybko się nie zanosi. Nie z powodu samej elektroniki, raczej z powodu naszego mózgu. Panuje dość powszechna zgoda, że to najbardziej skomplikowany i złożony system jaki znamy. Nie tylko na Ziemi, ale w ogóle. Choć od lat na badania mózgu przeznacza się ogromne kwoty pieniędzy, choć w ostatnich latach poczyniliśmy ogromne postępy, wciąż niewiele wiemy o CZYMŚ co waży pomiędzy 1,2 a 1,4 kg

>>> Zapraszam na profil FB.com/NaukaToLubie (kliknij TUTAJ). To miejsce w którym staram się na bieżąco informować o nowościach i ciekawostkach ze świata nauki i technologii.

Brak komentarzy do Myśląca maszyna

Zdjęcia z eksplozji Antaresa

NASA ujawniła 85 zdjęć ze startu i eksplozji rakiety Antares. Niektóre zapierają dech w piersiach.

Kilka tygodni temu, na FB.com/NaukaToLubie informowałem, że Amerykańska Agencja Kosmiczna NASA udostępniła w serwisie zdjęciowym Flickr zdjęcia wysokiej jakości zrobione w trakcie trwania programu lotów księżycowych Apollo.

Tym razem NASA udostępniła 85 zdjęć na których widać nieudany start zakończony eksplozją rakiety Antares. Zdjęć nie powstydził by się najlepszy scenarzysta filmów science-fiction. Niestety fotografie, które pokazuję poniżej nie zostały stworzone na komputerze.

Rakieta Antares eksplodowała 15 sekund po starcie, który miał miejsce 28 października 2014. Zapasy, które przewoziła miały być dostarczone na pokład Międzynarodowej Stacji Kosmicznej. W sumie stracono ponad 2 tony zaopatrzenia dla ISS, a także sprzęt naukowy i eksperymenty studenckie. Zniszczeniu uległ także satelity Arkyd 3, RACE, GOMX 2 i 26 nanosatelitów Flock-1d.

>>> Przy okazji zapraszam na profil FB.com/NaukaToLubie (kliknij TUTAJ). To miejsce w którym staram się na bieżąco informować o nowościach i ciekawostkach ze świata nauki i technologii.

6_33_gallery_wide 7_25_gallery_wide 8_25_gallery_wide 9_19_gallery_wide 10_15_gallery_wide 11_17_gallery_wide 12_8_gallery_wide-2  13_7_gallery_wide 14_6_gallery_wide 15_4_gallery_wide

 

>>> Zapraszam na profil FB.com/NaukaToLubie (kliknij TUTAJ). To miejsce w którym staram się na bieżąco informować o nowościach i ciekawostkach ze świata nauki i technologii.

Brak komentarzy do Zdjęcia z eksplozji Antaresa

Pluton jak Biedronka

Wczorajszy przelot sondy New Horizons w pobliżu Plutona natchnął mnie do pewnych przemyśleń. Po co badać coś tak odległego jak Pluton? Po co badać delfiny, motyle czy orangutany? Po co zajmować się gwiazdami, płytami tektonicznymi i DNA?

Wczorajszy przelot w pobliżu Plutona i związanych z nim sporo pytań natchnął mnie do pewnych przemyśleń. Niemal za każdym razem, gdy w nauce dochodzi do jakiegoś odkrycia, do wysłania sondy, do zbudowania nowego rodzaju mikroskopu czy znalezienia nowej cząstki elementarnej, pada pytanie, po co to wszystko? Po co wydawać miliony dolarów by dowiedzieć się co słychać np. na globie, który oddalony jest od nas o miliardy kilometrów. Dajmy na to na takim Plutonie. Wczoraj udało się sfotografować jego powierzchnię z odległości nieco ponad 12 tysięcy kilometrów. To 30 razy mniej niż odległość pomiędzy Ziemią i naszym Księżycem. Sonda która tego dokonała to New Horizons. Leciała w kierunku Plutona prawie 10 lat przebywając w tym czasie 5 miliardów kilometrów. No i po co to wszystko? Po co lecieć tak daleko, po co wydawać niemałe przecież pieniądze, po co zaangażowanie ogromnej grupy ludzi przez długi okres czasu?

Zacznijmy od pieniędzy. Całkowity koszt misji New Horizons, wszystkich urządzeń sondy, jej wystrzelenia, ale także analizy danych a nawet obsługi medialnej wydarzenia to około 700 milionów dolarów, czyli nieco ponad 2 miliardy i 600 milionów złotych. To dziesięć razy mniej (!!!) niż wynosi roczny przychód supermarketów Biedronka w Polsce. To mniej niż budowa 20 kilometrowego odcinka autostrady A1. W końcu to mniej niż zakup i 13 letnia obsługa 4 samolotów F16, które służą w polskiej armii (w sumie kupiliśmy ich 48). Tyle jeżeli chodzi o koszty. Tak, te są duże… dla przeciętnego obywatela. Niewielu byłoby stać na wybudowanie i wysłanie w kosmos sondy New Horizons (choć np. Jan Kulczyk, najbogatszy Polak, mógłby takich sond wysłać 7), ale w skali państwa, dla budżetu państwa rozwój nauki to grosze. Grosze zainwestowane najlepiej jak można sobie wyobrazić. Grosze, które w przyszłości przyniosą miliony poprzez rozwój technologii a w dalszej perspektywie rozwój przemysłu. Każda ekspansja to wyzwanie i konieczność znajdowania rozwiązań na problemy z których nie zdawaliśmy sobie sprawy. Przecież loty w kosmos mają bezpośrednie przełożenie na komunikację, elektronikę i materiałoznawstwo. Rozwój technik obrazowania (nieważne czy w astronomii czy w biologii) od razu jest wykorzystywany w medycynie. Nasze miasta byłyby skażonymi pustyniami gdyby nie powstawały zaawansowane technologicznie silniki i komputery, które tymi silnikami sterują.

A wracając do Plutona, delfinów, motyli i orangutanów. Po co je badać? Bo one są częścią nas, a my częścią świata którego różnorodność – przynajmniej mnie – powala na kolana. Wszystkie lekkie atomy, które nas budują powstały w czasie Wielkiego Wybuchu. Wszystkie ciężkie w czasie wybuchu gwiazdy. Warto rozwijać zarówno kosmologię, astrofizykę jak i fizykę cząstek. Nasze DNA to uniwersalny język całej przyrody, a gatunki (zarówno zwierzęce jak i roślinne), które zamieszkują Ziemię (a pewnie także inne globy) powstawały jedne z drugich. To dlatego nie można zaniedbywać biologii (w tym egzobiologii) i medycyny. Oddychamy powietrzem w którego skład wchodzą różne gazy. To dlatego warto rozwijać chemię i interesować się tym jak zmieniały się atmosfery na innych planetach. Ta wiedza może być bezcenna gdy zacznie zmieniać się nasza atmosfera. Bo to że wszystko jest wokoło nas zmienne – to oczywiste. Kontynenty są w ruchu (nie tylko zresztą na Ziemi) i dzięki temu mogło powstać życie. Ale to nie powstałoby, gdyby Ziemia nie miała swojego pola magnetycznego. A tego by nie było gdyby jądro planety nie było gorące i półpłynne. Ale nawet gdyby było, Ziemia byłaby martwa, gdyby nie było Księżyca, który stabilizuje ruch Niebieskiej Planety wokół Słońca. A Księżyc powstał w kosmicznej katastrofie w której w Ziemię uderzyła planetoida wielkości Marsa. Geologia, geografia, fizyka, astronomia, biofizyka i biochemia… Mam dalej wymieniać? Czy jest sens wymieniać? Czy jest sens pytać, po co badamy coś tak odległego jak Pluton? Po co badamy delfiny, motyle czy orangutany, a nawet biedronki (chodzi o owada, nie o sieć sklepów)? Moim zdaniem szkoda na to czasu. Lepiej go wykorzystać na zaspokajanie swojej ciekawości. Bo to ciekawość idzie przed odkryciami. Tak było zawsze i tak będzie zawsze.

3 komentarze do Pluton jak Biedronka

Type on the field below and hit Enter/Return to search