Nauka To Lubię

Oficjalna strona Tomasza Rożka

Tag: Ziemia

Technologia demencji z pomocą

To, że nasz świat się starzeje wiedzą wszyscy. Ale niewiele osób zdaje sobie sprawę z konsekwencji z jakimi się to wiąże. Przed ogromnymi wyzwaniami stoją służba zdrowia i publiczne usługi.  Ale także system ubezpieczeń społecznych i… architektura.

>>> Polub FB.com/NaukaToLubie to miejsce w którym komentuję i popularyzuję naukę.

Każdy chyba intuicyjnie czuje, czym jest tzw. inteligentny dom (mieszkanie). To miejsce – w największym skrócie – które dostosowuje się do człowieka. I to na każdym z możliwych poziomów. Do człowieka i dla człowieka. Inteligentne domy wiążą się z tzw. internetem rzeczy i w przyszłości będą czymś oczywistym nie tylko dla osób starszych. Tyle tylko, że tak jak osoba w pełni sił obejdzie się bez udogodnień w swoim mieszkaniu, tak osoba starsza, z ograniczeniami fizycznymi a czasami także psychicznymi, może mieć z tym problem.

Kilka lat temu pracujący w brytyjskim Uniwersytecie Bath uczeni zabrali się za urządzanie wnętrz. Tym razem zamiast architektów czy dekoratorów pierwsze skrzypce grali jednak inżynierowie i informatycy. I tak powstało być może pierwsze mieszkanie nafaszerowane nowoczesnymi technologiami, które zostało zaprojektowane specjalnie dla osób, które z powodu demencji czy urazów cierpią na zaniki pamięci.

Osoba cierpiąca na zaburzenia pamięci czy ograniczoną zdolność do zapamiętywania informacji jest uzależniona od innych. Ktoś musi przypilnować czy podopieczny sam nie wychodzi z domu (często nie zdając sobie sprawy dokąd się wybiera), sprawdzić czy zamknął okna (szczególnie, gdy na zewnątrz jest zimno) lub czy zgasił światła, gdy idzie spać. Ktoś musi także skontrolować czy wyłączył kuchenkę po podgrzaniu obiadu albo zobaczyć czy nie odkręcił wody nad umywalką w łazience, a potem o tym zapomniał. Te, czy też inne czynności nie są zwykle uciążliwe, ale wymagają przez cały czas obecności innych. Nie zawsze jest to jednak możliwe. Często w takich przypadkach – dla własnego bezpieczeństwa – osoby z zaburzeniami pamięci wysyłane są do domów opieki lub domów spokojnej starości. Tam całodobową opiekę zapewnia im profesjonalna kadra. Ale czy jest ona rzeczywiście zawsze potrzebna ? Na miejsca w tego typu ośrodkach trzeba czasami długo czekać, a biorąc pod uwagę tempo starzenia się społeczeństw, w przyszłości czas oczekiwania może być jeszcze dłuższy. Jest jeszcze coś. Nie ulega wątpliwości, że zmiana miejsca zamieszkania, a przez to także środowiska, czy kręgu znajomych wpływa bardzo niekorzystnie na osoby starsze.

Dlatego powstało pierwsze na świecie mieszkanie przyjazne i bezpieczne dla osób z zaburzeniami pamięci. Zainstalowany w nim system składa się z sensorów, które połączone są w sieć z urządzeniami najczęściej używanymi w gospodarstwie domowym. Do sieci podłączone są także wszystkie włączniki światła oraz urządzenia „mówiące” i wyświetlające komunikaty. Poza tym czujniki umieszczone są w drzwiach wyjściowych i wszystkich oknach. Sercem systemu jest komputer, który analizuje wszystkie dostarczane mu dane. To on decyduje, czy zwrócić się do właściciela mieszkania, czy – szczególnie wtedy gdy kolejne komunikaty nie przynosiły skutku – zadzwonić po pomoc.

Konstruktorzy systemu podkreślają, że dla osób starszych czy z różnego typu urazami równie ważne jak rzeczywista opieka jest poczucie bezpieczeństwa. Pewność, że w razie wypadku odpowiednie służby zostaną automatycznie powiadomione i przyjdą z pomocą. Wielką zaletą zaprojektowanego systemu jest to, że w przyszłości będzie go można zamontować w całości lub w częściach w już istniejących mieszkaniach. Dotychczasowe próby stworzenia „inteligentnych”, naszpikowanych elektroniką domów wiązały się z koniecznością budowy ich od samych niemalże fundamentów. Teraz jest inaczej. Osoba mająca coraz większe problemy z koncentracją będzie mogła zainstalować sobie komponenty systemu w swoim własnym mieszkaniu. Nie będzie się także musiała obawiać generalnego remontu ścian czy okien. Wszystkie urządzenia działają w technologii bezprzewodowej i przekuwanie się przez mury w czasie ich instalacji nie jest konieczne.

Co w takim razie potrafi inteligentne mieszkanie dla osób starszych ? Jednym z największych zagrożeń dla kogoś kto ma kłopoty z koncentracją jest zostawienie włączonej kuchenki elektrycznej lub gazowej. Jeżeli czujniki wykryją taką sytuację zasygnalizują głosowo, że powinna ona zostać wyłączona. Jeżeli pierwsze ostrzeżenie nic nie pomoże, system je powtórzy. Jeżeli nawet to nie da odpowiedniego rezultatu, kuchenka zostanie automatycznie wyłączona. To samo stanie się, gdy włączą się czujniki dymu zainstalowane nad kuchenką. W tym przypadku komputer natychmiast zadzwoni do odpowiednich służb i powiadomi je o zdarzeniu. Cały czas – nawet po wyłączeniu kuchenki – system sprawdza jaka jest temperatura grzejników. Tak długo jak są one gorące, na zainstalowanym nad kuchenką ekranie wyświetlane będzie ostrzeżenie o ryzyku oparzenia. Komputer główny cały czas „wie”, w którym pokoju przebywa właściciel mieszkania. Jeżeli w środku nocy wyjdzie z łóżka i będzie zmierzał w kierunku łazienki, automatycznie zapali się w niej światło. Jeżeli po skorzystaniu z toalety osoba wróci do łóżka, a zapomni zgasić światło – to, po kilku minutach wyłączy się ono samo. Podobnie jak samoczynnie zakręci się kurek z wodą, gdy umywalka czy wanna zostanie w całości napełniona. Gdy w nocy właściciel postanowi pospacerować po swoim mieszkaniu, w pokojach, do których wejdzie, automatycznie będą się włączały światła, a w  tych, z których wyjdzie wyłączały. Oczywiście światła będą też mogły być włączane i wyłączane „ręcznie”. Jeżeli „nocne zwiedzanie” będzie trwało zbyt długo, system przez zamontowane w mieszkaniu głośniki zwróci właścicielowi uwagę, że czas iść już spać. Jeżeli ani ten, ani powtórzony po kilku chwilach komunikat nie odniesie skutku, komputer skontaktuje się telefonicznie z opiekunem. Tak samo zresztą zareaguje, gdy podopieczny o nietypowych (zadanych wcześniej) godzinach otworzy drzwi wejściowe do swojego mieszkania i będzie miał zamiar wyjść na zewnątrz. System poprosi o wejście z powrotem, a jeżeli to nie pomoże, skontaktuje się  z opiekunem.

System można rozbudowywać według potrzeb osoby z niego korzystającej. Komputer będzie przypominał o zażyciu lekarstw zalecanych przez lekarza. O inteligentnym domu możemy mówić wtedy, gdy wszystko co automatyczne, połączone jest w zintegrowany system zarządzania i nadzoru. Gdy właściciel słucha jakiejś muzyki szczególnie często, system wie, że to jego ulubiona. Oczywiście ulubioną (nawet w zależności od pory dnia) można zdefiniować samemu. System też wie, że właściciel lubi kawę rano, ale po południu herbatę. To można także zaprogramować, albo poczekać, aż odpowiedni program sam się tego nauczy. Wiele pomysłów zaprojektowanych z myślą o osobach starszych – nie mam co do tego żadnych wątpliwości – znajdzie powszechne zastosowanie. Jak chociażby system, który z chwilą wyjścia domownika, automatycznie zamknie główny zawód wody i gazu, wyłączy wszystkie zbędne obwody elektryczne i uzbroi alarm. To wszystko może stać się wtedy gdy system czujników sam wykryje, że w domu już nikogo nie ma, albo wtedy gdy domownik na progu zawoła „wychodzę !”. W inteligentnym domu, głosem będzie można załatwić wszystko. Choć to wydaje się być udogodnienie dla wszystkich, dla starszych będzie to szczególnie istotne. Seniorzy często mają kłopoty ze wzrokiem i mniej precyzyjne palce niż osoby młode. Włączanie opcji na panelu czy klawiaturze może być dla nich kłopotliwe.

Co ciekawe, inteligentne domy są nie tylko bardziej przyjazne i bezpieczniejsze, ale także dużo oszczędniejsze w utrzymaniu. Oszczędzają wodę, energię elektryczną, gaz, ale przede wszystkim czas właścicieli. A to znaczy, że są odpowiedzią nie tylko na wyzwanie związane z średnim wiekiem społeczeństw uprzemysłowionych, ale także na wyzwanie związane z ochroną środowiska i oszczędzaniem energii.  

>>> Polub FB.com/NaukaToLubie to miejsce w którym komentuję i popularyzuję naukę.
1 komentarz do Technologia demencji z pomocą

100 lat abstrakcji

Czas jest względny, a masa zakrzywia czasoprzestrzeń. To jedno zdanie jednych przyprawia o ból głowy, dla innych jest źródłem nieograniczonej fascynacji. Fascynacji, która trwa dokładnie 100 lat.

>>> Polub FB.com/NaukaToLubie to miejsce w którym komentuję i popularyzuję naukę.

Pióra i ołówki na teorii grawitacji połamało już wielu badaczy. To co wiemy, to prosty wzór, którego dzieci uczą się w szkole. Że siła grawitacji zależy od masy obiektów, które są jej źródłami (im obiekt cięższy, tym większa siła), oraz że słabnie wraz z zwiększającą się odległością pomiędzy tymi obiektami. Dzięki tej prostej zależności, udaje się doskonale przewidywać ruchy planet, satelitów, także zachowanie sporej części gwiazd w galaktyce. Sporej, ale nie wszystkich.

Tymi, których wytłumaczyć się nie da są np. kolizje gwiazd neutronowych, pulsary, czarne dziury czy wybuchy supernowych. Grawitacji nie sposób także „dopasować” do wielkiego wybuchu. A skoro od niego swój początek wziął czas i przestrzeń, nasze braki w rozumieniu grawitacji stają się kłopotliwe.

Dokładnie 100 lat temu Albert Einstein ogłosił (a konkretnie odczytał) Ogólną Teorię Względności. Jej manuskrypt (ma 46 stron) można dzisiaj zobaczyć w Bibliotece Narodowej Izraela. Dla postronnego obserwatora, niespecjalisty , notatki Einsteina mogą sprawiać wrażenie niewyraźnych bazgrołów zrobionych na pożółkłych kartkach. Są napisane bardzo drobnym maczkiem, często poprawiane, miejscami podkreślone, w innych miejscach przekreślone. Sporo w nich matematycznych wzorów. Niesamowite, jak wiele w fizyce czy w ogóle w postrzeganiu świata (wszechświata) zmieniło to, co 100 lat temu zostało zaprezentowane światu.

Ogólna Teoria Względności została ogłoszona w 1915 roku, gdy Albert Einstein przebywał w Niemczech. Już wtedy Einstein był znanym człowiekiem, a jego prace – choć przez bardzo nielicznych rozumiane – były w pewnym sensie kultowe. Stworzenie OTW nie było olśnieniem, jak wielu innych teorii fizycznych. Einstein pracował nad nią 9 lat. Czasami błądził, czasami się mylił. To była żmudna praca. OTW jest – jak sama nazwa wskazuje – uogólnieniem Szczególnej Teorii Względności Einsteina. Choć teoria Ogólna i Szczególna są dwoma najbardziej znanymi jego pracami, Einstein największe naukowe zaszczyty (Nagrodę Nobla) odebrał za prace nad zupełnie innym problem (konkretnie nad efektem fotoelektrycznym).

Ogólna Teoria Względności (OTW) jest w zasadzie teorią opisującą najbardziej namacalne dla nas oddziaływanie – grawitację. Z nią wiążą się takie wielkości jak masa, przestrzeń i czas. OTW jest bardzo skomplikowana. Nie sposób jej zrozumieć bez ogromnej wiedzy czysto matematycznej. Wynika z niej, że każda masa jest źródłem zakrzywienia otaczającej ją przestrzeni. Czym większa masa, tym większa siła grawitacji, czyli większe zakrzywienie przestrzeni. Jak to rozumieć? Gdy dwie osoby trzymają za rogi obrus jego powierzchnia jest płaska. Ale gdy na sam środek obrusu wrzucimy piłkę, obrus w miejscu w którym się ona znajduje lekko się „naciągnie” czy inaczej „zakrzywi”. Czym większa piłka, tym większe zakrzywienie. Gdy położymy na skraju obrusu mniejsza piłeczka, stoczy się do tego zakrzywienia, tak jak przyciągana grawitacyjnie asteroida „stoczy” się w kierunku Słońca. Tyle tylko, że obrus ma dwa wymiary, a przestrzeń wokół nas ma ich trzy. Ta nieintuicyjność (nie mylić z nielogicznością) to jeden z powodów dla których dwie teorie względności tak trudno zrozumieć. Drugim jest bardzo zaawansowana matematyka, której Einstein musiał użyć do rozwiązania swoich równań.

Gdy Einstein referował swoje pomysły na względność, był znany z zupełnie innych badań teoretycznych. Słuchano go więc z zaciekawianiem. Ale to zaciekawienie wynikało z szacunku do znanego fizyka a nie ze zrozumienia tego o czym mówił. W pewnym sensie tak jest do dzisiaj. Albert Einstein jest postacią kultową. Ale nie dlatego, że tak wielu ludzi rozumie Szczególną czy Ogólną Teorię Względności.  Tak naprawdę zaledwie garstka fizyków wie o co w niej chodzi. Nieco większa grupa rozumie co wynika z teorii Einsteina. Całkiem sporo fizyków na codzień wykorzystuje w swojej pracy naukowej zjawiska, które udało się dzięki teoriom Einsteina zrozumieć. Jednym z takich zjawisk są soczewki grawitacyjne. W zakrzywionej przestrzeni światło nie porusza się po liniach prostych, tylko krzywych. To dlatego światło dalekich galaktyk biegnące w okolicach dużych mas (czarnych dziur czy innych galaktyk) jest zakrzywione, tak samo jak światło przechodzące przez szklane soczewki. Dla astrofizyków i astronomów soczewki grawitacyjne to coś w rodzaju naturalnego teleskopu dzięki któremu mogą obserwować obiekty i zjawiska których inaczej nie udałoby się zaobserwować. Zakrzywiane światło to jednak dopiero początek wchodzenia w świat abstrakcji. Z równań Einsteina wynika także, że czas jest pojęciem względnym, że nie płynie dla nas wszystkich tak samo. Jego bieg jest zależny bowiem od siły grawitacji i od prędkości z jakim porusza się ciało. To z kolei wykorzystuje się w systemach globalnej lokalizacji (np. GPS).

Einstein był teoretykiem. Nie sprawdzał eksperymentalnie tego co wyliczył na drodze matematyki. Zresztą wtedy kiedy dokonywał swoich odkryć, nie było możliwości sprawdzenia ich poprawności. Urządzenia pomiarowe nie były dość czułe, a człowiek jeszcze nie latał w kosmos. To właśnie w przestrzeni pozaziemskiej wielokrotnie testowano wyliczenia Alberta Einsteina. Wszystkie dokładnie się zgadzają. No może za wyjątkiem jednej. Przewidywanych w Teorii Względności fal grawitacyjnych. Ale o nich napiszę innym razem 🙂 Tak samo jak o największej naukowej pomyłce Einsteina.

>>> Zapraszam na profil FB.com/NaukaToLubie (kliknij TUTAJ). To miejsce w którym staram się na bieżąco informować o nowościach i ciekawostkach ze świata nauki i technologii.

Brak komentarzy do 100 lat abstrakcji

Marsjanin okiem naukowca ;-)

Film Marsjanin jest niezły, choć książka 100 razy lepsza. Ale do rzeczy. Czy możliwa jest historia astronauty Marka Watneya, którego  gra Matt Damon? Postanowiłem popastwić się nad scenariuszem.

Wiem, że piszę to nico późno (w większości kin film już zszedł z ekranów), ale potraktujcie to jako pewien rodzaj próby. W polskim internecie naukowcy (dziennikarze naukowi) zwykle nie recenzują filmów. Ciekaw jestem jaka będzie reakcja na moją recenzję.

Film warto zobaczyć, a jeszcze bardziej warto przeczytać książkę. Piękne krajobrazy, dobre efekty specjalne i ciekawa historia nie zmieniają jednak tego, że opowiedziana w nim historia nie ma prawa się zdarzyć i to z wielu różnych powodów. Ja wspomnę o czterech. Jeżeli nie oglądałaś, jeżeli nie oglądałeś filmu, za chwilę zdradzę kilka szczegółów jego fabuły.

Burza piaskowa, ewakuacja załogi. Zdjęcie z filmu

1.Załogowa misja na Marsa musi w trybie natychmiastowym ewakuować się z planety z powodu silnej burzy piaskowej. Ta nadchodzi tak szybko, że astronauci mają dosłownie kilka minut na spakowanie się i wystrzelenie na orbitę. Tymczasem marsjańska burza byłaby dla sprzętu i ludzi  niegroźna. Marsjańska atmosfera jest z grubsza 200 razy rzadsza od ziemskiej. Nawet jak mocno wieje, niewiele ma to wspólnego z niszczycielskim żywiołem. Marsjańskie burze po prostu nie mają mocy którą mają burze na Ziemi. Marsjańska burza nie może przewracać metalowych konstrukcji. Poza tym da się ją przewidzieć z dużym wyprzedzeniem. Jeżeli w ogóle mówić o niebezpieczeństwach związanych z burzami piaskowymi na Czerwonej Planecie, to nie z powodu siły wiatru tylko znacznie mniejszych niż na Ziemi ziarenek pyłu. Te wcisną się wszędzie powodując uszkodzenia sprzętu. No ale tego w filmie nie było.

martian-gallery13-gallery-image

Uprawa ziemniaków w marsjańskim habitacie. Zdjęcie z filmu

2.Główny bohater ulega wypadkowi, a ewakuująca się załoga święcie przekonana o jego śmierci zostawia go samego na planecie. Mark Watney oczywiście się nie załamuje, tylko szybciutko liczy że na pomoc będzie musiał czekać kilka lat. Sprawdza racje żywnościowe i wychodzi mu, że tych ma za mało. Postanawia więc uprawiać w habitacie ziemniaki. Nawozi do wnętrza labu marsjański grunt i… no i tutaj zaczynają się kolejne kłopoty. Warstwa gruntu jaką przenosi do habitatu jest za mała żeby cokolwiek na niej wyrosło. Ale nie to jest najciekawsze. Z jakiś powodów astronauta postanawia nawozić ekskrementami ziemię po to by ziemniaki szybciej rosły. Po pierwsze nie wiem po co jakikolwiek nawóz. Marsjański grunt jest bardzo bogaty w mikroelementy i minerały. Nawet jeżeli chcieć go nawozić, to ludzkie odchody to nienajlepszy pomysł. Znacznie lepiej byłoby używać odpadków organicznych. Totalnym odlotem jest produkcja wody dla uprawy ziemniaków. Do tego Mark używa hydrazyny, czyli paliwa rakietowego. W teorii reakcja którą przeprowadza jest możliwa, w praktyce cały habitat wyleciałby w powietrze. Po to żeby z hydrazyny odzyskać wodór, po to by po połączeniu z tlenem powstała woda, musi zachodzić w ściśle kontrolowanych warunkach. A nie w namiocie zrobionym z worka.

Habitat, ściana na której główny bohater zaznacza liczbę spędzonych na Marcie dni. Zdjęcie z filmu

3.Największe moje wątpliwości budzi jednak nie burza, ani nie uprawa ziemniaków, tylko długi czas przebywania człowieka na Czerwonej Planecie. O ile dobrze liczę Mark Watney przebywał tam około 20 miesięcy. Nawet gdyby miał wodę i pożywienie wróciłby stamtąd chory. Do powierzchni Marsa z powodu bardzo cienkiej i rzadkiej atmosfery dochodzi dużo więcej promieniowania kosmicznego niż do powierzchni Ziemi. Z szacunków wynika, że po to by człowiek mógł czuć się na Marsie równie bezpieczny co na Ziemi, na Czerwonej Planecie musiałby przebywać pod osłoną około 2 metrów litej skały. Tymczasem w filmie nie widzimy bunkrów czy podziemnych schronów, tylko pomieszczenia wykonane z dość cienkich materiałów. Także kombinezon głównego bohatera jest cieniutki. Mark spaceruje, podziwia widoki a nawet wypuszcza się w dość dalekie trasy w pojeździe, który zresztą wygląda na zbyt ciężki jak na marsjańskie warunki. Jeden z łazików marsjańskich, nieporównywalnie mniejszy i lżejszy, kilka lat temu zakopał się w wydmie a wyciąganie go zajęło kilka tygodni.

Dalekie wycieczki piesze. Dość niebezpieczna rozrywka na Marsie. Zdjęcie z filmu

4.Natomiast najwiekszy odlot – dosłownie i w przenośni – to powrót z Marsa na Ziemię, a szczególnie jego początkowa faza, czyli opuszczenie Marsa. Nic tu się nie zgadza. Proca grawitacyjna pomiędzy Ziemia i Marsem zadziała tylko w dość specyficznych warunkach, na pewno nie takich jak te pokazane w filmie. Rozebranie rakiety, którą astronauta Mark Watney wydostaje się z powierzchni Marsa na jego orbitę spowodowałoby jej rozbicie. Pomijam już fakt, że okna zatkane materiałem z zużytego spadochronu to już nawet nie fikcja rodem z gwiezdnych wojen, tylko raczej z Hi-Mena… (dla młodszych Czytelników, He-Men to taka bajka rysunkowa, którą oglądali Wasi rodzice 😉 ). No i w końcu manewry na orbicie. Hamowanie przez wysadzenie w powietrze części stacji, przedziurawienie kombinezonu po to by używać go jak silniczka manewrowego. W końcu spotkanie… no i happy end. Nie o to chodzi że ostatnie sceny filmu sa mało prawdopodobne. One są nierealne i przeczą zasadom fizyki.

Podsumowując.

P1000471

Pustynia Atacama, Chile. Zdjęcie: Tomasz Rożek

Oczywiście takich filmów jak Marsjanin nie ogląda się po to by uczyć się fizyki. To jasne. Lubię się jednak czasami poznęcać nad filmami. Mnie najbardziej podobały się w tym filmie plenery. Spora część z nich była wykreowana komputerowo, ale część scen była grana na Chilijskiej pustyni Atacama. Byłem na niej jakiś czas temu i jeżeli Mars wygląda choć trochę jak ona… warto tam polecieć. Chociażby dla widoków. No i niebieskiego zachodu Słońca, którego akurat w filmie nie było. No bo wiecie, że na Ziemi, czyli niebieskiej planecie słońce zachodzi na czerwono, ale na czerwonej planecie na niebiesko.

P1000318_Fotor

Pustynia Atacama, Chile. Niedaleko tego miejsca testuje się marsjańskie łaziki. Zdjęcie: Tomasz Rożek

>>> Zapraszam na profil FB.com/NaukaToLubie (kliknij TUTAJ). To miejsce w którym staram się na bieżąco informować o nowościach i ciekawostkach ze świata nauki i technologii.

12 komentarzy do Marsjanin okiem naukowca ;-)

Jesteśmy w centrum?

Czy Ziemia leży w centrum wszechświata? To pytanie w XXI wieku może u niektórych wywołać  uśmiech politowania. Ale czy powinno?

Jesteśmy jedynym gatunkiem na Ziemi, który współtworzy środowisko w którym żyje. To ciekawe, bo to środowisko, które sami kreujemy, ma ogromny wpływ na kolejne pokolenia. Choć na Ziemi żyją tysiące, dziesiątki tysięcy gatunków zwierząt i roślin, tylko człowiek ma umiejętności, choć chyba powinienem napisać możliwości, by ziemię w tak ogromnym stopniu przekształcać. Jesteśmy niezwykłym gatunkiem, który żyje na niezwykłej planecie.

CopernicSystem

Rysunek Układu Słonecznego jaki pojawił się w dziele De revolutionibus orbium coelestium.

Przez setki lat, odpowiedź na tytułowe pytanie nie budziła żadnych wątpliwości. Ziemia była w centrum wszystkiego i centrum wszystkiego. Obiekty niebieskie (ze Słońcem i Księżycem włącznie) krążyły wokół naszej planety, a sama Ziemia była rusztowaniem o które opierała się cała reszta. Ten obraz runął około połowy XVI wieku. W 1543 roku w Norymberdze ukazało się dzieło kanonika Mikołaja Kopernika – astronoma, matematyka, ale także prawnika, lekarza i tłumacza. W De revolutionibus orbium coelestium – o obrotach sfer niebieskich – Kopernik obalił geocentryczną wizję świata i całkiem sprawnie (choć ze sporymi błędami) przedstawił system heliocentryczny. Ziemia przestała być w centrum. Jej miejsce zajęło Słońce. Oczywiście nikt wtedy nie myślał nawet o galaktykach, gwiazdach supernowych czy czarnych dziurach.

Dla Kopernika sytuacja była w zasadzie dosyć prosta. Słońce w centrum, a wszystko inne krążące wokoło. Mechanizm wszechświata wyglądał podobnie z tą tylko różnicą, że w samym jego centrum znajdowała się nie jak u starożytnych Ziemia, ale nasza dzienna gwiazda. Kilkadziesiąt lat po Koperniku, na początku XVII wieku obserwacje tego co znajduje się poza naszym układem planetarnym rozpoczął Galileusz. Pierwszą osobą, która przedstawiła koncepcję budowy galaktyki był urodzony w Królewcu filozof i matematyk, Immanuel Kant. Była połowa XVIII wieku i nikt poważny nie uznawał już Ziemi za geometryczne centrum wszechświata. Inaczej było jednak ze Słońcem. Wiedziano już o tym, że gwiazd w naszej galaktyce jest bardzo wiele. Wiedziano nawet że krążą one wokół jednego punktu. Bardzo długo uznawano jednak, że tym centralnym punktem jest właśnie Słońce i nasz układ planetarny.

BN-IB371_0424hu_J_20150423201321

Edwin Hubble z negatywem jednej z zaobserwowanych przez siebie galaktyk. źródło: www.wsj.com

Choć w XIX wieku Ziemia od wielu setek lat nie była już traktowana jako geometryczne centrum wszechświata, była jedyną znaną planetą co do której istniała pewność, że jest kolebką życia. Była też częścią jedynego znanego układu planetarnego. Poza Układem Słonecznym nie obserwowano żadnych planet. Ziemia nie leżała w centrum, ale była symbolicznym centrum. Na przełomie XVIII i XIX wieku najpierw Charles Messier, a później William Herschel skatalogowali setki i tysiące mgławic, które później, dzięki pracy amerykańskiego astronoma Edwina Hubble’a (lata 20te XX wieku) okazały się odległymi galaktykami. Odkrywano wiele, zaglądano coraz głębiej i dalej, ale jedno nie ulegało zmianie. W całym ogromnym wszechświecie, wszechświecie w którym istnieją miliardy galaktyk a każda jest domem dla setek miliardów gwiazd do 1990 roku istniało tylko dziewięć planet. Niesamowita historia !

Sytuacja uległa zmianie dokładnie 9 stycznia 1992 roku. To wtedy ukazała się w prestiżowym czasopiśmie Nature praca polskiego astronoma Aleksandra Wolszczana. Opisywała ona dokonane dwa lata wcześniej odkrycie trzech pierwszych planet poza Układem Słonecznym. Krążyły wokół pulsara PSR B1257+12, niecały 1000 lat świetlnych od Ziemi. Dzisiaj, 23 lat po tym odkryciu znanych jest prawie 2000 planet poza Układem Słonecznym, a planety pozasłoneczne, tzw. egzoplanety są odkrywane wręcz hurtowo.

The artist's illustration featured in the main part of this graphic depicts a star and its planet, WASP-18b, a giant exoplanet that orbits very close to it. A new study using Chandra data has shown that WASP-18b is making the star that it orbits act much older than it actually is.  The lower inset box reveals that no X-rays were detected during a long Chandra observation.  This is surprising given the age of the star, suggesting the planet is weakening the star's magnetic field through tidal forces.

To nie zdjęcie, tytlko artystyczna wizja ogromnej planety WASP-18b, która krąży bardzo blisko powierzchni swojej gwiazdy.

Planet jest sporo, ale czy one są takie jak Ziemia ? Nie! Po pierwsze przeważająca większość z nich jest dużo większa od Ziemi. To gazowe giganty takie jak „nasz” Jowisz i Saturn. Dużych planet odkrywamy tak dużo, bo znacznie łatwiej je wykryć. Ziemia różni się od innych jednak tym, że tutaj jest życie, a „tam” – niewiadomo. Co do tego, że proste bakteryjne życie istnieje w przestrzeni kosmicznej, praktycznie możemy mieć pewność, ale z życiem inteligentnym nie jest wcale tak prosto. Jest w tym pewien paradoks. Czym więcej wiem o życiu, tym chętniej przyznajemy, że to proste, jednokomórkowe jest wszechobecne i wszędobylskie. Proste formy mają niesamowitą zdolność do adaptowania się i do zasiedlania miejsc, które – jeszcze do niedawna byliśmy tego pewni – absolutnie nie nadają się do życia. Z życiem złożonym, nie mówiąc już o jego inteligentnej wersji, jest dokładnie na odwrót. Czym więcej wiemy, tym dłuższa staje się lista czynników, warunków, które muszą zostać spełnione, by życie jednokomórkowe wyewoluowało do wersji złożonej. Dzisiaj ta lista ma już kilkaset pozycji, wśród nich takie jak odpowiednia wielkość planety, odpowiednia odległość od gwiazdy i odpowiedni skład atmosfery. Te wspomniane warunki są w sumie logiczne. Ale dalej na tej liście jest pole magnetyczne i gorące jądro planety, siły pływowe, a więc tektonika płyt. Bardzo ważna jest aktywność wulkaniczna oraz wyładowania atmosferyczne.

Kiedyś powszechnie uważano, że Ziemia w skali kosmicznej jest ewenementem. Potem takie myślenie zarzucono. Gdybym napisał, że dzisiaj wraca się do tego, chyba bym przesadził. Ale faktycznie, coraz częściej zdajemy sobie sprawę z tego, że inteligentne istotny w kosmosie mogą być wielką rzadkością. I to pomimo tego, że planet we wszechświecie jest niepoliczalnie dużo. Czyżby więc Ziemia z ludźmi „na pokładzie” była egzemplarzem niepowtarzalnym? Na razie jest. Wiele, bardzo wiele wskazuje na to, że tak pozostanie jeszcze przez dość długi czas. A może nawet na zawsze.

2 komentarze do Jesteśmy w centrum?

Wszechświaty równoległe?

Pracujący w Kalifornii astrofizyk, analizując mapę mikrofalowego promieniowania tła zauważył na niej dziwne struktury. Naukowiec uważa, że to światło które pochodzi z wszechświatów równoległych.

Pracujący w Kalifornii astrofizyk, Ranga-Ram Chary, analizując mapę mikrofalowego promieniowania tła zauważył na niej dziwne struktury. Tam gdzie na mapie miało być ciemno, pojawiały się jasne plamy. Naukowiec uważa, że najbardziej prawdopodobnym wytłumaczeniem jest to, że światło które widzi pochodzi z wszechświatów równoległych.

Czy to możliwe? Tak. Żadna teoria nie zabrania istnienia wszechświatów równoległych do naszego. Nie zabrania także istnienia wszechświatów starszych od tego w którym my żyjemy. Tyle tylko, że to nie jest żaden dowód za tym, że takie światy rzeczywiście istnieją.

Czym jest mikrofalowe promieniowanie tła, zwane inaczej promieniowaniem reliktowym? To echo Wielkiego Wybuchu. Brzmi abstrakcyjnie. Około 380 tysięcy lat po Wielkim Wybuchu, a więc w bardzo BARDZO wczesnej fazie rozwoju naszego wszechświata, temperatura materii obniżyła się do około 3000 Kelwinów a to spowodowało, że zupa materii i energii (a tym właśnie był wczesny wszechświat) zaczęła się rozdzielać. Fotony oddzieliły się od materii, a ta zaczęła się skupiać w pragalaktyki. Od tego czasu te pierwotne fotony przemierzają wszechświat we wszystkich kierunkach, a my dzięki temu jesteśmy w stanie zobaczyć, jak ten wczesny wszechświat wyglądał. Na mapie mikrofalowego promieniowania tła widać bowiem mniejsze i większe skupiska materii. To są miejsca w których zaczęły powstawać galaktyki i ich gromady. Promieniowania reliktowego jest bardzo mało (w każdym centymetrze sześciennym świata jest około 300 tworzących go fotonów), ale za to jest ono wszędzie. Otacza nas ze wszystkich stron. W skrócie mówiąc to promieniowanie to nic innego jak resztki światła, które emitował rozgrzany i potwornie ściśnięty młody wszechświat. Tak jak żarzące się włókno żarówki czy rozgrzany do czerwoności rozpalony w ogniu metalowy pręt. Poświata Wielkiego Wybuchu wydostała się z gorącej zupy materii dopiero, gdy zaczął się z niej formować przezroczysty gaz atomów. Szacuje się, że było to ok. 380 tyś lat po Wielkim Wybuchu.

A wracając do wszechświatów równoległych. Ich istnienia nie możemy wykluczyć, ani potwierdzić. Przynajmniej na razie. Tajemnicze plamy o których wspomniałem wcześniej nie są żadnym dowodem. W najlepszym wypadku będą argumentem za tym, by jeszcze raz, jeszcze dokładniej przeanalizować wyniki badań, które przeprowadza się nieustannie od kilkudziesięciu lat. Zdaniem naukowca, który zauważył tajemnicze plamy, są to ślady materii, która pochodzi z innego świata, na dodatek takiego w którym mają obowiązywać inne niż u nas prawa fizyki. To ostatnie stwierdzenie jest – delikatnie mówiąc – słabo udokumentowane. Badacza poniosła chyba fantazja. Dobrze jest pamiętać, że w XXI wieku nie jesteśmy w stanie powiedzieć z czego zbudowane jest ponad 90 proc. Naszego własnego wszechświata. Ciemna energia i ciemna materia to ogromne znaki zapytania dla kosmologów. Zanim więc zaczniemy dowodzić istnienia innych wszechświatów, będzie trzeba rozwikłać zagadkę tego w którym my żyjemy.

>>> Zapraszam na profil FB.com/NaukaToLubie (kliknij TUTAJ). To miejsce w którym staram się na bieżąco informować o nowościach i ciekawostkach ze świata nauki i technologii.

3 komentarze do Wszechświaty równoległe?

Fagi – dobre wirusy

– Jak to się dzieje, że ci ludzie nie chorują – zastanawiał się widząc Hindusów kąpiących się i pijących wodę z Gangesu. Rzeki, która jest ściekiem. Więcej! wszystko wskazuje na to, że oni są przez to zdrowsi !

Bakterie stają się dla nas coraz groźniejsze. Coraz częściej zdarza się, że nie dają im rady nawet najbardziej zaawansowane terapie antybiotykowe. Sytuacja wymaga podjęcia niestandardowych metod. A może przeciwnie, wymaga powrotu do źródeł?

Ta historia rozpoczyna się w Indiach ostatnich lat XIX wieku. To wtedy przypłynął tam młody brytyjski biochemik i bakteriolog Ernest Hanbury Hankin. Ma jeden cel, walkę z cholerą, która miejscami przybiera rozmiary epidemii. Sukcesów nie ma praktycznie żadnych, a jego desperację potęguje fakt, że w Indiach zdają się nie działać reguły, których nauczył się w Anglii. Młody badacz zauważa bowiem, że na cholerę bardzo rzadko chorują ci, którzy kąpią się w rzece Ganges. Dla Hindusów sprawa jest oczywista, wody rzeki są święte, a każdy kto się w nich kąpie jest „chroniony”. Dla naukowca, sprawa jest trudna do zrozumienia. Przecież Ganges to ściek! To miejsce które powinno być źródłem problemu, a nie lekarstwem. Ku konsternacji większości Europejczyków, a już na pewno tych, którzy mieli wykształcenie medyczne czy biologiczne, Hindusi wodę z Gangesu pili. I? I nic im się nie działo. Jak to możliwe? Brytyjski naukowiec uważał, że w rzece musi być coś, co pijących jej wodę uodparnia. Fenomen dotyczył nie tylko wody w Gangesie, ale także w innych rzekach, równie zanieczyszczonych.

W 1896 roku Ernest Hanbury Hankin opublikował pracę naukową, w której stawiał tezę, że, w badanej przez niego wodzie istnieją czynniki antybakteryjne, które są na tyle małe, że nie sposób zatrzymać ich nawet na najdrobniejszych filtrach. Praca nie została jednak zauważona. Dopiero 20 lat później odkryto co tym czynnikiem jest. Dwa zespoły badaczy, brytyjski i francuski, odkryły bakteriofagi, czyli wirusy, które niszczą bakterie. Nazwa bakteriofag oznacza dosłownie „zjadacze bakterii”. W rzeczywistości wirusy nie pożerają bakterii. Ale o tym za chwilę. Dalsze badania pokazały, że w zasadzie każda bakteria ma swojego faga, czyli wirus, który bez większych problemów może sobie z nią poradzić. Pierwszy przypadek uleczenia wirusami zakażenia bakteryjnego (konkretnie chodziło o infekcję laseczką czerwonki, czyli siejącą śmierć dezynterią) miał miejsce w 1915 roku.

ganges

Zagadka: znajdź głowę chłopaka w śmieciach

Pierwszy nazwę bakteriofag zastosował pracujący w Paryżu Kanadyjczyk, Félix d’Herell. Nie jest ona do końca ścisła, bo sugeruje, że wirusy pożerają bakterie. W rzeczywistości wirusy niczego nie zjadają. Nie są organizmami żywymi, więc nie potrzebują źródła energii do zaspokajania swoich potrzeb. Jak w takim razie zabijają? Bakteriofagi, jak zresztą wszystkie wirusy, komórki żywych organizmów wykorzystują. Wirusy są kapsułkami zawierającymi materiał genetyczny. Nie potrafią same się poruszać. Posiadają jednak „klucze” do żywych komórek. Każda żywa komórka w swojej ścianie ma receptory. To coś w rodzaju zamka do drzwi. Ten, kto posiada klucz, może wejść do środka. Wirusy posiadają klucze, czyli białka pasujące do receptorów. Gdy cząsteczka wirusa znajdzie się w bezpośredniej bliskości komórki, jest bardzo prawdopodobne, że dojdzie do adsorpcji. Wirus otwiera zamek. Chwilę później następuje penetracja. Specjalną igiełką fag wkłuwa się do wnętrza bakterii i wstrzykuje tam swój materiał genetyczny. Komórka (w przypadku fagów komórka bakteryjna) nie ma pojęcia, że jest zainfekowana. Przecież wirus miał „legalne klucze”. Gdy materiał genetyczny znajdzie się w środku, dochodzi do tzw. replikacji genomu. Komórka replikuje wirusy z taką prędkością, że wkrótce zostaje – dosłownie – rozerwana z powodu ich natłoku w swoim wnętrzu. Od momentu „włożenia klucza do zamka” do unicestwienia bakterii mija nie więcej niż 30 minut! Każda zainfekowana komórka wyprodukuje kilkadziesiąt wirusów. A każdy z nich gotowy jest do ataku na nową bakterię.

W naturalnych warunkach pomiędzy bakteriami i wirusami ustala się pewna równowaga, ale gdyby tak wirusy antybakteryjne namnażać i traktować jako najlepszy z dostępnych antybiotyków? Wirusami leczono zanim, zanim ktokolwiek wiedział, czym są ci „niewidzialni” zabójcy bakterii. Félix d’Herelle leczył fagami śmiertelnie chorych na czerwonkę. „Ozdrowienie” następowało po kilkudziesięciu godzinach. Dzisiaj do koncepcji leczenia wirusami coraz częściej się wraca. Antybiotyki wydają się skuteczne, ale tylko na krótką metę. Bakterie potrafią się na nie uodparniać. W Polsce jedna trzecia szczepów dwoinki zapalenia płuc jest odporna na penicylinę. Na fagi nie da się uodpornić, bo te mutują tak samo szybko jak same bakterie. W Polsce znajduje się jeden z dwóch na świecie (i jedyny w Europie) ośrodek naukowy, który prowadzi terapię bakteriofagami. Kilka lat temu rozmawiałem z jego szefem, profesorem Andrzejem Górskim. Powiedział mi wtedy, że do Laboratorium Bakteriofagowego w Instytucie Immunologii i Terapii Doświadczalnej PAN we Wrocławiu zgłaszają się setki osób cierpiących na zakażenia, których żadne antybiotyki nie potrafią wyleczyć. Naukowcom z Wrocławia udaje to w ponad 80 procentach. W porównaniu z terapią antybiotykami, fagi są tańsze, a na pewno nie mniej skuteczne. Ponadto leczenie fagami nie powoduje skutków ubocznych, bo działanie wirusów jest ściśle ukierunkowane i wybiórcze. Określony bakteriofag atakuje tylko jeden gatunek bakterii. W ten sposób po terapii fagami oszczędzamy te „dobre bakterie”, np. z wnętrza układu pokarmowego. Tymczasem antybiotyki tak nie potrafią. – Czasami wystarczy kilkadziesiąt godzin, by osoba od lat cierpiąca na zakażenie uwolniła się od kłopotu. Leczymy nawet infekcje wywołane przez szczepy gronkowca złocistego – śmiercionośne bakterie, będące największym postrachem oddziałów intensywnej terapii – mówił mi prof. Górski.

Skoro mają tyle zalet, dlaczego bakteriofagami nie leczy się powszechnie? Przeszkodą jest prawo. Formalnie (w Unii Europejskiej i USA) przed skomercjalizowaniem, terapia musi być zarejestrowana, a jeszcze wcześniej poprzedzona badaniami klinicznymi. I tutaj pojawiają się problemy formalne. Terapia fagami nie jest zunifikowana, tylko po to by była skuteczna musi być tworzona dla każdego pacjenta osobno. Tego typu postępowanie wymyka się jednak normom, jakie ustalają prawnicy i urzędnicy. Nie bez znaczenia jest pewnie fakt, że przemysł farmaceutyczny czerpie ogromne korzyści z produkcji antybiotyków. Tańsza i w wielu przypadkach skuteczniejsza metoda leczenia fagami może być traktowana jako niechciana konkurencja. – Terapia fagowa to z formalnego punktu widzenia wciąż eksperyment, a do zaakceptowania nowości potrzeba czasu – powiedział mi kilka lat temu prof. Górski. Od tego czasu nic się nie zmieniło.

Drugi – poza Polską – ośrodek leczący fagami znajduje się w stolicy Gruzji, Tbilisi. Założył go zresztą Félix d’Herelle, ten sam, który nadał nazwę bakteriofagom. Ten zagorzały komunista pracował w Związku Radzieckim do śmierci. Gruziński instytut nie podlega pod prawo europejskie i amerykańskie, więc ma większą swobodę w działaniu, niż ośrodek we Wrocławiu. Kilka lat temu, Instytut z Gruzji założył filię w Meksyku, gdzie nie obowiązuje amerykańskie prawo, a bogatym (i chorym) Amerykanom znacznie łatwiej dojechać tam niż do Gruzji.

 

1 komentarz do Fagi – dobre wirusy

Bolid – kilka mitów, kilka faktów

Bolid, jasny ślad na nocnym niebie, jaki pojawił się przedwczoraj nad Polską, wywołał ogromne emocje. I nie ma się co dziwić. Przy okazji warto wyjaśnić kilka nieporozumień.

Bolid, jasny ślad na nocnym niebie, jaki pojawił się przedwczoraj nad Polską wywołał ogromne emocje. I nie ma się co dziwić. Tak dobrze udokumentowane na zdjęciach zdarzenie to jednak rzadkość. Przy okazji tego zdarzenia warto wyjaśnić kilka nieporozumień.

  1. Czy to dało się przewidzieć?

NIE. Bolidy to wbrew pozorom małe obiekty (piszę o tym w kolejnym punkcie), a takich nie da się obserwować przez teleskopy a tym bardziej śledzić ich trajektorii. W efekcie, choć są okresy kiedy szansa na zaobserwowanie bolidu jest większa, nie da się przewidzieć kiedy i gdzie go zauważymy. Jeżeli tak, skąd wzięło się tyle zdjęć tego zjawiska? Bolid pozostawia na nocnym niebie (w niektórych przypadkach także na dziennym niebie) ślad, który „trwa” kilkanaście, a nawet kilkadziesiąt sekund. Jeżeli ktokolwiek był na zewnątrz, jeżeli ktokolwiek miał w dłoni aparat fotograficzny (np. w telefonie), miał ogromne szanse by zrobić zdjęcie mimo tego, że nie spodziewał się niczego szczególnego. Wiele ze zdjęć bolidu było robionych na cmentarzach. Cóż, mieliśmy Wszystkich Świętych, a pogoda w sporej części Polski była perfekcyjna. Noc, liście na drzewach, znicze na grobach, łuna światła i … bolid w tle. Bonus dla artystycznych dusz.

  1. Czy to był duży obiekt?

NIE. Ludzkie oko jest w stanie zobaczyć krótkotrwały błysk światła wtedy gdy w ziemską atmosferę wchodzi obiekt wielkości ziarenka piasku. W czasie deszczy (rojów) meteorów, których w ciągu roku jest kilkanaście, przeważającą większość świetlnych efektów powodują właśnie ziarenka wielkości główki od szpilki. Gdy meteor ma wielkość kostki do gry, ślad jaki pozostawia po sobie utrzymuje się na kilka sekund. Bolidy mają wielkość kilku, górka kilkunastu centymetrów. Kilkunastocentymetrowe nie tylko mogą świecić jaśniej niż Księżyc w pełni, ale także być źródłem efektów dźwiękowych. Te przypominają charakterystyczny pisk hamującego na dworcu pociągu, albo wyładowanie atmosferyczne. Szczególnie duże bolidy mogą być widoczne także w ciągu dnia.

  1. Czy bolid mógł dolecieć do Ziemi?

NIE. Ten konkretny, który w sobotę wieczorem wywołał takie poruszenie, nie doleciał do powierzchni gruntu. Był za mały. Skąd o tym wiemy? Pierwszym wskazaniem jest to, że w pewnym momencie świetlny ślad jakiego bolid był źródłem urywa się. To nie jest wskazanie jednoznaczne, bo w przypadku niektórych obiektów świetlny ślad kończy się w miejscu w którym obiekt ma za mało energii (powietrze wyhamowało go) by rozgrzewać otaczające go powietrze. O tym czym jest świetlny ślad piszę w kolejnym punkcie. Jest jednak argument drugi za tym, że nic do powierzchni ziemi nie doleciało. Sobotni obiekt nie był duży, bo świadkowie przelotu nie słyszeli efektów dźwiękowych. Obiekty o średnicy rzędu centymetrów (a nawet te o średnicy dziesiątków centymetrów) spalają się całkowicie w atmosferze. Niektóre najpierw rozpadają się na mniejsze kawałki, a potem spalają.

  1. Czy świetlisty ślad na niebie zostawił rozgrzany do białości kawałek skały?

NIE. Powszechnie uważa się, że to co widzimy na niebie, to rozgrzany do białości kawałek meteoru. Tymczasem to nieprawda. Po pierwsze – jak wspominałem wcześniej – te obiekty są bardzo małe a efekty świetlne powstają na znacznych (kilkadziesiąt kilometrów) wysokościach. Po drugie, gdyby źródłem światła był meteor, nie widzielibyśmy utrzymującego się przez kilkanaście sekund śladu, tylko bardzo szybko poruszający się punkt świetlny. Co zatem świeci jeżeli nie rozgrzany meteor?

Powierzchnia meteoru nagrzewa się rzeczywiście bo tego typu obiekty poruszają się z bardzo dużymi prędkościami (nawet ponad 100 000 km/h), ale powodem tego nagrzewania nie jest ocieranie się o atomy ziemskiej atmosfery, tylko sprężenie powietrza przed czołem meteoru. Kosmiczna „skała” działa jak szybko poruszający się spychacz, który pcha przed sobą gaz. W ten sposób wytraca prędkość, ale „zyskuje” energię. W ten sposób może się rozgrzać do temperatury kilku tysięcy st. C. Tak, jest źródłem światła, ale to nie to światło widzimy na powierzchni ziemi. Rozgrzany meteor przekazuje część swojej energii otoczeniu przez które przelatuje, czyli powietrzu atmosferycznemu. Te rozgrzane zaczyna intensywnie świecić. I to to światło widzimy. Meteor przelatuje dalej, ale gaz świeci tak długo aż się nie ochłodzi co czasami trwa kilkanaście sekund. W pewnym momencie świetlny ślad urywa się. To znak, że w tym miejscu meteor całkowicie się spalił albo rozpadł na fragmenty mniejsze niż ziarenka piasku.

  1. Czy można się spodziewać większej ilości bolidów?

TAK. Przelot bolidu nie jest jednorazowym wydarzeniem. Wbrew pozorom na danym obszarze zdarza się kilka razy w roku. Trzeba jednak pamiętać, że średnio połowę doby mamy dzień. Bolidy dzienne, czyli na tyle duże by zobaczyć je na jasnym niebie, są rzadkością. Ponadto bolidów nie widać gdy na niebie są chmury bo świetlne ślady powstają dużo wyżej. No i kwestia świadków. Gdyby ten sam przelot miał miejsce nie w godzinach wczesno wieczornych tylko nad ranem, nie byłoby pięknych zdjęć, ani ogromnej liczby świadków.

Podsumowując. Gdyby wziąć to wszystko pod uwagę, piękna pogoda, wczesny wieczór i jasny bolid zdarza się raz wiele miesięcy. Co nie znaczy, że kolejny nie pojawi się jutro. Szanse na pojawienie się bolidów rosną w czasie deszczów meteorów. Obecnie Ziemia przechodzi przez pozostałości po komecie 2P/Encke, czego efektem jest dość rzadki (średnio 5 „spadających gwiazd” na godzinę) rój Taurydów Północnych. Jest bardzo prawdopodobne, ze sobotni bolid był kiedyś częścią komety 2P/Encke.

>>> Zapraszam na profil FB.com/NaukaToLubie (kliknij TUTAJ). To miejsce w którym staram się na bieżąco informować o nowościach i ciekawostkach ze świata nauki i technologii.

5 komentarzy do Bolid – kilka mitów, kilka faktów

Co by się stało…

…gdyby uderzyła w nas asteroida albo kometa? Właśnie jedna z nich przelatuje rekordowo blisko Ziemi. Za pomocą prostych symulatorów (linki w tekście) można sobie wyobrazić rozmiar kataklizmu.

…gdyby uderzyła w nas asteroida albo kometa? Jedna właśnie przelatuje obok nas w rekordowo małej odległości zaledwie 500 tysięcy kilometrów od nas. Skutki kolizji zależą od wielu czynników, w tym od struktury obiektu, jego wielkości, energii ale także kąta pod jakim obiekt wszedłby w ziemską atmosferę. Za pomocą prostych symulatorów można sobie wyobrazić rozmiar kataklizmu.

Co nam może grozić?

Według NASA to największe zbliżenie tak dużego obiektu od 2006 roku. Asteroida 2015 TB 145 została zauważona dość późno bo zaledwie kilka tygodni temu. Porusza się względem Ziemi z prędkością ponad 125 tys km/h a jej rozmiar wynosi około 300 metrów na 600 metrów.Tak późna obserwacja może dziwić, bo obiekty tych rozmiarów śledzone są czasami przez całe lata. Tym razem jest inaczej, bo asteroida znajduje się na dość niestandardowej orbicie. Z tego powodu NASA obiekt uznała za niebezpieczny. Nawet największe komputery Agencji nie są w stanie dokładnie wyliczyć drogi po której asteroida będzie się poruszała. Różne obliczenia wskazują jednak, że minie Ziemię w odległości około 500 tysięcy kilometrów. To niemalże o włos. Dla porównania odległość pomiędzy Ziemią a Księżycem wynosi niecałe 400 tysięcy kilometrów.

Eksperci z NASA uspokajają, że do kolizji nie dojdzie, co by się stało, gdyby jednak… W poniższej tabelce na czerwono zaznaczyłem skutki jakie wywołałoby uderzenie w Ziemię takiej asteroidy jak ta, która właśnie nas mija.

Gdyby asteroida miała średnicę do 25 metrów, takie obiekty uderzają w Ziemię średnio raz na 150 lat, najprawdopodobniej w całości spaliłaby się w ziemskiej atmosferze. Zagrożenie związane z takim „spotkaniem” byłoby zerowe. Meteor czelabiński, który wszedł w ziemską atmosferę 15 lutego 2013 roku miał nie więcej niż 20 metrów średnicy. W wyższych warstwach atmosfery obiekt rozpadł się na drobne kawałki i większość z nich wyparowała w drodze do powierzchni Ziemi. te nieliczne, które „przetrwały” lekko uszkodziła kilka tysięcy budynków (w dość ciasno zabudowanym mieście) i niewielkie obrażenia około tysiąca osób. W przeważającej większości, chodziło o rany spowodowane odłamkami szkła. Straty zostały spowodowane przez falę uderzeniową, a nie odłamki meteorytu.Tak duży obiekt jak meteor czelabiński ostatni raz wszedł w ziemską atmosferę w 1908 roku, czego skutkiem była katastrofa tunguska.

A co z większymi obiektami?

obiekt czas skutki
do 50 m co 1500 lat zniszczenia obejmują średniej wielkości miasto, pojawiają się pożary i fale tsunami
do 150 m co 20 000 lat zniszczenia obejmują kilkaset kilometrów kwadratowych
do 300 m co 100 000 lat totalne zniszczenia w promieniu 100 km, szkody w promieniu kilkuset kilometrów
do 600 m co 200 000 lat tsunami na całej planecie, zniszczenia obszaru porównywalnego z Polską
do 1000 m co 1 000 000 lat poważne zmiany klimatyczne odczuwalne na całej planecie, zniszczony obszar porównywalny z całą Europą
do 5000 m co 20 000 000 lat globalne zniszczenie, pyły powstałe w wyniku kolizji zasłaniają Słońce, wieloletnia zima na całej planecie
powyżej 10 000 m co 100 000 000 lat po nas…

 

 

 

 

 

 

 

 

 

 

W Układzie Słonecznym znajdują się miliony, miliardy obiektów, które potencjalnie mogłyby nam zagrozić. Grawitacyjną ochronę nad naszą małą planetą sprawuje jednak Słońce i dwa gazowe giganty, czyli Jowisz i Saturn. To one ściągają na siebie przeważającą większość obiektów, które mogłyby uderzyć w Ziemię. Warto także zdawać sobie sprawę z tego, że odległości w kosmosie są… prawdziwie kosmiczne. Nawet jeżeli mówimy o tak bliskim przelocie jak ten aktualny. Spróbowałem to pokazać w jednym z moich filmików.

Asteroida w nas (nie) uderzy – Nauka. To lubię.

miniatura

Dane w powyższej tabelce są mocno przybliżone, oddają jednak skalę zagrożenia. Dla osób bardziej zainteresowanych polecam dwa symulatory/kalkulatory, dzięki którym można policzyć i zobaczyć zagrożony przez kosmiczny obiekt obszar.

– Pierwszy symulator jest dla mnie zaawansowanych:

uderzenie

– Drugi dla osób, które nieco bardziej chcą się zagłębić w problem:

uderzenie2

>>> Zapraszam na profil FB.com/NaukaToLubie (kliknij TUTAJ). To miejsce w którym staram się na bieżąco informować o nowościach i ciekawostkach ze świata nauki i technologii.

2 komentarze do Co by się stało…

Co tam się dzieje? Komety czy Obcy?

Wokół jednej z setek tysięcy gwiazd, które obserwuje teleskop Kepler krążą duże obiekty. Naukowcy nie widzą czym one są, ani jak powstały. Internety już mówią o tworach obcych cywilizacji.

Wiecie co to jest Brzytwa Ockhama? To zasada zgodnie z którą przy „wyjaśnianiu zjawisk należy dążyć do prostoty, wybierając takie wyjaśnienia, które opierają się na jak najmniejszej liczbie założeń i pojęć”. Trudno obcą cywilizację uznać za najbardziej oczywisty powód niezrozumiałych obserwacji astronomicznych. Oczywiście nie można jej też całkowicie wykluczyć.

Co konkretnie tak zadziwiło astronomów? W 2009 roku Teleskop Kosmiczny Keplera wśród setek tysięcy gwiazd wypatrzył KIC 8462852. Ta nie świeciła jednak tak jak inne słońca. Coś w sposób nieregularny zakłócało jej obserwację. Tym „czymś” jest duża ilość niewielkich, ale bardzo gęstych obiektów. – Prawdę mówiąc, światło emitowane przez KIC 8462852 było najdziwniejszą rzeczą, jaką zaobserwował Kepler od początku swojego istnienia – powiedziała badaczka z Yale Tabetha Boyajian. Kepler pracuje na orbicie od kilku lat. Inny badacz, Jason Wright, astronom z Penn State University powiedział, że był pod wrażeniem tego, jak niesamowicie to wyglądało. – Obca cywilizacja to ostatnia hipoteza, jaką powinniśmy w takim przypadku rozpatrywać, ale to coś wyglądało tak, jak gdyby stworzyli to właśnie kosmici. (oryginał wypowiedzi : „I was fascinated by how crazy it looked”. “Aliens should always be the very last hypothesis you consider, but this looked like something you would expect an alien civilization to build.”).

Jako że zdjęcia pochodzą sprzed kilku lat, badacze twierdzą, że bardzo dokładnie sprawdzili sprzęt i nie ma mowy o usterce czy pomyłce. – Tam na prawdę krąży ogromna ilość obiektów, ściśniętej materii – powiedziała Boyajian. Czym te obiekty mogą być? No właśnie tutaj zaczyna się kłopot. Bo lista naturalnych wytłumaczeń tego fenomenu jest bardzo krótka. W zasadzie, choć i to jest bardzo mało prawdopodobne, podobny efekt dałyby tylko komety. Być może inna gwiazda przyciągnęła w stronę KIC 8462852 sznur komet. Trudno nawet oszacować prawdopodobieństwo takiego zdarzenia, bo… nigdy wcześniej niczego podobnego nie zaobserwowano.

I co teraz? Dane są analizowane, a gwieździe wokół którejś coś krąży od stycznia będą się przyglądały ziemskie radioteleskopy. Gwiazda KIC 8462852 na nocnym niebie znajduje się pomiędzy gwiazdozbiorami łabędzia i lutni. Patrząc tam można sobie przez chwile pomyśleć…. że ktoś patrzy stamtąd w naszym kierunku. Nie, no błagam, musi być jakieś bardziej przyziemne wytłumaczenie 😉

Zapraszam na profil FB.com/NaukaToLubie (kliknij TUTAJ). To miejsce w którym staram się na bieżąco informować o nowościach i ciekawostkach ze świata nauki i technologii.

2 komentarze do Co tam się dzieje? Komety czy Obcy?

Skąd jesteśmy, kim jesteśmy i dokąd zmierzamy?

O człowieku można mówić na wiele różnych sposobów. Inaczej opisują go atlasy anatomiczne, inaczej podręczniki do biochemii czy antropologii. Książka „Człowiek” nie jest atlasem opisującym każdą cząstkę ludzkiego ciała. Nie jest też podręcznikiem, który opowiada o reakcjach biochemicznych, które zachodzą w ludzkich komórkach. Jest próbą odpowiedzi na trzy krótkie pytania. Skąd jesteśmy, kim jesteśmy i dokąd zmierzamy? Łatwo takie pytania zadać, znacznie trudniej znaleźć na nie odpowiedzi.

Po „Kosmosie” przyszedł czas na „Człowieka” , czyli drugą część mojej trylogii. Opowieść o tym skąd jesteśmy, kim jesteśmy i dokąd zmierzamy?

rozkładówka - wstęp

O człowieku można mówić na wiele różnych sposobów. Inaczej opisują go atlasy anatomiczne, inaczej podręczniki do biochemii czy antropologii. Organizm człowieka jest „kosmicznie” skomplikowany i właśnie dlatego jest tak niezwykły. Książka „Człowiek” nie jest atlasem opisującym każdą cząstkę ludzkiego ciała. Nie jest też podręcznikiem, który opowiada o reakcjach biochemicznych, które zachodzą w ludzkich komórkach. Jest próbą odpowiedzi na trzy krótkie pytania. Skąd jesteśmy, kim jesteśmy i dokąd zmierzamy? Łatwo takie pytania zadać, znacznie trudniej znaleźć na nie odpowiedzi.

rozkładówka_Konarzewski

Kiedyś przeprowadzałem wywiad z neuropsychologiem. Zapytałem go, ile tak właściwie wiemy o ludzkim mózgu. Intuicja podpowiadała mi, że niewiele. Zakładałem, że profesor odpowie, że poznaliśmy nie więcej niż kilka procent wszystkich zagadnień związanych z mózgiem. A tymczasem odpowiedział: „gdyby zapytał mnie pan o to kilka lat temu, powiedziałbym, że nie więcej niż 10 procent, ale dzisiaj, po uruchomieniu kilku dużych międzynarodowych programów dotyczących badania mózgu, po ogromnej liczbie publikacji, jakie pojawiły się w ostatnich latach, twierdzę, że wiemy nie więcej niż 3-4 procent”. Ta odpowiedź jest zaskakująca tylko pozornie. W nauce bardzo często wraz ze wzrostem wiedzy, wzrasta także świadomość naszej niewiedzy. Naukowców i pasjonatów na całym świecie napędza nie to co jest znane, tylko właśnie to, co jest tajemnicą. Jako dziennikarz naukowy przyglądam się tym tajemnicom i czuję podekscytowanie. Ta książka jest pełna moich ekscytacji i fascynacji oraz prób znalezienia odpowiedzi na nurtujące mnie pytania.

rozkładówka_kaczmarzyk

Książka podzielona została podzielona na trzy części. W każdej z nich, oprócz mojego tekstu, znajduje się fascynujący wywiad z naukowcem. Rozmawiam o przeszłości, teraźniejszości i przyszłości człowieka. W wywiadach staram się uzyskać odpowiedzi na tytułowe pytania: skąd jesteśmy, kim jesteśmy i dokąd zmierzamy? Czy je uzyskuję? O tym każdy Czytelnik przekona się sam.

rozkładówka - tadeusiewicz

Człowiek to drugi tom trylogii, którą wymyśliłem w ubiegłym roku. Pierwszy tom, który ukazał się w 2014 roku był zatytułowany Kosmos. Opisuję w nim wszystko to, co jest większe od człowieka. Od Wszechświata począwszy, poprzez galaktyki i układy planetarne, a na planetach, w tym planecie Ziemi, skończywszy. Trzeci tom trylogii – Mikrokosmos – ukaże się w przyszłym roku.

Książka Człowiek została wydana nakładem Grupy Wydawniczej Foksal sp. z o.o.

Zapraszam do lektury

1 komentarz do Skąd jesteśmy, kim jesteśmy i dokąd zmierzamy?

Nobel z fizyki – abstrakcja goni abstrakcję

W ciągu każdej sekundy, przez nasze ciała przenika kilkadziesiąt bilionów neutrin. Abstrakcyjnie dużo. Masa każdego z nich jest mniejsza niż miliardowa część masy atomu wodoru. Abstrakcyjnie mało. Takie właśnie są neutrina. Abstrakcyjne. Za ich badania przyznano tegorocznego Nobla z fizyki.

Neutrina są najbardziej chyba nieuchwytnymi cząstkami badanymi przez fizyków. Prawie w ogóle nie oddziałują z materią. Po prostu przez nią przenikają. Zupełnie tak, jak gdyby była dla nich przezroczysta. Nie stanowią dla nich żadnej przeszkody ciała niebieskie jak i olbrzymie odległości (które pokonują z prędkością zbliżoną do prędkości światła). Powstają w czasie reakcji jądrowych, nie mają ładunku i posiadają nieskończenie małą masę. Neutrina występują w trzech odmianach. Najlepiej poznane są tzw. neutrina elektronowe, ale oprócz nich istnieją jeszcze neutrina taonowe i mionowe. I to właśnie różne odmiany tej samej cząstki były przez 30 lat powodem zamieszania nazwanego tajemnicą neutrin słonecznych. Ale zanim o tajemnicy.

PH20-water-withboat-apr23-wm-small

Wnętrze ogromnego detektora neutrin Super-Kamiokande. Wydrążony we wnętrzu góry mieści 50 000 ton superczystej wody. Widoczne na zdjęciu bańki to fotopowielacze, które rejestrują subtelne błyski światła. Te powstają wtedy, gdy neutrino zderzy się z jądrem atomowym.

Dlaczego ich badanie jest tak ważne? Na prawdę zasługuje aż na Nagrodę Nobla?  Neutrina są być może najliczniejszą grupą cząstek jakie „zasiedlają” nasz wszechświat. W ciągu każdej sekundy, przez nasze ciała przenika ich kilkadziesiąt miliardów. Abstrakcyjnie dużo. Skoro chcemy poznać wszechświat, skoro mamy ambicje by go zrozumieć, nie poradzimy sobie bez wiedzy o neutrinach. Przez lata uważano, że są to cząstki bezmasowe, czyli, że w ogóle nie mają masy. W rzeczywistości ważą, choć tyle co nic. W przypadku tak małych i ulotnych obiektów trudno mówić o precyzyjnym pomiarze masy, ale szacunkowo masę neutrin określa się na dziesiąte części elektronowolta, a to mnie niż jedna miliardowa część masy atomu wodoru. Abstrakcyjnie mało.

A wracając do tajemnicy neutrin słonecznych. Naukowcy doskonale wiedzą w wyniku jakich reakcji we wnętrzu Słońca powstaje jeden z rodzajów neutrin, czyli neutrina elektronowe. Z dużą precyzją można policzyć ile neutrin elektronowych powinno trafiać na Ziemię i ile powinno być rejestrowanych. Przez lata problem polegał jednak na tym, że te przewidywania teoretyczne nijak się miały do danych eksperymentalnych. Neutrin elektronowych na Ziemi rejestrowano o wiele mniej (aż o ok. 70 proc. mniej) niż powinno ich być. Możliwości były dwie. Albo reakcje, które wg. fizyków powinny zachodzić w jądrze Słońca wcale tam nie zachodzą i dlatego o wiele mniej neutrin elektronowych dociera do Ziemi, albo w czasie swojej podróży pomiędzy gwiazdą a naszą planetą coś z neutrinami się dzieje. Ostatecznie okazało się, że fizycy mieli rację co do procesów zachodzących w Słońcu. One po prostu oscylują – czyli zmieniają swoje właściwości. Zamieniają się pomiędzy sobą postaciami. Jedne neutrina spontanicznie, zmieniają się w inne. W naszym świecie dużych przedmiotów to zdolność mocno abstrakcyjna. Jak można ją sobie wyobrazić? A można sobie wyobrazić spadające z drzewa jabłko, które w czasie lotu ku powierzchni gruntu spontanicznie zamieni się w śliwkę, po to by ostatecznie upaść na trawę jako gruszka? Takie właśnie są neutrina. Abstrakcyjne.  Zamiast badać jeden rodzaj neutrin docierających do Ziemi,  zaczęto przyglądać się im wszystkim na raz. Tym razem, wszystko się zgadzało. To było ostateczne potwierdzenie tzw. oscylacji neutrin.

Zapraszam na profil FB.com/NaukaToLubie (kliknij TUTAJ). To miejsce w którym staram się na bieżąco informować o nowościach i ciekawostkach ze świata nauki i technologii.

 

 

 

Tomasz Rożek

3 komentarze do Nobel z fizyki – abstrakcja goni abstrakcję

Jak fotografować Krwawy Księżyc?

Tegoroczne całkowite zaćmienie Księżyca (28.09 nad ranem) jest niezwykłe, bo połączone z zbliżeniem Srebrnego Globu do Ziemi. Kolejna szansa na sfotografowanie go dopiero za kilkanaście lat. Jak zrobić zdjęcie Krwawemu Księżycowi?

Tegoroczne całkowite zaćmienie Księżyca (28.09 nad ranem) jest niezwykłe, bo połączone z zbliżeniem Srebrnego Globu do Ziemi. Kolejna szansa na sfotografowanie go dopiero za kilkanaście lat. Jak zrobić zdjęcie Krwawemu Księżycowi?

Na początku zdanie wyjaśnienia. Fotografowania Księżyca nie jest trudne. Szczególnie Księżyc w pełni jest obiektem tak dużym i jasnym, że nie będzie problemu ani z jego znalezieniem na nocnym niebie, ani z ustawieniem na nim ostrości. Z tym poradzi sobie każdy aparat. W zasadzie jedynym sprzętem o jaki warto się zatroszczyć, jest statyw. Zachęcam do ustawienia aparatu w tryb manualny. W trybie automatycznym wszystkie zdjęcia będą bardzo do siebie podobne. Na „manualu” możesz poeksperymentować. Zanim przeczytasz dalej, rzuć okiem na mój poprzedni wpis, może Ci się przydać.   KLIKNIJ TUTAJ

No to do rzeczy:

Ostrość. Jeżeli mamy aparat w trybie manualnym, ostrość trzeba ustawić na nieskończoność. W trybie manualnym powinna się ustawić automatycznie (autofocus).

Czułość. Jeżeli aparat umożliwia ustawianie czułości (ISO), tym parametrem można się nieco pobawić, uzyskując czasami bardzo ciekawe efekty. Czym niższa czułość tym wyraźniejsze będzie zdjęcie (niższy poziom szumów). Niestety czym niższa czułość, tym dłuższy musi być czas naświetlania, a to może być problemem np. gdy nie mamy statywu albo gdy w kadrze są szybko poruszające się obiekty. Ich rozmazanie może być dodatkowy atutem zdjęcia. No ale to już kwestia gustu fotografa. Jeżeli chcemy by czas otwarcia migawki był jak najkrótszy, trzeba ustawić wysoką czułość. W takim wypadku na zdjęciu pojawiają się szumy („ziarno”). Może ono dodać artyzmu, ale znowu, to kwestia gustu. Dobra rada: zjawisko zaćmienia Księżyca trwa na tyle długo, że bez problemu można zrobić więcej niż jedno zdjęcie. Poeksperymentuj, ustawiaj różne wartości czułości.

Czas naświetlania. Bardzo trudno zrobić zdjęcie „z ręki” gdy czas otwarcia migawki wynosi mniej niż 1/30 s. Tym bardziej że mówimy o fotografowaniu bardzo odległego obiektu. Stąd jeszcze raz sugestia, by zaopatrzyć się w statyw, nawet gdyby miał być najprostszy. Jeżeli nie masz, obserwuj zaćmienie z miejsca w którym możesz oprzeć aparat o drzewo, krzesło czy chociażby słup od ogrodzenia.

Podobnie jak w przypadku ustawiania czułości, warto poeksperymentować ustawiając różne wartości czasów otwarcia migawki. Zdziwisz się jak różne mogą być zdjęcia tego samego obiektu. Czym krótszy czas migawki, tym bardziej otwarta musi być przysłona aparatu, gdy czas jest długi, przysłona musi być „domknięta”. I tylko z pozoru nie robi to różnicy. Gdy Księżyc będzie nisko nad horyzontem, gdy w kadrze będzie nie tylko jego tarcza ale także np. drzewa albo budynki, domknięta przysłona (wartości od 11 w górę) umożliwi zrobienie zdjęcia na którym ostre będą wszystkie obiekty. Otwarta przysłona (o wartości do 4,5) spowoduje że ostre będą tylko te obiekty na które ustawiona zostanie ostrość. Reszta będzie rozmazana. Jeżeli nie czujesz się na siłach operować przysłoną, ustaw jej automatykę i operuj czasem migawki. Zdziwisz się jak różne zdjęcia uzyskasz.

Ogniskowa. Wszystko zależy od kompozycji zdjęcia, a wiec od tego co chcesz na nim mieć. Jeżeli tylko tarczę Księżyca, ustaw jak najdłuższą ogniskową (jak najbardziej przyzoomuj). Unikaj zoomu cyfrowego, zdjęcie zawsze możesz skadrować na komputerze.

Napisałem to już tutaj kilka razy, ale napisze jeszcze raz. EKSPERYMENTUJ. Masz sporo czasu, zjawisko całkowitego zaćmienia Księżyca trwa kilka godzin. Nie ma sensu robienie kilkunastu czy kilkudziesięciu zdjęć przy takich samych parametrach. Baw się ustawieniami czasu, baw przysłoną i czułością. Jeżeli masz zmienne obiektywy, korzystaj z tego. Ponadto:

– Robiąc zdjęcie korzystaj z samowyzwalacza albo ze zdalnie uruchamianej migawki. W ten sposób nie poruszysz aparatu w czasie robienia zdjęcia.

– Spróbuj zrobić kilka zdjęć przy tych samych parametrach po to by potem nałożyć je na siebie. Zobaczysz, że uzyskasz ciekawy efekt.

– Spróbuj zrobić kilka tak samo skadrowanych zdjęć na różnych etapach zaćmienia. Nakładając je na siebie udokumentujesz na jednym zdjęciu przebieg całego zjawiska.
A jak już zrobisz dobre zdjęcie, pochwal się nim na FB.com/NaukaToLubie

Powodzenia !!!

 

2 komentarze do Jak fotografować Krwawy Księżyc?

Kiedy, gdzie i jak obserwować Krwawy Księżyc?

Gdzie zwrócić wzrok, o której godzinie rozpocznie się najciekawsze i czy trzeba do obserwacji krwawego Księżyca mieć z sobą jakikolwiek sprzęt?

Kiedy?

W najbliższy poniedziałek, od godziny 2 w nocy. Choć najciekawsze będzie się działo dopiero dwie godziny później. Kilka minut po godzinie 3 nad ranem tarcza Księżyca w całości będzie znajdowała się w tzw. strefie półcienia”. Ale na prawdę widowiskowo zacznie być dopiero o 4:11. Wtedy cały Księżyc będzie w cieniu Ziemi. Nie zniknie jednak tylko będzie się stawał coraz bardziej czerwony (z domieszką brązu). Do 4:47 tarcza Księżyca będzie stawała się coraz ciemniejsza, a od tego momentu z każdą chwilą będzie się rozjaśniała. O 5:23 nastąpi koniec fazy całkowitego zaćmienia. Strefę pełnego cienia, Księżyc opuści o 6:27.  W skrócie mówiąc to co najciekawsze wydarzy się pomiędzy 4:11 a 5:23 i potrwa 72 minuty.

Gdzie?

lunar_201509Krwawy Księżyc będzie w Polsce widoczny wszędzie. Zresztą nie tylko w Polsce, ale także w całej Ameryce Południowej, w prawie całej Ameryce Północnej i Afryce. Księżyc, a szczególnie Księżyc w pełni to bardzo duży i jasny obiekt, stąd będzie widoczny także w miejscach „zanieczyszczonych” sztucznym światłem, a więc np. w centrach miast. Oczywiście obserwacje będą lepsze, gdy będą prowadzone z dala od sztucznych świateł.

Całkowite zaćmienie Księżyca nastąpi w chwili gdy Srebrny Glob będzie nisko nad horyzontem. Oznacza to, że niczego nie zobaczymy np. górskich dolinach, albo w mieście, w otoczeniu wysokich budynków. Do obserwacji trzeba więc wybrać miejsce, w którym nie będzie przeszkód patrząc w kierunku zachodnim i południowo-zachodnim i zachodnim. Optymalnie, gdyby takie miejsce było na wzniesieniu.

To, że Księżyc będzie nisko nad horyzontem spowoduje, że obserwacje będą ciekawsze. Oczywiście pod warunkiem, że niebo nie będzie przysłonięte chmurami.

Jak?

Księżyc jest tak dużym i jasnym obiektem, że bez problemu można do obserwować gołym okiem. Zwykłą lornetka, nie mówiąc o nawet najprostszym teleskopie będzie można zjawisko „zacieniania” Księżyca zobaczyć bardzo dokładnie. Tak samo jak będzie można z dużymi detalami oglądać obiekty na powierzchni Księżyca.

Dobrym pomysłem jest fotografowanie i filmowanie zjawiska. Podobnie jak z obserwacją, nie potrzeba do tego żadnego specjalistycznego sprzętu. Wystarczy zwykły aparat fotograficzny (nawet kompaktowy automat). Jedyne o co warto się zatroszczyć to statyw. Z reki obraz będzie nieatrakcyjny.

Zainteresowanym obserwacją i fotografowaniem Krwawego Księżyca polecam mój kolejny wpis. KLIKNIJ TUTAJ !!!

5 komentarzy do Kiedy, gdzie i jak obserwować Krwawy Księżyc?

Pluton jak Biedronka

Wczorajszy przelot sondy New Horizons w pobliżu Plutona natchnął mnie do pewnych przemyśleń. Po co badać coś tak odległego jak Pluton? Po co badać delfiny, motyle czy orangutany? Po co zajmować się gwiazdami, płytami tektonicznymi i DNA?

Wczorajszy przelot w pobliżu Plutona i związanych z nim sporo pytań natchnął mnie do pewnych przemyśleń. Niemal za każdym razem, gdy w nauce dochodzi do jakiegoś odkrycia, do wysłania sondy, do zbudowania nowego rodzaju mikroskopu czy znalezienia nowej cząstki elementarnej, pada pytanie, po co to wszystko? Po co wydawać miliony dolarów by dowiedzieć się co słychać np. na globie, który oddalony jest od nas o miliardy kilometrów. Dajmy na to na takim Plutonie. Wczoraj udało się sfotografować jego powierzchnię z odległości nieco ponad 12 tysięcy kilometrów. To 30 razy mniej niż odległość pomiędzy Ziemią i naszym Księżycem. Sonda która tego dokonała to New Horizons. Leciała w kierunku Plutona prawie 10 lat przebywając w tym czasie 5 miliardów kilometrów. No i po co to wszystko? Po co lecieć tak daleko, po co wydawać niemałe przecież pieniądze, po co zaangażowanie ogromnej grupy ludzi przez długi okres czasu?

Zacznijmy od pieniędzy. Całkowity koszt misji New Horizons, wszystkich urządzeń sondy, jej wystrzelenia, ale także analizy danych a nawet obsługi medialnej wydarzenia to około 700 milionów dolarów, czyli nieco ponad 2 miliardy i 600 milionów złotych. To dziesięć razy mniej (!!!) niż wynosi roczny przychód supermarketów Biedronka w Polsce. To mniej niż budowa 20 kilometrowego odcinka autostrady A1. W końcu to mniej niż zakup i 13 letnia obsługa 4 samolotów F16, które służą w polskiej armii (w sumie kupiliśmy ich 48). Tyle jeżeli chodzi o koszty. Tak, te są duże… dla przeciętnego obywatela. Niewielu byłoby stać na wybudowanie i wysłanie w kosmos sondy New Horizons (choć np. Jan Kulczyk, najbogatszy Polak, mógłby takich sond wysłać 7), ale w skali państwa, dla budżetu państwa rozwój nauki to grosze. Grosze zainwestowane najlepiej jak można sobie wyobrazić. Grosze, które w przyszłości przyniosą miliony poprzez rozwój technologii a w dalszej perspektywie rozwój przemysłu. Każda ekspansja to wyzwanie i konieczność znajdowania rozwiązań na problemy z których nie zdawaliśmy sobie sprawy. Przecież loty w kosmos mają bezpośrednie przełożenie na komunikację, elektronikę i materiałoznawstwo. Rozwój technik obrazowania (nieważne czy w astronomii czy w biologii) od razu jest wykorzystywany w medycynie. Nasze miasta byłyby skażonymi pustyniami gdyby nie powstawały zaawansowane technologicznie silniki i komputery, które tymi silnikami sterują.

A wracając do Plutona, delfinów, motyli i orangutanów. Po co je badać? Bo one są częścią nas, a my częścią świata którego różnorodność – przynajmniej mnie – powala na kolana. Wszystkie lekkie atomy, które nas budują powstały w czasie Wielkiego Wybuchu. Wszystkie ciężkie w czasie wybuchu gwiazdy. Warto rozwijać zarówno kosmologię, astrofizykę jak i fizykę cząstek. Nasze DNA to uniwersalny język całej przyrody, a gatunki (zarówno zwierzęce jak i roślinne), które zamieszkują Ziemię (a pewnie także inne globy) powstawały jedne z drugich. To dlatego nie można zaniedbywać biologii (w tym egzobiologii) i medycyny. Oddychamy powietrzem w którego skład wchodzą różne gazy. To dlatego warto rozwijać chemię i interesować się tym jak zmieniały się atmosfery na innych planetach. Ta wiedza może być bezcenna gdy zacznie zmieniać się nasza atmosfera. Bo to że wszystko jest wokoło nas zmienne – to oczywiste. Kontynenty są w ruchu (nie tylko zresztą na Ziemi) i dzięki temu mogło powstać życie. Ale to nie powstałoby, gdyby Ziemia nie miała swojego pola magnetycznego. A tego by nie było gdyby jądro planety nie było gorące i półpłynne. Ale nawet gdyby było, Ziemia byłaby martwa, gdyby nie było Księżyca, który stabilizuje ruch Niebieskiej Planety wokół Słońca. A Księżyc powstał w kosmicznej katastrofie w której w Ziemię uderzyła planetoida wielkości Marsa. Geologia, geografia, fizyka, astronomia, biofizyka i biochemia… Mam dalej wymieniać? Czy jest sens wymieniać? Czy jest sens pytać, po co badamy coś tak odległego jak Pluton? Po co badamy delfiny, motyle czy orangutany, a nawet biedronki (chodzi o owada, nie o sieć sklepów)? Moim zdaniem szkoda na to czasu. Lepiej go wykorzystać na zaspokajanie swojej ciekawości. Bo to ciekawość idzie przed odkryciami. Tak było zawsze i tak będzie zawsze.

3 komentarze do Pluton jak Biedronka

Type on the field below and hit Enter/Return to search