Nauka To Lubię

Oficjalna strona Tomasza Rożka

Autor: Tomasz Rożek

100 lat abstrakcji

Czas jest względny, a masa zakrzywia czasoprzestrzeń. To jedno zdanie jednych przyprawia o ból głowy, dla innych jest źródłem nieograniczonej fascynacji. Fascynacji, która trwa dokładnie 100 lat.

>>> Polub FB.com/NaukaToLubie to miejsce w którym komentuję i popularyzuję naukę.

Pióra i ołówki na teorii grawitacji połamało już wielu badaczy. To co wiemy, to prosty wzór, którego dzieci uczą się w szkole. Że siła grawitacji zależy od masy obiektów, które są jej źródłami (im obiekt cięższy, tym większa siła), oraz że słabnie wraz z zwiększającą się odległością pomiędzy tymi obiektami. Dzięki tej prostej zależności, udaje się doskonale przewidywać ruchy planet, satelitów, także zachowanie sporej części gwiazd w galaktyce. Sporej, ale nie wszystkich.

Tymi, których wytłumaczyć się nie da są np. kolizje gwiazd neutronowych, pulsary, czarne dziury czy wybuchy supernowych. Grawitacji nie sposób także „dopasować” do wielkiego wybuchu. A skoro od niego swój początek wziął czas i przestrzeń, nasze braki w rozumieniu grawitacji stają się kłopotliwe.

Dokładnie 100 lat temu Albert Einstein ogłosił (a konkretnie odczytał) Ogólną Teorię Względności. Jej manuskrypt (ma 46 stron) można dzisiaj zobaczyć w Bibliotece Narodowej Izraela. Dla postronnego obserwatora, niespecjalisty , notatki Einsteina mogą sprawiać wrażenie niewyraźnych bazgrołów zrobionych na pożółkłych kartkach. Są napisane bardzo drobnym maczkiem, często poprawiane, miejscami podkreślone, w innych miejscach przekreślone. Sporo w nich matematycznych wzorów. Niesamowite, jak wiele w fizyce czy w ogóle w postrzeganiu świata (wszechświata) zmieniło to, co 100 lat temu zostało zaprezentowane światu.

Ogólna Teoria Względności została ogłoszona w 1915 roku, gdy Albert Einstein przebywał w Niemczech. Już wtedy Einstein był znanym człowiekiem, a jego prace – choć przez bardzo nielicznych rozumiane – były w pewnym sensie kultowe. Stworzenie OTW nie było olśnieniem, jak wielu innych teorii fizycznych. Einstein pracował nad nią 9 lat. Czasami błądził, czasami się mylił. To była żmudna praca. OTW jest – jak sama nazwa wskazuje – uogólnieniem Szczególnej Teorii Względności Einsteina. Choć teoria Ogólna i Szczególna są dwoma najbardziej znanymi jego pracami, Einstein największe naukowe zaszczyty (Nagrodę Nobla) odebrał za prace nad zupełnie innym problem (konkretnie nad efektem fotoelektrycznym).

Ogólna Teoria Względności (OTW) jest w zasadzie teorią opisującą najbardziej namacalne dla nas oddziaływanie – grawitację. Z nią wiążą się takie wielkości jak masa, przestrzeń i czas. OTW jest bardzo skomplikowana. Nie sposób jej zrozumieć bez ogromnej wiedzy czysto matematycznej. Wynika z niej, że każda masa jest źródłem zakrzywienia otaczającej ją przestrzeni. Czym większa masa, tym większa siła grawitacji, czyli większe zakrzywienie przestrzeni. Jak to rozumieć? Gdy dwie osoby trzymają za rogi obrus jego powierzchnia jest płaska. Ale gdy na sam środek obrusu wrzucimy piłkę, obrus w miejscu w którym się ona znajduje lekko się „naciągnie” czy inaczej „zakrzywi”. Czym większa piłka, tym większe zakrzywienie. Gdy położymy na skraju obrusu mniejsza piłeczka, stoczy się do tego zakrzywienia, tak jak przyciągana grawitacyjnie asteroida „stoczy” się w kierunku Słońca. Tyle tylko, że obrus ma dwa wymiary, a przestrzeń wokół nas ma ich trzy. Ta nieintuicyjność (nie mylić z nielogicznością) to jeden z powodów dla których dwie teorie względności tak trudno zrozumieć. Drugim jest bardzo zaawansowana matematyka, której Einstein musiał użyć do rozwiązania swoich równań.

Gdy Einstein referował swoje pomysły na względność, był znany z zupełnie innych badań teoretycznych. Słuchano go więc z zaciekawianiem. Ale to zaciekawienie wynikało z szacunku do znanego fizyka a nie ze zrozumienia tego o czym mówił. W pewnym sensie tak jest do dzisiaj. Albert Einstein jest postacią kultową. Ale nie dlatego, że tak wielu ludzi rozumie Szczególną czy Ogólną Teorię Względności.  Tak naprawdę zaledwie garstka fizyków wie o co w niej chodzi. Nieco większa grupa rozumie co wynika z teorii Einsteina. Całkiem sporo fizyków na codzień wykorzystuje w swojej pracy naukowej zjawiska, które udało się dzięki teoriom Einsteina zrozumieć. Jednym z takich zjawisk są soczewki grawitacyjne. W zakrzywionej przestrzeni światło nie porusza się po liniach prostych, tylko krzywych. To dlatego światło dalekich galaktyk biegnące w okolicach dużych mas (czarnych dziur czy innych galaktyk) jest zakrzywione, tak samo jak światło przechodzące przez szklane soczewki. Dla astrofizyków i astronomów soczewki grawitacyjne to coś w rodzaju naturalnego teleskopu dzięki któremu mogą obserwować obiekty i zjawiska których inaczej nie udałoby się zaobserwować. Zakrzywiane światło to jednak dopiero początek wchodzenia w świat abstrakcji. Z równań Einsteina wynika także, że czas jest pojęciem względnym, że nie płynie dla nas wszystkich tak samo. Jego bieg jest zależny bowiem od siły grawitacji i od prędkości z jakim porusza się ciało. To z kolei wykorzystuje się w systemach globalnej lokalizacji (np. GPS).

Einstein był teoretykiem. Nie sprawdzał eksperymentalnie tego co wyliczył na drodze matematyki. Zresztą wtedy kiedy dokonywał swoich odkryć, nie było możliwości sprawdzenia ich poprawności. Urządzenia pomiarowe nie były dość czułe, a człowiek jeszcze nie latał w kosmos. To właśnie w przestrzeni pozaziemskiej wielokrotnie testowano wyliczenia Alberta Einsteina. Wszystkie dokładnie się zgadzają. No może za wyjątkiem jednej. Przewidywanych w Teorii Względności fal grawitacyjnych. Ale o nich napiszę innym razem 🙂 Tak samo jak o największej naukowej pomyłce Einsteina.

>>> Zapraszam na profil FB.com/NaukaToLubie (kliknij TUTAJ). To miejsce w którym staram się na bieżąco informować o nowościach i ciekawostkach ze świata nauki i technologii.

Brak komentarzy do 100 lat abstrakcji

Myśląca maszyna

Na samą myśl o tym, że komputer mógłby myśleć, myślącemu człowiekowi włosy stają dęba. A może wystarczy nauczyć maszynę korzystania z naszych myśli?

Myślenie maszyn to temat, który wywołuje sporo emocji. Czy zbudujemy kiedykolwiek sztuczny mózg? Czy maszyny (komputery, programy) mają świadomość? A może w przyszłości nas zastąpią? Cóż, zastępują już dzisiaj. I dobrze, że zastępują, w końcu po to je budujemy. Czy myślą? Nie da się odpowiedzieć na to pytanie, zanim nie sprecyzujemy dokładnie co to znaczy „myśleć”. Jeżeli oznacza „podejmować decyzje”, to tak, komputery potrafią to robić. Potrafią też się uczyć i wyciągać wnioski z przeszłości. Nie potrafią robić rzeczy abstrakcyjnych. I przede wszystkim nie mają poczucia osobowości, nie mają poczucia swojej odrębności i swoich własnych celów. Owszem maszyny robią wiele rzeczy celowych, ale realizują nie swoje cele, tylko cele konstruktora czy programisty.

Deep brain stimulator.

(credit:  Asylum Entertainment)

Deep brain stimulator.

(credit: Asylum Entertainment)

Łowienie sygnałów

Samoświadomość czy kreatywność wydają się być barierą, która jeszcze długo nie zostanie złamana. To czy powinna być złamana, to zupełnie inny temat. Ale być może nie ma potrzeby na siłę nadawać maszynom cech ludzkich mózgów, może wystarczy w jakiś sposób je z naszymi mózgami zintegrować? Różnice pomiędzy tym, jak działa nasz mózg i „mózg” maszyny są spore. Może warto się zastanowić nad tym, czy maszyna nie mogłaby w pewnym sensie skorzystać z tego co MY mamy w głowie. Ten sam problem można postawić inaczej. Czy nasz mózg jest w stanie dogadać się bezpośrednio z maszyną? Czy jest bezpośrednio w stanie przekazywać jej informacje albo nią sterować?

Słowo „bezpośrednio” ma tutaj kluczowe znaczenie. Nasze mózgi dogadują się z komputerem, ale pomiędzy umysłem a procesorem w maszynie jest cała masa stopni pośrednich. Np. palce piszącego na klawiaturze, sama klawiatura. W końcu język, w którym piszemy komendy (albo tekst). Te stopnie pośrednie powodują, że czas pomiędzy myślą, która zakwita nam w mózgu a jej „materializacją” bywa długi. Każdy stopień pośredni jest potencjalnym miejscem pojawienia się błędu. W końcu ile razy wpisywana przez klawiaturę komenda czy tekst zawierał literówki? Jest jeszcze coś. Nie każdy fizycznie jest w stanie obsługiwać komputer czy jakiekolwiek inne urządzenie elektroniczne. Zwłaszcza dla takich ludzi stworzono interfejs mózg – komputer (IBC). Urządzenie, które pozwala „zsynchronizować” mózg z komputerem, pozwalające wydawać komendy urządzeniom elektronicznym za pomocą fal mózgowych. Dzisiaj z IBC korzystają nie tylko niepełnosprawni, ale także gracze komputerowi. W przyszłości być może będzie to standardowy sposób obsługi elektroniki.

Jak to działa? Komórki nerwowe w mózgu człowieka porozumiewają się pomiędzy sobą poprzez przesyłanie impulsów elektrycznych. Te można z zewnątrz, czyli z powierzchni czaszki, rejestrować. W ostatnich latach nauczyliśmy się je także interpretować. To istne szukanie igły w stogu siana. Mózg każdej sekundy przetwarza miliony różnych informacji, przesyła miliony impulsów do mięśni rozlokowanych w całym ciele. Każdy taki sygnał pozostawia „ślad”, który można podsłuchać.

Neural net firing reversed.

(credit:  Asylum Entertainment)

Neural net firing reversed.

(credit: Asylum Entertainment)

Czujnik w okularach

Nie powiem, że potrafimy podsłuchać wszystko. To byłaby nieprawda. Mówiąc szczerze, jesteśmy dopiero na samym początku drogi. W przypadku IBC bardzo pomocna jest  świadomość użytkownika (pacjenta?) korzystającego z interfejsu. Człowiek ma bowiem zdolności do takiego aktywizowania mózgu, by sygnały z tym związane, można było wyraźniej „usłyszeć” na powierzchni czaszki. Dzięki temu, osoby sparaliżowane, myślami są w stanie poruszać mechanicznymi nogami (czyli tzw. egzoszkieletem) albo wózkiem inwalidzkim. W ten sam sposób człowiek ze sprawnie działającym mózgiem jest w stanie komunikować się z otoczeniem chociażby poprzez pisanie na ekranie, nawet gdy jest całkowicie sparaliżowany. Myśli o literach, a te wyświetlają się na odpowiednim urządzeniu.  W podobny sposób, w przyszłości być może będzie wyglądało sterowanie telefonem komórkowym czy jakimkolwiek innym urządzeniem. Pewną trudnością jest to, że – przynajmniej dzisiaj – po to, by wspomniane impulsy można było zarejestrować, do skóry głowy muszą być przyłożone elektrody. Albo korzystający z interfejsu człowiek musi mieć ubrany specjalny czepek z czujnikami. Ale w przyszłości być może wystarczą czujniki w okularach? Okularach, w których zainstalowana będzie kamera, a na szkłach wyświetlane będą dodatkowe informacje. Takie okulary już są i nazywają się GoogleGlass.

Złożony i skomplikowany

Interfejs mózg – komputer odbiera sygnały z powierzchni skóry, rejestruje je i interpretuje. Czy możliwe jest przesyłanie informacji w odwrotną stronę, czyli z jakiegoś urządzenia do mózgu? Na razie tego nie potrafimy, ale nie mam wątpliwości, że będziemy próbowali się tego nauczyć (znów, czy powinniśmy to robić, to zupełnie inny temat). To znacznie bardziej skomplikowane niż sczytywanie potencjałów elektrycznych z powierzchni czaszki. W którymś momencie tę barierę może przekroczymy i wtedy będziemy mieli dostęp do nieograniczonej ilości informacji nie poprzez urządzenia dodatkowe takie jak komputery, tablety czy smartfony. Wtedy do tych informacji będzie miał dostęp bezpośrednio nasz mózg. Na to jednak zbyt szybko się nie zanosi. Nie z powodu samej elektroniki, raczej z powodu naszego mózgu. Panuje dość powszechna zgoda, że to najbardziej skomplikowany i złożony system jaki znamy. Nie tylko na Ziemi, ale w ogóle. Choć od lat na badania mózgu przeznacza się ogromne kwoty pieniędzy, choć w ostatnich latach poczyniliśmy ogromne postępy, wciąż niewiele wiemy o CZYMŚ co waży pomiędzy 1,2 a 1,4 kg

>>> Zapraszam na profil FB.com/NaukaToLubie (kliknij TUTAJ). To miejsce w którym staram się na bieżąco informować o nowościach i ciekawostkach ze świata nauki i technologii.

Brak komentarzy do Myśląca maszyna

Marsjanin okiem naukowca ;-)

Film Marsjanin jest niezły, choć książka 100 razy lepsza. Ale do rzeczy. Czy możliwa jest historia astronauty Marka Watneya, którego  gra Matt Damon? Postanowiłem popastwić się nad scenariuszem.

Wiem, że piszę to nico późno (w większości kin film już zszedł z ekranów), ale potraktujcie to jako pewien rodzaj próby. W polskim internecie naukowcy (dziennikarze naukowi) zwykle nie recenzują filmów. Ciekaw jestem jaka będzie reakcja na moją recenzję.

Film warto zobaczyć, a jeszcze bardziej warto przeczytać książkę. Piękne krajobrazy, dobre efekty specjalne i ciekawa historia nie zmieniają jednak tego, że opowiedziana w nim historia nie ma prawa się zdarzyć i to z wielu różnych powodów. Ja wspomnę o czterech. Jeżeli nie oglądałaś, jeżeli nie oglądałeś filmu, za chwilę zdradzę kilka szczegółów jego fabuły.

Burza piaskowa, ewakuacja załogi. Zdjęcie z filmu

1.Załogowa misja na Marsa musi w trybie natychmiastowym ewakuować się z planety z powodu silnej burzy piaskowej. Ta nadchodzi tak szybko, że astronauci mają dosłownie kilka minut na spakowanie się i wystrzelenie na orbitę. Tymczasem marsjańska burza byłaby dla sprzętu i ludzi  niegroźna. Marsjańska atmosfera jest z grubsza 200 razy rzadsza od ziemskiej. Nawet jak mocno wieje, niewiele ma to wspólnego z niszczycielskim żywiołem. Marsjańskie burze po prostu nie mają mocy którą mają burze na Ziemi. Marsjańska burza nie może przewracać metalowych konstrukcji. Poza tym da się ją przewidzieć z dużym wyprzedzeniem. Jeżeli w ogóle mówić o niebezpieczeństwach związanych z burzami piaskowymi na Czerwonej Planecie, to nie z powodu siły wiatru tylko znacznie mniejszych niż na Ziemi ziarenek pyłu. Te wcisną się wszędzie powodując uszkodzenia sprzętu. No ale tego w filmie nie było.

martian-gallery13-gallery-image

Uprawa ziemniaków w marsjańskim habitacie. Zdjęcie z filmu

2.Główny bohater ulega wypadkowi, a ewakuująca się załoga święcie przekonana o jego śmierci zostawia go samego na planecie. Mark Watney oczywiście się nie załamuje, tylko szybciutko liczy że na pomoc będzie musiał czekać kilka lat. Sprawdza racje żywnościowe i wychodzi mu, że tych ma za mało. Postanawia więc uprawiać w habitacie ziemniaki. Nawozi do wnętrza labu marsjański grunt i… no i tutaj zaczynają się kolejne kłopoty. Warstwa gruntu jaką przenosi do habitatu jest za mała żeby cokolwiek na niej wyrosło. Ale nie to jest najciekawsze. Z jakiś powodów astronauta postanawia nawozić ekskrementami ziemię po to by ziemniaki szybciej rosły. Po pierwsze nie wiem po co jakikolwiek nawóz. Marsjański grunt jest bardzo bogaty w mikroelementy i minerały. Nawet jeżeli chcieć go nawozić, to ludzkie odchody to nienajlepszy pomysł. Znacznie lepiej byłoby używać odpadków organicznych. Totalnym odlotem jest produkcja wody dla uprawy ziemniaków. Do tego Mark używa hydrazyny, czyli paliwa rakietowego. W teorii reakcja którą przeprowadza jest możliwa, w praktyce cały habitat wyleciałby w powietrze. Po to żeby z hydrazyny odzyskać wodór, po to by po połączeniu z tlenem powstała woda, musi zachodzić w ściśle kontrolowanych warunkach. A nie w namiocie zrobionym z worka.

Habitat, ściana na której główny bohater zaznacza liczbę spędzonych na Marcie dni. Zdjęcie z filmu

3.Największe moje wątpliwości budzi jednak nie burza, ani nie uprawa ziemniaków, tylko długi czas przebywania człowieka na Czerwonej Planecie. O ile dobrze liczę Mark Watney przebywał tam około 20 miesięcy. Nawet gdyby miał wodę i pożywienie wróciłby stamtąd chory. Do powierzchni Marsa z powodu bardzo cienkiej i rzadkiej atmosfery dochodzi dużo więcej promieniowania kosmicznego niż do powierzchni Ziemi. Z szacunków wynika, że po to by człowiek mógł czuć się na Marsie równie bezpieczny co na Ziemi, na Czerwonej Planecie musiałby przebywać pod osłoną około 2 metrów litej skały. Tymczasem w filmie nie widzimy bunkrów czy podziemnych schronów, tylko pomieszczenia wykonane z dość cienkich materiałów. Także kombinezon głównego bohatera jest cieniutki. Mark spaceruje, podziwia widoki a nawet wypuszcza się w dość dalekie trasy w pojeździe, który zresztą wygląda na zbyt ciężki jak na marsjańskie warunki. Jeden z łazików marsjańskich, nieporównywalnie mniejszy i lżejszy, kilka lat temu zakopał się w wydmie a wyciąganie go zajęło kilka tygodni.

Dalekie wycieczki piesze. Dość niebezpieczna rozrywka na Marsie. Zdjęcie z filmu

4.Natomiast najwiekszy odlot – dosłownie i w przenośni – to powrót z Marsa na Ziemię, a szczególnie jego początkowa faza, czyli opuszczenie Marsa. Nic tu się nie zgadza. Proca grawitacyjna pomiędzy Ziemia i Marsem zadziała tylko w dość specyficznych warunkach, na pewno nie takich jak te pokazane w filmie. Rozebranie rakiety, którą astronauta Mark Watney wydostaje się z powierzchni Marsa na jego orbitę spowodowałoby jej rozbicie. Pomijam już fakt, że okna zatkane materiałem z zużytego spadochronu to już nawet nie fikcja rodem z gwiezdnych wojen, tylko raczej z Hi-Mena… (dla młodszych Czytelników, He-Men to taka bajka rysunkowa, którą oglądali Wasi rodzice 😉 ). No i w końcu manewry na orbicie. Hamowanie przez wysadzenie w powietrze części stacji, przedziurawienie kombinezonu po to by używać go jak silniczka manewrowego. W końcu spotkanie… no i happy end. Nie o to chodzi że ostatnie sceny filmu sa mało prawdopodobne. One są nierealne i przeczą zasadom fizyki.

Podsumowując.

P1000471

Pustynia Atacama, Chile. Zdjęcie: Tomasz Rożek

Oczywiście takich filmów jak Marsjanin nie ogląda się po to by uczyć się fizyki. To jasne. Lubię się jednak czasami poznęcać nad filmami. Mnie najbardziej podobały się w tym filmie plenery. Spora część z nich była wykreowana komputerowo, ale część scen była grana na Chilijskiej pustyni Atacama. Byłem na niej jakiś czas temu i jeżeli Mars wygląda choć trochę jak ona… warto tam polecieć. Chociażby dla widoków. No i niebieskiego zachodu Słońca, którego akurat w filmie nie było. No bo wiecie, że na Ziemi, czyli niebieskiej planecie słońce zachodzi na czerwono, ale na czerwonej planecie na niebiesko.

P1000318_Fotor

Pustynia Atacama, Chile. Niedaleko tego miejsca testuje się marsjańskie łaziki. Zdjęcie: Tomasz Rożek

>>> Zapraszam na profil FB.com/NaukaToLubie (kliknij TUTAJ). To miejsce w którym staram się na bieżąco informować o nowościach i ciekawostkach ze świata nauki i technologii.

15 komentarzy do Marsjanin okiem naukowca ;-)

Jesteśmy w centrum?

Czy Ziemia leży w centrum wszechświata? To pytanie w XXI wieku może u niektórych wywołać  uśmiech politowania. Ale czy powinno?

Jesteśmy jedynym gatunkiem na Ziemi, który współtworzy środowisko w którym żyje. To ciekawe, bo to środowisko, które sami kreujemy, ma ogromny wpływ na kolejne pokolenia. Choć na Ziemi żyją tysiące, dziesiątki tysięcy gatunków zwierząt i roślin, tylko człowiek ma umiejętności, choć chyba powinienem napisać możliwości, by ziemię w tak ogromnym stopniu przekształcać. Jesteśmy niezwykłym gatunkiem, który żyje na niezwykłej planecie.

CopernicSystem

Rysunek Układu Słonecznego jaki pojawił się w dziele De revolutionibus orbium coelestium.

Przez setki lat, odpowiedź na tytułowe pytanie nie budziła żadnych wątpliwości. Ziemia była w centrum wszystkiego i centrum wszystkiego. Obiekty niebieskie (ze Słońcem i Księżycem włącznie) krążyły wokół naszej planety, a sama Ziemia była rusztowaniem o które opierała się cała reszta. Ten obraz runął około połowy XVI wieku. W 1543 roku w Norymberdze ukazało się dzieło kanonika Mikołaja Kopernika – astronoma, matematyka, ale także prawnika, lekarza i tłumacza. W De revolutionibus orbium coelestium – o obrotach sfer niebieskich – Kopernik obalił geocentryczną wizję świata i całkiem sprawnie (choć ze sporymi błędami) przedstawił system heliocentryczny. Ziemia przestała być w centrum. Jej miejsce zajęło Słońce. Oczywiście nikt wtedy nie myślał nawet o galaktykach, gwiazdach supernowych czy czarnych dziurach.

Dla Kopernika sytuacja była w zasadzie dosyć prosta. Słońce w centrum, a wszystko inne krążące wokoło. Mechanizm wszechświata wyglądał podobnie z tą tylko różnicą, że w samym jego centrum znajdowała się nie jak u starożytnych Ziemia, ale nasza dzienna gwiazda. Kilkadziesiąt lat po Koperniku, na początku XVII wieku obserwacje tego co znajduje się poza naszym układem planetarnym rozpoczął Galileusz. Pierwszą osobą, która przedstawiła koncepcję budowy galaktyki był urodzony w Królewcu filozof i matematyk, Immanuel Kant. Była połowa XVIII wieku i nikt poważny nie uznawał już Ziemi za geometryczne centrum wszechświata. Inaczej było jednak ze Słońcem. Wiedziano już o tym, że gwiazd w naszej galaktyce jest bardzo wiele. Wiedziano nawet że krążą one wokół jednego punktu. Bardzo długo uznawano jednak, że tym centralnym punktem jest właśnie Słońce i nasz układ planetarny.

BN-IB371_0424hu_J_20150423201321

Edwin Hubble z negatywem jednej z zaobserwowanych przez siebie galaktyk. źródło: www.wsj.com

Choć w XIX wieku Ziemia od wielu setek lat nie była już traktowana jako geometryczne centrum wszechświata, była jedyną znaną planetą co do której istniała pewność, że jest kolebką życia. Była też częścią jedynego znanego układu planetarnego. Poza Układem Słonecznym nie obserwowano żadnych planet. Ziemia nie leżała w centrum, ale była symbolicznym centrum. Na przełomie XVIII i XIX wieku najpierw Charles Messier, a później William Herschel skatalogowali setki i tysiące mgławic, które później, dzięki pracy amerykańskiego astronoma Edwina Hubble’a (lata 20te XX wieku) okazały się odległymi galaktykami. Odkrywano wiele, zaglądano coraz głębiej i dalej, ale jedno nie ulegało zmianie. W całym ogromnym wszechświecie, wszechświecie w którym istnieją miliardy galaktyk a każda jest domem dla setek miliardów gwiazd do 1990 roku istniało tylko dziewięć planet. Niesamowita historia !

Sytuacja uległa zmianie dokładnie 9 stycznia 1992 roku. To wtedy ukazała się w prestiżowym czasopiśmie Nature praca polskiego astronoma Aleksandra Wolszczana. Opisywała ona dokonane dwa lata wcześniej odkrycie trzech pierwszych planet poza Układem Słonecznym. Krążyły wokół pulsara PSR B1257+12, niecały 1000 lat świetlnych od Ziemi. Dzisiaj, 23 lat po tym odkryciu znanych jest prawie 2000 planet poza Układem Słonecznym, a planety pozasłoneczne, tzw. egzoplanety są odkrywane wręcz hurtowo.

The artist's illustration featured in the main part of this graphic depicts a star and its planet, WASP-18b, a giant exoplanet that orbits very close to it. A new study using Chandra data has shown that WASP-18b is making the star that it orbits act much older than it actually is.  The lower inset box reveals that no X-rays were detected during a long Chandra observation.  This is surprising given the age of the star, suggesting the planet is weakening the star's magnetic field through tidal forces.

To nie zdjęcie, tytlko artystyczna wizja ogromnej planety WASP-18b, która krąży bardzo blisko powierzchni swojej gwiazdy.

Planet jest sporo, ale czy one są takie jak Ziemia ? Nie! Po pierwsze przeważająca większość z nich jest dużo większa od Ziemi. To gazowe giganty takie jak „nasz” Jowisz i Saturn. Dużych planet odkrywamy tak dużo, bo znacznie łatwiej je wykryć. Ziemia różni się od innych jednak tym, że tutaj jest życie, a „tam” – niewiadomo. Co do tego, że proste bakteryjne życie istnieje w przestrzeni kosmicznej, praktycznie możemy mieć pewność, ale z życiem inteligentnym nie jest wcale tak prosto. Jest w tym pewien paradoks. Czym więcej wiem o życiu, tym chętniej przyznajemy, że to proste, jednokomórkowe jest wszechobecne i wszędobylskie. Proste formy mają niesamowitą zdolność do adaptowania się i do zasiedlania miejsc, które – jeszcze do niedawna byliśmy tego pewni – absolutnie nie nadają się do życia. Z życiem złożonym, nie mówiąc już o jego inteligentnej wersji, jest dokładnie na odwrót. Czym więcej wiemy, tym dłuższa staje się lista czynników, warunków, które muszą zostać spełnione, by życie jednokomórkowe wyewoluowało do wersji złożonej. Dzisiaj ta lista ma już kilkaset pozycji, wśród nich takie jak odpowiednia wielkość planety, odpowiednia odległość od gwiazdy i odpowiedni skład atmosfery. Te wspomniane warunki są w sumie logiczne. Ale dalej na tej liście jest pole magnetyczne i gorące jądro planety, siły pływowe, a więc tektonika płyt. Bardzo ważna jest aktywność wulkaniczna oraz wyładowania atmosferyczne.

Kiedyś powszechnie uważano, że Ziemia w skali kosmicznej jest ewenementem. Potem takie myślenie zarzucono. Gdybym napisał, że dzisiaj wraca się do tego, chyba bym przesadził. Ale faktycznie, coraz częściej zdajemy sobie sprawę z tego, że inteligentne istotny w kosmosie mogą być wielką rzadkością. I to pomimo tego, że planet we wszechświecie jest niepoliczalnie dużo. Czyżby więc Ziemia z ludźmi „na pokładzie” była egzemplarzem niepowtarzalnym? Na razie jest. Wiele, bardzo wiele wskazuje na to, że tak pozostanie jeszcze przez dość długi czas. A może nawet na zawsze.

2 komentarze do Jesteśmy w centrum?

Zdjęcia z eksplozji Antaresa

NASA ujawniła 85 zdjęć ze startu i eksplozji rakiety Antares. Niektóre zapierają dech w piersiach.

Kilka tygodni temu, na FB.com/NaukaToLubie informowałem, że Amerykańska Agencja Kosmiczna NASA udostępniła w serwisie zdjęciowym Flickr zdjęcia wysokiej jakości zrobione w trakcie trwania programu lotów księżycowych Apollo.

Tym razem NASA udostępniła 85 zdjęć na których widać nieudany start zakończony eksplozją rakiety Antares. Zdjęć nie powstydził by się najlepszy scenarzysta filmów science-fiction. Niestety fotografie, które pokazuję poniżej nie zostały stworzone na komputerze.

Rakieta Antares eksplodowała 15 sekund po starcie, który miał miejsce 28 października 2014. Zapasy, które przewoziła miały być dostarczone na pokład Międzynarodowej Stacji Kosmicznej. W sumie stracono ponad 2 tony zaopatrzenia dla ISS, a także sprzęt naukowy i eksperymenty studenckie. Zniszczeniu uległ także satelity Arkyd 3, RACE, GOMX 2 i 26 nanosatelitów Flock-1d.

>>> Przy okazji zapraszam na profil FB.com/NaukaToLubie (kliknij TUTAJ). To miejsce w którym staram się na bieżąco informować o nowościach i ciekawostkach ze świata nauki i technologii.

6_33_gallery_wide 7_25_gallery_wide 8_25_gallery_wide 9_19_gallery_wide 10_15_gallery_wide 11_17_gallery_wide 12_8_gallery_wide-2  13_7_gallery_wide 14_6_gallery_wide 15_4_gallery_wide

 

>>> Zapraszam na profil FB.com/NaukaToLubie (kliknij TUTAJ). To miejsce w którym staram się na bieżąco informować o nowościach i ciekawostkach ze świata nauki i technologii.

Brak komentarzy do Zdjęcia z eksplozji Antaresa

Wszechświaty równoległe?

Pracujący w Kalifornii astrofizyk, analizując mapę mikrofalowego promieniowania tła zauważył na niej dziwne struktury. Naukowiec uważa, że to światło które pochodzi z wszechświatów równoległych.

Pracujący w Kalifornii astrofizyk, Ranga-Ram Chary, analizując mapę mikrofalowego promieniowania tła zauważył na niej dziwne struktury. Tam gdzie na mapie miało być ciemno, pojawiały się jasne plamy. Naukowiec uważa, że najbardziej prawdopodobnym wytłumaczeniem jest to, że światło które widzi pochodzi z wszechświatów równoległych.

Czy to możliwe? Tak. Żadna teoria nie zabrania istnienia wszechświatów równoległych do naszego. Nie zabrania także istnienia wszechświatów starszych od tego w którym my żyjemy. Tyle tylko, że to nie jest żaden dowód za tym, że takie światy rzeczywiście istnieją.

Czym jest mikrofalowe promieniowanie tła, zwane inaczej promieniowaniem reliktowym? To echo Wielkiego Wybuchu. Brzmi abstrakcyjnie. Około 380 tysięcy lat po Wielkim Wybuchu, a więc w bardzo BARDZO wczesnej fazie rozwoju naszego wszechświata, temperatura materii obniżyła się do około 3000 Kelwinów a to spowodowało, że zupa materii i energii (a tym właśnie był wczesny wszechświat) zaczęła się rozdzielać. Fotony oddzieliły się od materii, a ta zaczęła się skupiać w pragalaktyki. Od tego czasu te pierwotne fotony przemierzają wszechświat we wszystkich kierunkach, a my dzięki temu jesteśmy w stanie zobaczyć, jak ten wczesny wszechświat wyglądał. Na mapie mikrofalowego promieniowania tła widać bowiem mniejsze i większe skupiska materii. To są miejsca w których zaczęły powstawać galaktyki i ich gromady. Promieniowania reliktowego jest bardzo mało (w każdym centymetrze sześciennym świata jest około 300 tworzących go fotonów), ale za to jest ono wszędzie. Otacza nas ze wszystkich stron. W skrócie mówiąc to promieniowanie to nic innego jak resztki światła, które emitował rozgrzany i potwornie ściśnięty młody wszechświat. Tak jak żarzące się włókno żarówki czy rozgrzany do czerwoności rozpalony w ogniu metalowy pręt. Poświata Wielkiego Wybuchu wydostała się z gorącej zupy materii dopiero, gdy zaczął się z niej formować przezroczysty gaz atomów. Szacuje się, że było to ok. 380 tyś lat po Wielkim Wybuchu.

A wracając do wszechświatów równoległych. Ich istnienia nie możemy wykluczyć, ani potwierdzić. Przynajmniej na razie. Tajemnicze plamy o których wspomniałem wcześniej nie są żadnym dowodem. W najlepszym wypadku będą argumentem za tym, by jeszcze raz, jeszcze dokładniej przeanalizować wyniki badań, które przeprowadza się nieustannie od kilkudziesięciu lat. Zdaniem naukowca, który zauważył tajemnicze plamy, są to ślady materii, która pochodzi z innego świata, na dodatek takiego w którym mają obowiązywać inne niż u nas prawa fizyki. To ostatnie stwierdzenie jest – delikatnie mówiąc – słabo udokumentowane. Badacza poniosła chyba fantazja. Dobrze jest pamiętać, że w XXI wieku nie jesteśmy w stanie powiedzieć z czego zbudowane jest ponad 90 proc. Naszego własnego wszechświata. Ciemna energia i ciemna materia to ogromne znaki zapytania dla kosmologów. Zanim więc zaczniemy dowodzić istnienia innych wszechświatów, będzie trzeba rozwikłać zagadkę tego w którym my żyjemy.

>>> Zapraszam na profil FB.com/NaukaToLubie (kliknij TUTAJ). To miejsce w którym staram się na bieżąco informować o nowościach i ciekawostkach ze świata nauki i technologii.

3 komentarze do Wszechświaty równoległe?

Fagi – dobre wirusy

– Jak to się dzieje, że ci ludzie nie chorują – zastanawiał się widząc Hindusów kąpiących się i pijących wodę z Gangesu. Rzeki, która jest ściekiem. Więcej! wszystko wskazuje na to, że oni są przez to zdrowsi !

Bakterie stają się dla nas coraz groźniejsze. Coraz częściej zdarza się, że nie dają im rady nawet najbardziej zaawansowane terapie antybiotykowe. Sytuacja wymaga podjęcia niestandardowych metod. A może przeciwnie, wymaga powrotu do źródeł?

Ta historia rozpoczyna się w Indiach ostatnich lat XIX wieku. To wtedy przypłynął tam młody brytyjski biochemik i bakteriolog Ernest Hanbury Hankin. Ma jeden cel, walkę z cholerą, która miejscami przybiera rozmiary epidemii. Sukcesów nie ma praktycznie żadnych, a jego desperację potęguje fakt, że w Indiach zdają się nie działać reguły, których nauczył się w Anglii. Młody badacz zauważa bowiem, że na cholerę bardzo rzadko chorują ci, którzy kąpią się w rzece Ganges. Dla Hindusów sprawa jest oczywista, wody rzeki są święte, a każdy kto się w nich kąpie jest „chroniony”. Dla naukowca, sprawa jest trudna do zrozumienia. Przecież Ganges to ściek! To miejsce które powinno być źródłem problemu, a nie lekarstwem. Ku konsternacji większości Europejczyków, a już na pewno tych, którzy mieli wykształcenie medyczne czy biologiczne, Hindusi wodę z Gangesu pili. I? I nic im się nie działo. Jak to możliwe? Brytyjski naukowiec uważał, że w rzece musi być coś, co pijących jej wodę uodparnia. Fenomen dotyczył nie tylko wody w Gangesie, ale także w innych rzekach, równie zanieczyszczonych.

W 1896 roku Ernest Hanbury Hankin opublikował pracę naukową, w której stawiał tezę, że, w badanej przez niego wodzie istnieją czynniki antybakteryjne, które są na tyle małe, że nie sposób zatrzymać ich nawet na najdrobniejszych filtrach. Praca nie została jednak zauważona. Dopiero 20 lat później odkryto co tym czynnikiem jest. Dwa zespoły badaczy, brytyjski i francuski, odkryły bakteriofagi, czyli wirusy, które niszczą bakterie. Nazwa bakteriofag oznacza dosłownie „zjadacze bakterii”. W rzeczywistości wirusy nie pożerają bakterii. Ale o tym za chwilę. Dalsze badania pokazały, że w zasadzie każda bakteria ma swojego faga, czyli wirus, który bez większych problemów może sobie z nią poradzić. Pierwszy przypadek uleczenia wirusami zakażenia bakteryjnego (konkretnie chodziło o infekcję laseczką czerwonki, czyli siejącą śmierć dezynterią) miał miejsce w 1915 roku.

ganges

Zagadka: znajdź głowę chłopaka w śmieciach

Pierwszy nazwę bakteriofag zastosował pracujący w Paryżu Kanadyjczyk, Félix d’Herell. Nie jest ona do końca ścisła, bo sugeruje, że wirusy pożerają bakterie. W rzeczywistości wirusy niczego nie zjadają. Nie są organizmami żywymi, więc nie potrzebują źródła energii do zaspokajania swoich potrzeb. Jak w takim razie zabijają? Bakteriofagi, jak zresztą wszystkie wirusy, komórki żywych organizmów wykorzystują. Wirusy są kapsułkami zawierającymi materiał genetyczny. Nie potrafią same się poruszać. Posiadają jednak „klucze” do żywych komórek. Każda żywa komórka w swojej ścianie ma receptory. To coś w rodzaju zamka do drzwi. Ten, kto posiada klucz, może wejść do środka. Wirusy posiadają klucze, czyli białka pasujące do receptorów. Gdy cząsteczka wirusa znajdzie się w bezpośredniej bliskości komórki, jest bardzo prawdopodobne, że dojdzie do adsorpcji. Wirus otwiera zamek. Chwilę później następuje penetracja. Specjalną igiełką fag wkłuwa się do wnętrza bakterii i wstrzykuje tam swój materiał genetyczny. Komórka (w przypadku fagów komórka bakteryjna) nie ma pojęcia, że jest zainfekowana. Przecież wirus miał „legalne klucze”. Gdy materiał genetyczny znajdzie się w środku, dochodzi do tzw. replikacji genomu. Komórka replikuje wirusy z taką prędkością, że wkrótce zostaje – dosłownie – rozerwana z powodu ich natłoku w swoim wnętrzu. Od momentu „włożenia klucza do zamka” do unicestwienia bakterii mija nie więcej niż 30 minut! Każda zainfekowana komórka wyprodukuje kilkadziesiąt wirusów. A każdy z nich gotowy jest do ataku na nową bakterię.

W naturalnych warunkach pomiędzy bakteriami i wirusami ustala się pewna równowaga, ale gdyby tak wirusy antybakteryjne namnażać i traktować jako najlepszy z dostępnych antybiotyków? Wirusami leczono zanim, zanim ktokolwiek wiedział, czym są ci „niewidzialni” zabójcy bakterii. Félix d’Herelle leczył fagami śmiertelnie chorych na czerwonkę. „Ozdrowienie” następowało po kilkudziesięciu godzinach. Dzisiaj do koncepcji leczenia wirusami coraz częściej się wraca. Antybiotyki wydają się skuteczne, ale tylko na krótką metę. Bakterie potrafią się na nie uodparniać. W Polsce jedna trzecia szczepów dwoinki zapalenia płuc jest odporna na penicylinę. Na fagi nie da się uodpornić, bo te mutują tak samo szybko jak same bakterie. W Polsce znajduje się jeden z dwóch na świecie (i jedyny w Europie) ośrodek naukowy, który prowadzi terapię bakteriofagami. Kilka lat temu rozmawiałem z jego szefem, profesorem Andrzejem Górskim. Powiedział mi wtedy, że do Laboratorium Bakteriofagowego w Instytucie Immunologii i Terapii Doświadczalnej PAN we Wrocławiu zgłaszają się setki osób cierpiących na zakażenia, których żadne antybiotyki nie potrafią wyleczyć. Naukowcom z Wrocławia udaje to w ponad 80 procentach. W porównaniu z terapią antybiotykami, fagi są tańsze, a na pewno nie mniej skuteczne. Ponadto leczenie fagami nie powoduje skutków ubocznych, bo działanie wirusów jest ściśle ukierunkowane i wybiórcze. Określony bakteriofag atakuje tylko jeden gatunek bakterii. W ten sposób po terapii fagami oszczędzamy te „dobre bakterie”, np. z wnętrza układu pokarmowego. Tymczasem antybiotyki tak nie potrafią. – Czasami wystarczy kilkadziesiąt godzin, by osoba od lat cierpiąca na zakażenie uwolniła się od kłopotu. Leczymy nawet infekcje wywołane przez szczepy gronkowca złocistego – śmiercionośne bakterie, będące największym postrachem oddziałów intensywnej terapii – mówił mi prof. Górski.

Skoro mają tyle zalet, dlaczego bakteriofagami nie leczy się powszechnie? Przeszkodą jest prawo. Formalnie (w Unii Europejskiej i USA) przed skomercjalizowaniem, terapia musi być zarejestrowana, a jeszcze wcześniej poprzedzona badaniami klinicznymi. I tutaj pojawiają się problemy formalne. Terapia fagami nie jest zunifikowana, tylko po to by była skuteczna musi być tworzona dla każdego pacjenta osobno. Tego typu postępowanie wymyka się jednak normom, jakie ustalają prawnicy i urzędnicy. Nie bez znaczenia jest pewnie fakt, że przemysł farmaceutyczny czerpie ogromne korzyści z produkcji antybiotyków. Tańsza i w wielu przypadkach skuteczniejsza metoda leczenia fagami może być traktowana jako niechciana konkurencja. – Terapia fagowa to z formalnego punktu widzenia wciąż eksperyment, a do zaakceptowania nowości potrzeba czasu – powiedział mi kilka lat temu prof. Górski. Od tego czasu nic się nie zmieniło.

Drugi – poza Polską – ośrodek leczący fagami znajduje się w stolicy Gruzji, Tbilisi. Założył go zresztą Félix d’Herelle, ten sam, który nadał nazwę bakteriofagom. Ten zagorzały komunista pracował w Związku Radzieckim do śmierci. Gruziński instytut nie podlega pod prawo europejskie i amerykańskie, więc ma większą swobodę w działaniu, niż ośrodek we Wrocławiu. Kilka lat temu, Instytut z Gruzji założył filię w Meksyku, gdzie nie obowiązuje amerykańskie prawo, a bogatym (i chorym) Amerykanom znacznie łatwiej dojechać tam niż do Gruzji.

 

2 komentarze do Fagi – dobre wirusy

Bolid – kilka mitów, kilka faktów

Bolid, jasny ślad na nocnym niebie, jaki pojawił się przedwczoraj nad Polską, wywołał ogromne emocje. I nie ma się co dziwić. Przy okazji warto wyjaśnić kilka nieporozumień.

Bolid, jasny ślad na nocnym niebie, jaki pojawił się przedwczoraj nad Polską wywołał ogromne emocje. I nie ma się co dziwić. Tak dobrze udokumentowane na zdjęciach zdarzenie to jednak rzadkość. Przy okazji tego zdarzenia warto wyjaśnić kilka nieporozumień.

  1. Czy to dało się przewidzieć?

NIE. Bolidy to wbrew pozorom małe obiekty (piszę o tym w kolejnym punkcie), a takich nie da się obserwować przez teleskopy a tym bardziej śledzić ich trajektorii. W efekcie, choć są okresy kiedy szansa na zaobserwowanie bolidu jest większa, nie da się przewidzieć kiedy i gdzie go zauważymy. Jeżeli tak, skąd wzięło się tyle zdjęć tego zjawiska? Bolid pozostawia na nocnym niebie (w niektórych przypadkach także na dziennym niebie) ślad, który „trwa” kilkanaście, a nawet kilkadziesiąt sekund. Jeżeli ktokolwiek był na zewnątrz, jeżeli ktokolwiek miał w dłoni aparat fotograficzny (np. w telefonie), miał ogromne szanse by zrobić zdjęcie mimo tego, że nie spodziewał się niczego szczególnego. Wiele ze zdjęć bolidu było robionych na cmentarzach. Cóż, mieliśmy Wszystkich Świętych, a pogoda w sporej części Polski była perfekcyjna. Noc, liście na drzewach, znicze na grobach, łuna światła i … bolid w tle. Bonus dla artystycznych dusz.

  1. Czy to był duży obiekt?

NIE. Ludzkie oko jest w stanie zobaczyć krótkotrwały błysk światła wtedy gdy w ziemską atmosferę wchodzi obiekt wielkości ziarenka piasku. W czasie deszczy (rojów) meteorów, których w ciągu roku jest kilkanaście, przeważającą większość świetlnych efektów powodują właśnie ziarenka wielkości główki od szpilki. Gdy meteor ma wielkość kostki do gry, ślad jaki pozostawia po sobie utrzymuje się na kilka sekund. Bolidy mają wielkość kilku, górka kilkunastu centymetrów. Kilkunastocentymetrowe nie tylko mogą świecić jaśniej niż Księżyc w pełni, ale także być źródłem efektów dźwiękowych. Te przypominają charakterystyczny pisk hamującego na dworcu pociągu, albo wyładowanie atmosferyczne. Szczególnie duże bolidy mogą być widoczne także w ciągu dnia.

  1. Czy bolid mógł dolecieć do Ziemi?

NIE. Ten konkretny, który w sobotę wieczorem wywołał takie poruszenie, nie doleciał do powierzchni gruntu. Był za mały. Skąd o tym wiemy? Pierwszym wskazaniem jest to, że w pewnym momencie świetlny ślad jakiego bolid był źródłem urywa się. To nie jest wskazanie jednoznaczne, bo w przypadku niektórych obiektów świetlny ślad kończy się w miejscu w którym obiekt ma za mało energii (powietrze wyhamowało go) by rozgrzewać otaczające go powietrze. O tym czym jest świetlny ślad piszę w kolejnym punkcie. Jest jednak argument drugi za tym, że nic do powierzchni ziemi nie doleciało. Sobotni obiekt nie był duży, bo świadkowie przelotu nie słyszeli efektów dźwiękowych. Obiekty o średnicy rzędu centymetrów (a nawet te o średnicy dziesiątków centymetrów) spalają się całkowicie w atmosferze. Niektóre najpierw rozpadają się na mniejsze kawałki, a potem spalają.

  1. Czy świetlisty ślad na niebie zostawił rozgrzany do białości kawałek skały?

NIE. Powszechnie uważa się, że to co widzimy na niebie, to rozgrzany do białości kawałek meteoru. Tymczasem to nieprawda. Po pierwsze – jak wspominałem wcześniej – te obiekty są bardzo małe a efekty świetlne powstają na znacznych (kilkadziesiąt kilometrów) wysokościach. Po drugie, gdyby źródłem światła był meteor, nie widzielibyśmy utrzymującego się przez kilkanaście sekund śladu, tylko bardzo szybko poruszający się punkt świetlny. Co zatem świeci jeżeli nie rozgrzany meteor?

Powierzchnia meteoru nagrzewa się rzeczywiście bo tego typu obiekty poruszają się z bardzo dużymi prędkościami (nawet ponad 100 000 km/h), ale powodem tego nagrzewania nie jest ocieranie się o atomy ziemskiej atmosfery, tylko sprężenie powietrza przed czołem meteoru. Kosmiczna „skała” działa jak szybko poruszający się spychacz, który pcha przed sobą gaz. W ten sposób wytraca prędkość, ale „zyskuje” energię. W ten sposób może się rozgrzać do temperatury kilku tysięcy st. C. Tak, jest źródłem światła, ale to nie to światło widzimy na powierzchni ziemi. Rozgrzany meteor przekazuje część swojej energii otoczeniu przez które przelatuje, czyli powietrzu atmosferycznemu. Te rozgrzane zaczyna intensywnie świecić. I to to światło widzimy. Meteor przelatuje dalej, ale gaz świeci tak długo aż się nie ochłodzi co czasami trwa kilkanaście sekund. W pewnym momencie świetlny ślad urywa się. To znak, że w tym miejscu meteor całkowicie się spalił albo rozpadł na fragmenty mniejsze niż ziarenka piasku.

  1. Czy można się spodziewać większej ilości bolidów?

TAK. Przelot bolidu nie jest jednorazowym wydarzeniem. Wbrew pozorom na danym obszarze zdarza się kilka razy w roku. Trzeba jednak pamiętać, że średnio połowę doby mamy dzień. Bolidy dzienne, czyli na tyle duże by zobaczyć je na jasnym niebie, są rzadkością. Ponadto bolidów nie widać gdy na niebie są chmury bo świetlne ślady powstają dużo wyżej. No i kwestia świadków. Gdyby ten sam przelot miał miejsce nie w godzinach wczesno wieczornych tylko nad ranem, nie byłoby pięknych zdjęć, ani ogromnej liczby świadków.

Podsumowując. Gdyby wziąć to wszystko pod uwagę, piękna pogoda, wczesny wieczór i jasny bolid zdarza się raz wiele miesięcy. Co nie znaczy, że kolejny nie pojawi się jutro. Szanse na pojawienie się bolidów rosną w czasie deszczów meteorów. Obecnie Ziemia przechodzi przez pozostałości po komecie 2P/Encke, czego efektem jest dość rzadki (średnio 5 „spadających gwiazd” na godzinę) rój Taurydów Północnych. Jest bardzo prawdopodobne, ze sobotni bolid był kiedyś częścią komety 2P/Encke.

>>> Zapraszam na profil FB.com/NaukaToLubie (kliknij TUTAJ). To miejsce w którym staram się na bieżąco informować o nowościach i ciekawostkach ze świata nauki i technologii.

5 komentarzy do Bolid – kilka mitów, kilka faktów

Kolorowa jesień naukowo

Jest taki moment w roku, kiedy las – zwykle zielony – mieni się niemalże wszystkimi możliwymi kolorami. Dlaczego liście zmieniają kolor jesienią?

Liście są zielone, bo zawierają chlorofil. To związek chemiczny, barwnik, który potrafi „produkować” elektrony pod wpływem światła słonecznego. Po co roślinom elektrony? Potrzebują ich po to, by zaszła fotosynteza, czyli proces, w trakcie którego – w skrócie – z wody, dwutlenku węgla i światła powstają cukry i tlen. Ten ostatni jest usuwany do atmosfery, a cukry stanowią pożywienie dla roślin. W ciągu roku ilość wody i dwutlenku węgla jest mniej więcej stała. Co innego jednak ze światłem. Jego ilość w ciągu 12 miesięcy zmienia się diametralnie.

Sekret tkwi w świetle
Chlorofil to niejedyny barwnik – choć najważniejszy – z wielu występujących w roślinach zielonych. Gdy jesienią temperatura obniża się i powoli spada ilość dochodzącego do powierzchni ziemi światła słonecznego, dla roślin to znak, że zbliża się zima. Czas odpoczynku, a właściwie snu. To także sygnał, by przestać produkować chlorofil. To dosyć racjonalna decyzja. Skoro światła i tak jest coraz mniej, a za chwilę przyjdzie w ogóle „przystopować”, po co tracić energię na produkcję chlorofilu?

A więc chlorofilu jest coraz mniej, ale tutaj niespodzianka. Można by się spodziewać, że wraz z zanikiem barwnika liści, powinny one stawać się coraz bardziej przezroczyste. Otóż nie! Chlorofil znika a wraz ze zbliżaniem się zimy „do głosu” dochodzą inne barwniki. Są w liściach przez cały czas, ale „hegemonia” chlorofilu powoduje, że tych innych po prostu nie widać. Pojawiają się dopiero wtedy, gdy zmniejsza się ilość zielonego barwnika. Liście stają się coraz bardziej żółte i pomarańczowe, ale nie dlatego, że przysychają, ale dlatego, że znajduje się w nich całkiem sporo barwników z grupy karotenoidów. To te, które nadają kolor marchewce czy pomarańczom. Dzięki karotenoidom liście stają się żółte, pomarańczowe czy brązowe. Ale nie wszystkie liście są tak samo żółte. Sekret tkwi w ilości dochodzącego do powierzchni ziemi światła, a także temperaturze, gatunku drzewa, a nawet odczynie pH gruntu, na którym roślina się rozwija. Na jesień bardzo żółte są liście osiki, ale już liście klonu czy jesionu w ogóle nie żółkną. Te stają się intensywnie czerwone.

O co chodzi z czerwienią?
Barwniki, które odpowiadają za wiele odcieni czerwieni jesiennych liści, pochodzą z grupy antocyjanidyn. Te same związki występują zresztą w kwiatach. I tutaj ciekawostka. Dokładnie ten sam barwnik (cyjanidyna) nadaje róży kolor krwistej czerwieni i chabrom ciemnego błękitu. Wracając jednak do liści. Tak jak barwnik żółty czy pomarańczowy jest w liściach przez okrągły rok, tak barwniki czerwone produkowane są dopiero jesienią. Bez sensu? Po co tuż przed opadnięciem liść traci energię na produkcję czegokolwiek? To rzeczywiście swego rodzaju tajemnica. Dzisiaj naukowcy sądzą, że barwniki z grupy czerwonych chronią komórki liści przed zamarznięciem.

Jesienią nocne przymrozki są czymś zupełnie normalnym. Rośliny, w których liściach jest dużo czerwonych barwników, są odporniejsze na nie. To, co zastanawia badaczy, to fakt, że związki z grupy antocyjanidyn są produkowane także w innych okolicznościach. Na przykład wtedy, gdy roślinę zaatakują jednokomórkowe grzyby, gdy natężenie światła UV jest zbyt wielkie albo gdy zanieczyszczenie środowiska staje się dla nich uciążliwe. Czerwone liście mogą świadczyć o chorobie roślin. I znowu pojawia się pytanie. Dlaczego wyczerpana, chora roślina marnuje swoją energię na produkcję czerwonych barwników ? Czy nie lepiej, by w tej sytuacji ją oszczędzała? Eksperci przypuszczają, że jeżeli antocyjanidyny są produkowane po to, by liść wisiał na drzewie tylko troszkę dłużej, może oznaczać, że tuż przed zimą drzewo chce pobrać ze środowiska coś, co pomoże mu we wzroście w kolejnym sezonie. Być może tak jest rzeczywiście. W końcu liść zawiera wiele soli mineralnych czy pierwiastków, które roślinie mogą się jeszcze przydać. Część z nich drzewo odzyska, gdy liść zgnije na powierzchni gruntu, ale być może substancje najbardziej potrzebne roślina chce odzyskać bezpośrednio z liścia? Jeżeli tak, czerwone barwniki przypominałyby nieco komandosów czy BORowców, którzy w sytuacji zagrożenia pilnują ewakuacji ważnych osób. Dbają by liść wisiał jak najdłużej, po to by zanim spadnie, udało się z niego nak najwięcej wyciągnąć.

Przepis na kolorową jesień
Niektóre barwniki są charakterystyczne dla konkretnego gatunku roślin. Inne występują we wszystkich, ale pojawiają się w zależności od warunków zewnętrznych. To dlatego liście nawet dwóch stojących obok siebie drzew mogą mieć nieco inny odcień. Czy można sformułować przepis na kolorową jesień? Listę warunków, jakie muszą zostać spełnione, by spacer po jesiennym lesie był przeżyciem wręcz metafizycznym? Można się o to pokusić. Temperatura powietrza powinna spadać powoli, nie gwałtownie. To samo dotyczy ilości dochodzącego do liści światła. Pogoda powinna być słoneczna, a niebo niezasnute chmurami. Tylko wtedy chlorofil będzie ustępował innym barwnikom w sposób ciągły. Jakiekolwiek nagłe zmiany mogą spowodować, że liście znajdą się na ziemi, zanim zdążą zapłonąć feerią kolorów. Jeżeli jest zbyt mokro, liście wcześniej spadną, a jeżeli zbyt często chmury będą przysłaniały słońce, liście nie wyprodukują czerwonego barwnika. W skrócie: jesień musi być ciepła, sucha i słoneczna. Wtedy będzie złota, czerwona, brązowa, żółta, pomarańczowa…

 

Polecam wideo  „Tajemnica czerwonego drzewa – Nauka. To lubię.”

 

Polecam wideo „Liście jesienią (okiem fizyka) – Nauka. To lubię.”

Brak komentarzy do Kolorowa jesień naukowo

Orionidy nadlatują !!!

Już za chwileczkę, już za momencik… a tak właściwie od kilku dni Ziemia w swoim ruchu wokół Słońca przelatuje przez chmurę kawałków komety Halley’a. Maksimum tych zderzeń nastąpi z środy na czwartek.

Ziemia z resztkami komety Halley’a „spotyka się” kilka razy w roku. W październiku skutkuje to deszczem Orionidów, na przełomie kwietnia i maja Eta Akwadydów, a w pierwszych dniach sierpnia Akwarydów. Dzisiaj w nocy jest maksimum roju Orionidów.

Poruszająca się w kierunku Słońca kometa (nie tylko kometa Halley’a) topiąc się pozostawia na swojej drodze niewielkie skalne kawałki, z których jest posklejana. Powstaje wtedy ślad, który znaczy drogę po której kometa się poruszała. W ciągu roku Ziemia wielokrotnie wlatuje w tak pozostawioną „ścieżkę” (u dołu tego wpisu wypisałem listę największych rojów meteorytów jakie można oglądać w Polsce).

Pozostałości komet z którymi Ziemia się „zderza” to pył i małe okruchy skalne. W ziemskiej atmosferze pozostawiają widoczny gołym okiem świetlny ślad nawet te, które są wielkości ziarenek pisaku. To dzięki grubej ziemskiej atmosferze możemy oglądać – o ile pogoda na to pozwoli – ciekawe widowisko. Nie musimy przy tym chować się pod dach 😉 , choć gdyby nie chroniąca nas atmosfera byłoby to konieczne, bo drobne cząstki pyłu i większe okruchy skalne wpadają w nią nawet z prędkością 75 km/s. Wtedy ocierając się i zderzając z cząsteczkami powietrza silnie rozgrzewają swoją powierzchnię. Zderzenia te są tak intensywne i jest ich tak dużo, że powierzchnia obiektu zaczyna się topić i wrzeć. Część w ten sposób „nabytej” energii przekazana zostaje do otaczającego meteor powietrza. To nagrzewa się i świeci a my widzimy „spadającej gwiazdy”.

Znakomita większość „spadających gwiazd” spala się całkowicie w ziemskiej atmosferze. Co więcej to co obserwujemy gołym okiem, to zaledwie ułamek wszystkich spadających na Ziemię meteorów. Większość z nich  jest na tyle mała, że ich „spalania” nie widać gołym okiem. Szacuje się, że w ciągu doby na powierzchnię Ziemi spada aż 100 ton tego niezauważalnego pyłu. Corocznie – w ściśle określonych porach – różnych rojów pojawia się na naszym niebie ok. 20. Niektóre z nich widoczne są na jednej półkuli a inne – tak jak Orionidy – na obydwu. Do ich obserwacji nie trzeba kosztownych urządzeń i o ile pogoda dopisze – i dodatkowo noc będzie bezksiężycowa – powinno być widać spadające gwiazdy. Uważny obserwator może ich zauważyć nawet 15 w ciągu jednej godziny.

Najobfitsze roje meteorytów występujące na półkuli północnej (w Polsce).  
Nazwa i okres występowania    
Kwadrantydy (1-6 I)    
Eta Akwarydy (24 IV – 20 V)    
Delta Akwarydy (15 VII – 20 VIII)    
Geminidy (7-16 XII)    
Perseidy (23 VII – 20V III)    
Orionidy (16-27 X)    
Taurydy (20 X- 30XI)    
Leonidy (15-20 XI)    

 

>>> Zapraszam na profil FB.com/NaukaToLubie (kliknij TUTAJ). To miejsce w którym staram się na bieżąco informować o nowościach i ciekawostkach ze świata nauki i technologii.

Brak komentarzy do Orionidy nadlatują !!!

Fizyka tłumu

Zatłoczone miejsca mogą być bardzo niebezpieczne. Nie, nie z powodu kieszonkowców, tylko z powodu trudnych do opanowania reakcji tłumu. Duża grupa ludzi w określonych sytuacjach zachowuje się jak „jeden organizm” a nie jak grupa organizmów niezależnych.

Dwa dni temu, w Bydgoszczy, w czasie studenckiej imprezy wybuchła panika. Jedna osoba zginęła, a kilka kolejnych zostało rannych. Do dramatu doszło nie na dużej sali, tylko w wąskim przejściu. Kilkanaście dni wcześniej, w czasie hadżu – pielgrzymki wyznawców Allaha do Mekki, w tłumie zginęło około 500 osób. W styczniu 1990 roku, w tym samym miejscu zadeptano ponad 1500 ludzi. W czym jest problem? Ludzie w swoim zachowaniu podobni są do zwierząt, np. mrówek, ryb w ławicy czy ptaków w kluczu. Poruszają się w sposób uporządkowany i określony. Do czasu. Gdy wybucha panika, uporządkowanie ustępuje chaosowi. Wbrew pozorom ten chaos można ujarzmić… za pomocą równań matematycznych.

Szybko ale bezpiecznie

Z pozoru sytuacje takie jak w saudyjskiej Mekce zdarzają się rzadko. I całe szczęście. Ale nie chodzi tylko o tragedie w których giną ludzie. Gdy trzeba ewakuować centrum handlowe, liczy się każda chwila. Jak zaprojektować wyjścia ewakuacyjne? Zrobić jedno duże, czy kilka mniejszych? A kibice piłkarscy na dużym stadionie? Po skończonym meczu tysiące ludzi chce jak najszybciej dostać się do swoich samochodów czy do środków komunikacji publicznej. Jak oznaczyć ciągi komunikacyjne? Wypuszczać ludzi partiami czy po prostu otworzyć drzwi i „niech sami sobie radzą”. Problem jest ważny nawet dla linii lotniczych. I nie tylko w sytuacjach zagrożenia życia. Każda minuta postoju na płycie lotniska kosztuje. Jak pasażerów szybko „usadzić” na miejscu i co zrobić by po wylądowaniu jak najszybciej – bezpiecznie – opuścili oni samolot? Pytań jest naprawdę wiele. Tylko dlaczego mają na nie odpowiadać fizycy? Ano dlatego, że duża grupa ludzi podobna jest do płynu. Ten w niektórych sytuacjach porusza się przewidywalnie i wtedy mówimy o przepływie laminarnym, ale czasami ten porządek zamienia się w chaos i wtedy mówimy o przepływie turbulentnym. Fizycy tymi przepływami zajmują się od dawna, bo to od nich zależy np. opór z jakim musi poradzić sobie jadący autostradą samochód, bo to od nich zależy sprawność silnika odrzutowego samolotu. Od niedawna wiadomo jednak, że te same równania, które opisują mechanikę płynów, można stosować do dużych grup ludzi.

Mrówki też ludzie

Mrówki zwykle wybierają drogę… którą chodzi większość. „Domyślają się” – i słusznie – że kierunek który wybrało więcej mrówek jest z jakiś powodów bardziej atrakcyjny. I tak tworzą się tzw. mikrostużki, czyli drogi, które z jakichś powodów są przez mrówki preferowane. Podobnie zachowują się ryby w ławicy. I ludzie na chodniku. Nawet w dużym tłumie, nie poruszamy się całkowicie losowo i chaotycznie. Często, nawet nieświadomie, wybieramy drogę, którą idzie przed nami osoba poruszająca się w podobnym tempie co my. Gdy ktoś idzie wolniej, albo szybciej nie zwracamy na niego uwagi. Nasz mózg podświadomie śledzi tylko tych, którzy idą w naszym tempie. My sami też możemy być dla kogoś „przewodnikiem”, a ten ktoś dla kolejnej osoby. I już się tworzą mikrostrużki. To dlatego na szerokim trakcie ludzie idący w jednym kierunku jakoś automatycznie trzymają się jednej strony. Tylko co jakiś czas ktoś próbuje przebić się ”pod prąd”. Podstawowa i święta zasada jest taka, żeby tak projektować trakty, by ruch na nich mógł być płynny. I tak, lepiej, gdyby korytarz skręcał łukiem niż pod kątem prostym. Lepiej też by na skrzyżowaniu traktów było coś co trzeba okrążyć (fontanna, rzeźba,…), bo to zwiększa płynność ruchu. Niestety, te z pozoru proste zasady, gdy wybucha panika przestają obowiązywać i pojawia się chaos. Podobnie zresztą jak u mrówek, ryb w ławicy, a nawet u ptaków w stadzie. Za wszelką cenę nie można do tego dopuścić. Nie ma co liczyć na rozwagę czy trzymanie nerwów na wodzy. Ludzie w panice przestają zdawać sobie sprawę z tego co robią. Choć nie sposób przewidzieć, co zrobi konkretna osoba, naukowcy potrafią przewidzieć co będzie robiła duża grupa ludzi. Do tego zatrudniają największe komputery świata i… setki wolontariuszy. Ci, czasami sa narażeni na niebezpieczeństwo. W czasie próbnych ewakuacji jakie prowadzono w czasie budowy samolotu Airbus 380, z 900 ochotników, 30 zostało rannych w tym jedna osoba ciężko. Z międzynarodowych norm wynika, że samolot powinny być zaprojektowany w ten sposób, by ewakuacja wszystkich pasażerów nie trwała dłużej niż 90 sekund.

Dym i kamery

Gdy z końcówki palącego się knota świecy ulatnia się dym, początkowo jego strużka unosi się pionowo do góry. Można wręcz dostrzec równoległe do siebie pasma. To tzw. przepływ laminarny. Po kilkunastu centymetrach dym zaczyna jednak tworzyć zawirowania. Uporządkowana jeszcze przed chwilą stróżka staje się chaotyczna i nieprzewidywalna. Tak wygląda przepływ turbulentny. Naukowcy z Uniwersytetu w Dreźnie analizujący przypadki w których tłum zaczyna tratować ludzi, zauważyli, że zagrożenie pojawia się wtedy, gdy ludzie zaczynają poruszać się jak ciecz albo gaz w czasie przepływu turbulentnego. Tak długo, jak „przepływ” ludzi jest laminarny – nie ma problemu. Turbulentny, czyli chaotyczny przepływ pojawia się gdy wybucha panika, ale sam może być źródłem paniki. W Mekce droga pielgrzymów wiodła przez most Jamarat, który jest węższy niż droga do niego prowadząca. To zwężenie w przeszłości powodowało, że ludzie zaczynali poruszać się turbulentnie. Chaos powodował wybuch paniki, a panika – jeszcze większy chaos. Po sugestiach jakie niemieccy fizycy wysłali władzom Arabii Saudyjskiej, drogę pielgrzymów nieco przebudowano.

Co jeszcze może mieć znaczenie? Na przykład wyrwa w drodze, w zasadzie jakakolwiek przeszkoda. Ale także kłótnia czy bijatyka dwóch idących obok siebie osób. Schody, krawężnik, nawet moment w którym pieszy schyla się, by podnieść coś, co wypadło mu z ręki. Niemieccy badacze sugerują więc, by nad miejscami gdzie poruszają się duże grupy ludzi umieszczać kamery, które automatycznie będą wykrywały w których miejscach ruch zaczyna być turbulentny. Zanim dojdzie do tragedii (przecież z tyłu napierają kolejne masy ludzi), odpowiednie służby mogą zareagować. Mają na to od kilku, do kilkunastu minut.

Wąsko źle, szeroko też niedobrze

Ślepe stosowanie zasad jakie rządzą mechaniką płynów (analogia do dymu papierosowego) jest jednak skuteczne tylko do pewnego stopnia. Ludzie ze sobą współdziałają, oddziałują na siebie znacznie bardziej niż cząsteczki gazu czy płynu. W końcu widzą, co robią inni. Gdy wziąć pod uwagę to wszystko okazuje się, że pomieszczenie (pokój, stadion czy pokład samolotu) najszybciej pustoszeje, gdy … nikt się nie śpieszy. Tylko wtedy wyjście nie staje się wąskim gardłem. Gdy wzrasta prędkość ludzi idących ku wyjściu, drzwi „korkują się”, a ludzie opuszczają pomieszczenie grupkami. To spowalnia opuszczanie zagrożonego terenu. Dlatego lepiej jest projektować więcej węższych wyjść niż mniej szerszych. Ale tutaj – uwaga – sprawa jest bardziej złożona. Pomijając szczegóły (które choć bardzo ciekawe, zajęłyby tutaj zbyt dużo miejsca), okazuje się, że gdy ludzie współpracują z sobą (np. znajomi z pracy) szybciej wyjdą wąskim wyjściem. Gdy raczej konkurują o to kto szybciej się wydostanie, lepsze są wyjścia szerokie (chociażby miałoby ich być mniej). Gdy wyjścia są szerokie, dobrze przed nimi stawiać kolumny. Z symulacji komputerowych wynika, że w sytuacji krytycznej przed wyjściem rzadziej tworzą się wtedy kolejki, a w efekcie „przepływ” staje się bardziej laminarny. Z kolei przed wąskimi wyjściami dobrze jest zamontować równoległe  barierki (takie jak przy wejściu do metra), które spowodują, że już przed wejściem, ludzie będą szli w uporządkowanym szyku.

Kilka lat temu niemiecki rząd uruchomił projekt Hermes, w ramach którego powstał system kierujący tłumem. Kamery obserwują prędkość ludzi, a komputery za pomocą znaków świetlnych i dźwiękowych decydują którędy tłum prowadzić. Na stadionie czy w czasie dużej wystawy gdy trzeba zarządzić ewakuację, któreś z wyjść może być zablokowane (albo za bardzo oblegane). Wtedy kierowanie się w jego kierunku jest bardziej niebezpieczne niż nawet dołożenie drogi i udanie się do innego wyjścia. Dawanie ludziom jasnych sygnałów co mają robić w czasie zagrożenia jest niezwykle istotne. Zauważono (zresztą u zwierząt występuje ten sam mechanizm), że w sytuacjach kryzysowych podążamy raczej za tłumem, w grupie czujemy się bezpieczniej. Bez wyraźnej informacji duża grupa może przemieszczać się w kierunku jednego wyjścia („tam idą wszyscy, widocznie ktoś zna najlepszą drogę”), podczas gdy inne będą puste.

Dzisiaj jeszcze zbyt wcześnie by dogłębnie przeanalizować to co dwa dni temu stało się w Bydgoszczy. Przejście było wąskie, ludzi było dużo, okna były pozamykane. Brak tlenu przyspiesza podejmowanie irracjonalnych decyzji. Niektórzy świadkowie twierdzą, że ktoś w przejściu rozpylił gaz. Być może po to by uspokoić ludzi. Jeżeli tak było rzeczywiście, tylko pogorszył sytuację. Wyjaśnienie przyniesie śledztwo.

>>> Zapraszam na profil FB.com/NaukaToLubie (kliknij TUTAJ). To miejsce w którym staram się na bieżąco informować o nowościach i ciekawostkach ze świata nauki i technologii.

4 komentarze do Fizyka tłumu

Co tam się dzieje? Komety czy Obcy?

Wokół jednej z setek tysięcy gwiazd, które obserwuje teleskop Kepler krążą duże obiekty. Naukowcy nie widzą czym one są, ani jak powstały. Internety już mówią o tworach obcych cywilizacji.

Wiecie co to jest Brzytwa Ockhama? To zasada zgodnie z którą przy „wyjaśnianiu zjawisk należy dążyć do prostoty, wybierając takie wyjaśnienia, które opierają się na jak najmniejszej liczbie założeń i pojęć”. Trudno obcą cywilizację uznać za najbardziej oczywisty powód niezrozumiałych obserwacji astronomicznych. Oczywiście nie można jej też całkowicie wykluczyć.

Co konkretnie tak zadziwiło astronomów? W 2009 roku Teleskop Kosmiczny Keplera wśród setek tysięcy gwiazd wypatrzył KIC 8462852. Ta nie świeciła jednak tak jak inne słońca. Coś w sposób nieregularny zakłócało jej obserwację. Tym „czymś” jest duża ilość niewielkich, ale bardzo gęstych obiektów. – Prawdę mówiąc, światło emitowane przez KIC 8462852 było najdziwniejszą rzeczą, jaką zaobserwował Kepler od początku swojego istnienia – powiedziała badaczka z Yale Tabetha Boyajian. Kepler pracuje na orbicie od kilku lat. Inny badacz, Jason Wright, astronom z Penn State University powiedział, że był pod wrażeniem tego, jak niesamowicie to wyglądało. – Obca cywilizacja to ostatnia hipoteza, jaką powinniśmy w takim przypadku rozpatrywać, ale to coś wyglądało tak, jak gdyby stworzyli to właśnie kosmici. (oryginał wypowiedzi : „I was fascinated by how crazy it looked”. “Aliens should always be the very last hypothesis you consider, but this looked like something you would expect an alien civilization to build.”).

Jako że zdjęcia pochodzą sprzed kilku lat, badacze twierdzą, że bardzo dokładnie sprawdzili sprzęt i nie ma mowy o usterce czy pomyłce. – Tam na prawdę krąży ogromna ilość obiektów, ściśniętej materii – powiedziała Boyajian. Czym te obiekty mogą być? No właśnie tutaj zaczyna się kłopot. Bo lista naturalnych wytłumaczeń tego fenomenu jest bardzo krótka. W zasadzie, choć i to jest bardzo mało prawdopodobne, podobny efekt dałyby tylko komety. Być może inna gwiazda przyciągnęła w stronę KIC 8462852 sznur komet. Trudno nawet oszacować prawdopodobieństwo takiego zdarzenia, bo… nigdy wcześniej niczego podobnego nie zaobserwowano.

I co teraz? Dane są analizowane, a gwieździe wokół którejś coś krąży od stycznia będą się przyglądały ziemskie radioteleskopy. Gwiazda KIC 8462852 na nocnym niebie znajduje się pomiędzy gwiazdozbiorami łabędzia i lutni. Patrząc tam można sobie przez chwile pomyśleć…. że ktoś patrzy stamtąd w naszym kierunku. Nie, no błagam, musi być jakieś bardziej przyziemne wytłumaczenie 😉

Zapraszam na profil FB.com/NaukaToLubie (kliknij TUTAJ). To miejsce w którym staram się na bieżąco informować o nowościach i ciekawostkach ze świata nauki i technologii.

2 komentarze do Co tam się dzieje? Komety czy Obcy?

Skąd jesteśmy, kim jesteśmy i dokąd zmierzamy?

O człowieku można mówić na wiele różnych sposobów. Inaczej opisują go atlasy anatomiczne, inaczej podręczniki do biochemii czy antropologii. Książka „Człowiek” nie jest atlasem opisującym każdą cząstkę ludzkiego ciała. Nie jest też podręcznikiem, który opowiada o reakcjach biochemicznych, które zachodzą w ludzkich komórkach. Jest próbą odpowiedzi na trzy krótkie pytania. Skąd jesteśmy, kim jesteśmy i dokąd zmierzamy? Łatwo takie pytania zadać, znacznie trudniej znaleźć na nie odpowiedzi.

Po „Kosmosie” przyszedł czas na „Człowieka” , czyli drugą część mojej trylogii. Opowieść o tym skąd jesteśmy, kim jesteśmy i dokąd zmierzamy?

rozkładówka - wstęp

O człowieku można mówić na wiele różnych sposobów. Inaczej opisują go atlasy anatomiczne, inaczej podręczniki do biochemii czy antropologii. Organizm człowieka jest „kosmicznie” skomplikowany i właśnie dlatego jest tak niezwykły. Książka „Człowiek” nie jest atlasem opisującym każdą cząstkę ludzkiego ciała. Nie jest też podręcznikiem, który opowiada o reakcjach biochemicznych, które zachodzą w ludzkich komórkach. Jest próbą odpowiedzi na trzy krótkie pytania. Skąd jesteśmy, kim jesteśmy i dokąd zmierzamy? Łatwo takie pytania zadać, znacznie trudniej znaleźć na nie odpowiedzi.

rozkładówka_Konarzewski

Kiedyś przeprowadzałem wywiad z neuropsychologiem. Zapytałem go, ile tak właściwie wiemy o ludzkim mózgu. Intuicja podpowiadała mi, że niewiele. Zakładałem, że profesor odpowie, że poznaliśmy nie więcej niż kilka procent wszystkich zagadnień związanych z mózgiem. A tymczasem odpowiedział: „gdyby zapytał mnie pan o to kilka lat temu, powiedziałbym, że nie więcej niż 10 procent, ale dzisiaj, po uruchomieniu kilku dużych międzynarodowych programów dotyczących badania mózgu, po ogromnej liczbie publikacji, jakie pojawiły się w ostatnich latach, twierdzę, że wiemy nie więcej niż 3-4 procent”. Ta odpowiedź jest zaskakująca tylko pozornie. W nauce bardzo często wraz ze wzrostem wiedzy, wzrasta także świadomość naszej niewiedzy. Naukowców i pasjonatów na całym świecie napędza nie to co jest znane, tylko właśnie to, co jest tajemnicą. Jako dziennikarz naukowy przyglądam się tym tajemnicom i czuję podekscytowanie. Ta książka jest pełna moich ekscytacji i fascynacji oraz prób znalezienia odpowiedzi na nurtujące mnie pytania.

rozkładówka_kaczmarzyk

Książka podzielona została podzielona na trzy części. W każdej z nich, oprócz mojego tekstu, znajduje się fascynujący wywiad z naukowcem. Rozmawiam o przeszłości, teraźniejszości i przyszłości człowieka. W wywiadach staram się uzyskać odpowiedzi na tytułowe pytania: skąd jesteśmy, kim jesteśmy i dokąd zmierzamy? Czy je uzyskuję? O tym każdy Czytelnik przekona się sam.

rozkładówka - tadeusiewicz

Człowiek to drugi tom trylogii, którą wymyśliłem w ubiegłym roku. Pierwszy tom, który ukazał się w 2014 roku był zatytułowany Kosmos. Opisuję w nim wszystko to, co jest większe od człowieka. Od Wszechświata począwszy, poprzez galaktyki i układy planetarne, a na planetach, w tym planecie Ziemi, skończywszy. Trzeci tom trylogii – Mikrokosmos – ukaże się w przyszłym roku.

Książka Człowiek została wydana nakładem Grupy Wydawniczej Foksal sp. z o.o.

Zapraszam do lektury

2 komentarze do Skąd jesteśmy, kim jesteśmy i dokąd zmierzamy?

Jak zrobić latawiec?

Zrobienie latawca jest bajecznie proste. Nie trzeba do tego wyszukanych materiałów, ani drogich urządzeń. A zabawy (zarówno dla dzieci jak i dorosłych) cała masa.

Dlaczego latawiec lata? W największym skrócie dlatego, że ciśnienie pod nim jest większe niż ciśnienie nad nim. Ta różnica ciśnień wynika z tego, że pęd powietrza opływa go z góry i z dołu z różną prędkością.

Struga powietrza „natrafiając” na latawiec rozdziela się. Gdy latawiec znajduje się pod odpowiednim kątem (to tzw. kąt natarcia), struga, która opływa go wzdłuż górnej powierzchni porusza się szybciej, a wzdłuż dolnej wolniej. To powoduje, ze nad latawcem jest niższe ciśnienie, a pod nim wyższe. To powoduje, że latawiec zaczyna się unosić. Jeżeli tak jest, dlaczego nie unosi się w nieskończoność ? Bo w dół ciągnie go siła grawitacji. Czym latawiec cięższy, tym ma ona większe znaczenie. Jeżeli unosi jakąś aparaturę badawczą, „zły” wpływ siły grawitacji można nadrobić zwiększając powierzchnię „skrzydła”. Ale i tutaj trzeba znać umiar. Czym większe skrzydło, tym cięższy latawiec, tym mocniejsza (a więc także cięższa) musi być linka, która go przytrzymuje. Duże latawce w zasadzie nie startują z rozbiegu, a do tego by puszczać je „z ręki” potrzeba dużego wiatru.

A co z ogonem? Latawce potrafią bez nich latać, ale w przypadku płaskich latawców ogon jest bardzo pomocny. Choć powoduje że latawiec jest cięższy, a to oznacza, ze na pewno wolniej będzie się wznosił i niżej latał, ogon utrudnia niepożądane obroty i kołysanie latawca wokół którejś z jego osi. Obroty są problemem szczególnie dla mniejszych latawców, które są bardzo podatne na zmieniający się wiatr. W skrócie, ogon zwiększa stabilność. Zresztą to akurat możecie sprawdzić sami.

latawiec

Gdy latawiec w końcu się uniesie… zaczyna się zabawa. Można ścigać się który poleci wyżej, który szybciej się wzniesie czy w końcu który dłużej utrzyma się w powietrzu. Jest jednak kilka reguł co do których puszczając latawce trzeba bezwzględnie się stosować. Nigdy nie wolno puszczać latawców w pobliżu linii wysokiego (jakiegokolwiek) napięcia, a także w pobliżu lotnisk, wysokich anten czy urwisk. Nie wolno tego robić także w pobliżu dróg publicznych. Lepiej (dla latawca) by w pobliżu nie było drzew. Pod żadnym pozorem nie wolno puszczać latawców w czasie burzy lub tuż przed nią. Może to grozić śmiertelnym niebezpieczeństwem, bo w wysoko latający obiekt może uderzyć błyskawica. I jeszcze jedno. Gdy latawiec jest duży, a wiatr silny, lepiej uważać z puszczaniem latawców. Latawiec bez problemu może przewrócić człowieka, a nawet go unieść. Jak ktoś nie wierzy, niech w Internecie wyszuka takie dyscypliny sportu jak kitejumping, kiteboarding czy buggykiting.

A na koniec kilka rekordów. W sierpniu 1919 roku, w Niemczech padł rekord wysokości lotu latawcem – 9740 metrów. Najdłuższy latawiec miał 1034 metry, największy miał powierzchnię 553 m2, a najszybszy poruszał się z prędkością 193 km/h. Najdłużej w powietrzu latawiec znajdował się 180 godzin.

> Tutaj mój materiał wideo o puszczaniu latawców:

Zapraszam na profil FB.com/NaukaToLubie (kliknij TUTAJ). To miejsce w którym staram się na bieżąco informować o nowościach i ciekawostkach ze świata nauki i technologii.

1 komentarz do Jak zrobić latawiec?

Nobel z fizyki – abstrakcja goni abstrakcję

W ciągu każdej sekundy, przez nasze ciała przenika kilkadziesiąt bilionów neutrin. Abstrakcyjnie dużo. Masa każdego z nich jest mniejsza niż miliardowa część masy atomu wodoru. Abstrakcyjnie mało. Takie właśnie są neutrina. Abstrakcyjne. Za ich badania przyznano tegorocznego Nobla z fizyki.

Neutrina są najbardziej chyba nieuchwytnymi cząstkami badanymi przez fizyków. Prawie w ogóle nie oddziałują z materią. Po prostu przez nią przenikają. Zupełnie tak, jak gdyby była dla nich przezroczysta. Nie stanowią dla nich żadnej przeszkody ciała niebieskie jak i olbrzymie odległości (które pokonują z prędkością zbliżoną do prędkości światła). Powstają w czasie reakcji jądrowych, nie mają ładunku i posiadają nieskończenie małą masę. Neutrina występują w trzech odmianach. Najlepiej poznane są tzw. neutrina elektronowe, ale oprócz nich istnieją jeszcze neutrina taonowe i mionowe. I to właśnie różne odmiany tej samej cząstki były przez 30 lat powodem zamieszania nazwanego tajemnicą neutrin słonecznych. Ale zanim o tajemnicy.

PH20-water-withboat-apr23-wm-small

Wnętrze ogromnego detektora neutrin Super-Kamiokande. Wydrążony we wnętrzu góry mieści 50 000 ton superczystej wody. Widoczne na zdjęciu bańki to fotopowielacze, które rejestrują subtelne błyski światła. Te powstają wtedy, gdy neutrino zderzy się z jądrem atomowym.

Dlaczego ich badanie jest tak ważne? Na prawdę zasługuje aż na Nagrodę Nobla?  Neutrina są być może najliczniejszą grupą cząstek jakie „zasiedlają” nasz wszechświat. W ciągu każdej sekundy, przez nasze ciała przenika ich kilkadziesiąt miliardów. Abstrakcyjnie dużo. Skoro chcemy poznać wszechświat, skoro mamy ambicje by go zrozumieć, nie poradzimy sobie bez wiedzy o neutrinach. Przez lata uważano, że są to cząstki bezmasowe, czyli, że w ogóle nie mają masy. W rzeczywistości ważą, choć tyle co nic. W przypadku tak małych i ulotnych obiektów trudno mówić o precyzyjnym pomiarze masy, ale szacunkowo masę neutrin określa się na dziesiąte części elektronowolta, a to mnie niż jedna miliardowa część masy atomu wodoru. Abstrakcyjnie mało.

A wracając do tajemnicy neutrin słonecznych. Naukowcy doskonale wiedzą w wyniku jakich reakcji we wnętrzu Słońca powstaje jeden z rodzajów neutrin, czyli neutrina elektronowe. Z dużą precyzją można policzyć ile neutrin elektronowych powinno trafiać na Ziemię i ile powinno być rejestrowanych. Przez lata problem polegał jednak na tym, że te przewidywania teoretyczne nijak się miały do danych eksperymentalnych. Neutrin elektronowych na Ziemi rejestrowano o wiele mniej (aż o ok. 70 proc. mniej) niż powinno ich być. Możliwości były dwie. Albo reakcje, które wg. fizyków powinny zachodzić w jądrze Słońca wcale tam nie zachodzą i dlatego o wiele mniej neutrin elektronowych dociera do Ziemi, albo w czasie swojej podróży pomiędzy gwiazdą a naszą planetą coś z neutrinami się dzieje. Ostatecznie okazało się, że fizycy mieli rację co do procesów zachodzących w Słońcu. One po prostu oscylują – czyli zmieniają swoje właściwości. Zamieniają się pomiędzy sobą postaciami. Jedne neutrina spontanicznie, zmieniają się w inne. W naszym świecie dużych przedmiotów to zdolność mocno abstrakcyjna. Jak można ją sobie wyobrazić? A można sobie wyobrazić spadające z drzewa jabłko, które w czasie lotu ku powierzchni gruntu spontanicznie zamieni się w śliwkę, po to by ostatecznie upaść na trawę jako gruszka? Takie właśnie są neutrina. Abstrakcyjne.  Zamiast badać jeden rodzaj neutrin docierających do Ziemi,  zaczęto przyglądać się im wszystkim na raz. Tym razem, wszystko się zgadzało. To było ostateczne potwierdzenie tzw. oscylacji neutrin.

Zapraszam na profil FB.com/NaukaToLubie (kliknij TUTAJ). To miejsce w którym staram się na bieżąco informować o nowościach i ciekawostkach ze świata nauki i technologii.

 

 

 

Tomasz Rożek

3 komentarze do Nobel z fizyki – abstrakcja goni abstrakcję

Nobel za pasożyty…

… a właściwie za walkę z nimi. Laureatami Nagrody Nobla w 2015 w dziedzinie fizjologii i medycyny zostali: William C. Campbell, Satoshi Ōmura i Youyou Tu.

… a właściwie za walkę z nimi. Laureatami Nagrody Nobla w 2015 w dziedzinie fizjologii i medycyny zostali: William C. Campbell, Satoshi Ōmura i Youyou Tu

Dwóch pierwszych panów, Irlandczyk William C. Campbell i Japończyk Satoshi Ōmura zostało wyróżnionych za odkrycie leku na choroby wywołane przez nicienie. Im Komitet Noblowski zdecydował się przyznać połowę nagrody. Drugą połowę dostała Chinka Youyou Tu, która została doceniona za prace nad terapią przeciwko malarii. Youyou Tu ma dzisiaj 83 lata i prawie nie mówi po angielsku. Jej osiągnięcia w walce z malarią choć znane, zostały zapomniane. Nie ma się co dziwić. Komitet Noblowski docenił ją za stworzenie leku antymalarycznego funkcjonującego pod nazwą Artemeter. Youyou Tu wyekstrahowała go z 200 ziół, we wczesnych latach 70tych XX wieku, a więc 45 lat temu. Rzadko zdarza się, że Nagrodę Nobla otrzymuje się za tak odległe odkrycie. Artemeter znacząco obniża śmiertelność pacjentów cierpiących na malarię.

1094px-Soybean_cyst_nematode_and_egg_SEM

Osobnik młodociany i cytrynkowata cysta mątwika Heterodera glycines wypełniona larwami. Źródło: wiki

Z kolei panowie Campbell i Omura zostali nagrodzeni za odkrycia dotyczące nowych terapii chorób, wywołanych przez pasożyty ludzkie – nicienie. Chodzi m.in. o takie choroby jak słoniowacizna czy ślepota rzeczna. Chorób wywołanych przez nicienie jest bardzo dużo i występują najczęściej w tropikalnych rejonach świata w których poziom życia jest zdecydowanie niższy niż w Europie czy USA. Nie znaczy to oczywiście, że w bogatych krajach Zachodu nie występują choroby pasożytnicze, ale jest ich nieporównywalnie mniej.

– Tegoroczni laureaci Nobla opracowali terapie, które zrewolucjonizowały leczenie niektórych z najbardziej wyniszczających chorób pasożytniczych – takie zdanie znalazło się w uzasadnieniu Komitetu Noblowskiego. Odkrycia tegorocznych laureatów „dały ludzkości nowe mocne narzędzia do walki z tymi ciężkimi schorzeniami, na które zapadają setki milionów ludzi rocznie”.

Tomasz Rożek

Brak komentarzy do Nobel za pasożyty…

A co gdyby Mars zzieleniał?

Wiadomo, Ziemia jest niebieska a Mars czerwony. Tak przynajmniej te planety wyglądają z kosmosu. Ale czy tak było zawsze? Mars mógł być kiedyś zielony. W końcu wiemy ponad wszelką wątpliwość, że była tam i wciąż jest płynna woda. Jak wyglądałbym Mars, gdyby były na nim rzeki, jeziora, morza i oceany?

Kilkanaście dni temu świat obiegła wiadomość, że na Marsie znaleziono ciekłą wodę. O tym, że na Czerwonej Planecie jest woda – wiedzieliśmy od dawna. Widzieliśmy ją zamarzniętą na biegunach planety. Podejrzewaliśmy, że jest także pod powierzchnią w formie wiecznej zmarzliny. Co więcej, podejrzewaliśmy, że czasami ta woda wypływa małymi strumyczkami z oświetlonych promieniami Słońca zboczy gór i kraterów. Podejrzenia jednak to nie to samo co fakty i niezbite dowody. Dzisiaj wiemy jednak, że – przynajmniej tym razem – podejrzenia były słuszne. Tam rzeczywiście nie tylko była, ale wciąż jest całkiem sporo wody.

Mars jest czerwony, bo pokrywający planetę pył jest bogaty w rdzawego koloru tlenki żelaza. Jeżeli planeta boga wojny kiedykolwiek była zielona to nie z powodu odbijających zielone światło minerałów, tylko z powodu życia. O ile było ono takie samo jak to ziemskie. Życie potrzebuje płynnej wody. Z tym akurat – jak się okazuje – w przypadku Marsa nie ma problemu i najpewniej nigdy nie było. Skąd przypuszczenie, że wody na Marsie kiedyś było znacznie, znacznie więcej niż tej, która znajduje się tam dzisiaj? Wystarczy sprawnym (naukowym) okiem rzucić na powierzchnię Czerwonej Planety. Pełno tam struktur do złudzenia przypominających wyschnięte koryta rzek, wąwozy, strumyki a nawet wodospady. Sam amerykański łazik Curiosity, wylądował w dawnym korycie rzeki, w którym głębokość wody sięgała dwóch metrów. Są też ogromne przestrzenie położone znacznie poniżej średniego poziomu gruntu planety. Te do złudzenia przypominają wyschnięte morza i oceany. Te mniejsze zagłębienia to wypisz wymaluj puste jeziora. A teraz zamknijmy oczy i pofantazjujmy. Jak wyglądałby Mars, gdyby, tak jak na Ziemi, płynnej wody było na nim pod dostatkiem?

mars-kevin-gill-01Wygląda jak Ziemia

Na pewno nie byłby czerwony. Może byłby niebieski, może zielony. Spróbujmy wyobrazić sobie Marsa sprzed miliardów lat. Kevin Gill, amerykański informatyk i entuzjasta astronomii wykorzystując zaawansowaną technologię cyfrową, trójwymiarowe zdjęcia Marsa oraz dokładne pomiary jego topografii stworzył obrazy planety z czasów, gdy – tak jak Ziemia – był ona planetą pełną płynnej wody. Gill poszedł w swoim fantazjowaniu o krok dalej. W swoim komputerowym modelu założył, że na Marsie – gdy była na nim woda – rosła bujna roślinność. I znowu z pomocą przyszła mu technologia cyfrowa. Posiłkując się danymi z Ziemi, marsjańskie drzewa i rośliny „posadził” tam, gdzie dostęp do wody i światła był najłatwiejszy. Autor symulacji wziął nawet pod uwagę wysokość nad poziomem marsjańskiego morza (w wysokich partiach gór roślin nie ma) oraz fakt, że najwyższa średnioroczna temperatura panuje na równiku, a najniższa na biegunach. Także od tego zależy wegetacja. Jeżeli jest woda, jeżeli jest atmosfera, muszą być także chmury. I one zostały naniesione na obraz Marsa z przeszłości. Jak więc wyglądał Mars kiedyś? Jak mógł wyglądać? Prawdę mówiąc prawie tak samo jak Ziemia. Trzeba się mocno przyglądać wirtualnemu obrazowi Marsa by zorientować się, że nie patrzy się na zrobione z orbity zdjęcie Ziemi. Wyżyny i niziny na Marsie występują w podobnych proporcjach co na Ziemi. Na stworzonych w komputerze obrazach widać wyraźnie najdłuższą dolinę w układzie słonecznym – Vallis Marineris – oraz szczyty ogromnych wulkanów Olympus Mons, Pavonis Mons, Ascraeusa Mons i Arsia Mons.

mars-water-2A może go dostosować?

Praca Gill’a nie może być uznana za w pełni naukową. Ale nie ma wątpliwości, że bardzo porusza wyobraźnię. Mars rzeczywiście mógł kiedyś wyglądać tak, jak „zaprojektował” go Kevin Gill. Jego praca w pewnym sensie pokazuje jednak nie tylko przeszłość (przy spełnieniu kilku warunków), ale może pokazywać także przyszłość. Być może w przyszłości ludzie skolonizują Czerwoną Planetę. Jej zaludnienie będzie niemożliwe jeżeli wcześniej planetę odpowiednio dostosujemy. Oczywiście można sobie wyobrazić budowę systemu szklarni w których ludzie, zwierzęta i rośliny będą żyły w równowadze podobnej do tej jaka panuje na Ziemi, ale jednak łatwiej chyba będzie taką równowagę stworzyć nie pod szklanym sufitem, tylko na powierzchni całej planety. Sprawa nie jest prosta i jest całkowicie poza zasięgiem naszych dzisiejszych możliwości, ale może warto zastanowić się nad czymś co niektórzy nazywają terraformowaniem obcych globów. Chodzi o takie ich „przerobienie” czy dostosowanie, by człowiek mógł na nich funkcjonować bez urządzeń technicznych takich jak sztuczna atmosfera w zamkniętej przestrzeni, kombinezony i maski. Jak Marsa przekształcić w Ziemię? Przede wszystkim trzeba na nim stworzyć atmosferę. To – przynajmniej teoretycznie – mogłyby zrobić żyjące na powierzchni gruntu bakterie. Trzeba je więc tam wysłać. Gdyby po setkach tysięcy lat atmosfera rzeczywiście na Marsie powstała, trzeba byłoby ją ogrzać. Wprowadzić do niej gazy cieplarniane tak, by energia słoneczna była na Czerwonej Planecie zatrzymywana. To spowodowałoby wzrost temperatury i „wypłynięcie” spod gruntu lub spłynięcie z biegunów ciekłej wody. Teraz pozostaje obsadzenie planety roślinami i gotowe. Proste prawda? 😉

PS. Woda, która dzisiaj płynie na Marsie jest słona. Prawdę mówiąc, znaleziono ją właśnie po śladach soli. Czy byłaby ona zdatna do picia? Gdyby ją oczyścić, jak najbardziej. Gdyby tego nie zrobić, gdyby spróbować wypić ją taką jaka wypływa ze zboczy, skończyłoby się… jeszcze większym pragnieniem. Spróbuj wypić szklankę mocno posolonej wody.

Zapraszam na profil FB.com/NaukaToLubie (kliknij TUTAJ). To miejsce w którym staram się na bieżąco informować o nowościach i ciekawostkach ze świata nauki i technologii.

 

 

1 komentarz do A co gdyby Mars zzieleniał?

Jak fotografować Krwawy Księżyc?

Tegoroczne całkowite zaćmienie Księżyca (28.09 nad ranem) jest niezwykłe, bo połączone z zbliżeniem Srebrnego Globu do Ziemi. Kolejna szansa na sfotografowanie go dopiero za kilkanaście lat. Jak zrobić zdjęcie Krwawemu Księżycowi?

Tegoroczne całkowite zaćmienie Księżyca (28.09 nad ranem) jest niezwykłe, bo połączone z zbliżeniem Srebrnego Globu do Ziemi. Kolejna szansa na sfotografowanie go dopiero za kilkanaście lat. Jak zrobić zdjęcie Krwawemu Księżycowi?

Na początku zdanie wyjaśnienia. Fotografowania Księżyca nie jest trudne. Szczególnie Księżyc w pełni jest obiektem tak dużym i jasnym, że nie będzie problemu ani z jego znalezieniem na nocnym niebie, ani z ustawieniem na nim ostrości. Z tym poradzi sobie każdy aparat. W zasadzie jedynym sprzętem o jaki warto się zatroszczyć, jest statyw. Zachęcam do ustawienia aparatu w tryb manualny. W trybie automatycznym wszystkie zdjęcia będą bardzo do siebie podobne. Na „manualu” możesz poeksperymentować. Zanim przeczytasz dalej, rzuć okiem na mój poprzedni wpis, może Ci się przydać.   KLIKNIJ TUTAJ

No to do rzeczy:

Ostrość. Jeżeli mamy aparat w trybie manualnym, ostrość trzeba ustawić na nieskończoność. W trybie manualnym powinna się ustawić automatycznie (autofocus).

Czułość. Jeżeli aparat umożliwia ustawianie czułości (ISO), tym parametrem można się nieco pobawić, uzyskując czasami bardzo ciekawe efekty. Czym niższa czułość tym wyraźniejsze będzie zdjęcie (niższy poziom szumów). Niestety czym niższa czułość, tym dłuższy musi być czas naświetlania, a to może być problemem np. gdy nie mamy statywu albo gdy w kadrze są szybko poruszające się obiekty. Ich rozmazanie może być dodatkowy atutem zdjęcia. No ale to już kwestia gustu fotografa. Jeżeli chcemy by czas otwarcia migawki był jak najkrótszy, trzeba ustawić wysoką czułość. W takim wypadku na zdjęciu pojawiają się szumy („ziarno”). Może ono dodać artyzmu, ale znowu, to kwestia gustu. Dobra rada: zjawisko zaćmienia Księżyca trwa na tyle długo, że bez problemu można zrobić więcej niż jedno zdjęcie. Poeksperymentuj, ustawiaj różne wartości czułości.

Czas naświetlania. Bardzo trudno zrobić zdjęcie „z ręki” gdy czas otwarcia migawki wynosi mniej niż 1/30 s. Tym bardziej że mówimy o fotografowaniu bardzo odległego obiektu. Stąd jeszcze raz sugestia, by zaopatrzyć się w statyw, nawet gdyby miał być najprostszy. Jeżeli nie masz, obserwuj zaćmienie z miejsca w którym możesz oprzeć aparat o drzewo, krzesło czy chociażby słup od ogrodzenia.

Podobnie jak w przypadku ustawiania czułości, warto poeksperymentować ustawiając różne wartości czasów otwarcia migawki. Zdziwisz się jak różne mogą być zdjęcia tego samego obiektu. Czym krótszy czas migawki, tym bardziej otwarta musi być przysłona aparatu, gdy czas jest długi, przysłona musi być „domknięta”. I tylko z pozoru nie robi to różnicy. Gdy Księżyc będzie nisko nad horyzontem, gdy w kadrze będzie nie tylko jego tarcza ale także np. drzewa albo budynki, domknięta przysłona (wartości od 11 w górę) umożliwi zrobienie zdjęcia na którym ostre będą wszystkie obiekty. Otwarta przysłona (o wartości do 4,5) spowoduje że ostre będą tylko te obiekty na które ustawiona zostanie ostrość. Reszta będzie rozmazana. Jeżeli nie czujesz się na siłach operować przysłoną, ustaw jej automatykę i operuj czasem migawki. Zdziwisz się jak różne zdjęcia uzyskasz.

Ogniskowa. Wszystko zależy od kompozycji zdjęcia, a wiec od tego co chcesz na nim mieć. Jeżeli tylko tarczę Księżyca, ustaw jak najdłuższą ogniskową (jak najbardziej przyzoomuj). Unikaj zoomu cyfrowego, zdjęcie zawsze możesz skadrować na komputerze.

Napisałem to już tutaj kilka razy, ale napisze jeszcze raz. EKSPERYMENTUJ. Masz sporo czasu, zjawisko całkowitego zaćmienia Księżyca trwa kilka godzin. Nie ma sensu robienie kilkunastu czy kilkudziesięciu zdjęć przy takich samych parametrach. Baw się ustawieniami czasu, baw przysłoną i czułością. Jeżeli masz zmienne obiektywy, korzystaj z tego. Ponadto:

– Robiąc zdjęcie korzystaj z samowyzwalacza albo ze zdalnie uruchamianej migawki. W ten sposób nie poruszysz aparatu w czasie robienia zdjęcia.

– Spróbuj zrobić kilka zdjęć przy tych samych parametrach po to by potem nałożyć je na siebie. Zobaczysz, że uzyskasz ciekawy efekt.

– Spróbuj zrobić kilka tak samo skadrowanych zdjęć na różnych etapach zaćmienia. Nakładając je na siebie udokumentujesz na jednym zdjęciu przebieg całego zjawiska.
A jak już zrobisz dobre zdjęcie, pochwal się nim na FB.com/NaukaToLubie

Powodzenia !!!

 

2 komentarze do Jak fotografować Krwawy Księżyc?

Kiedy, gdzie i jak obserwować Krwawy Księżyc?

Gdzie zwrócić wzrok, o której godzinie rozpocznie się najciekawsze i czy trzeba do obserwacji krwawego Księżyca mieć z sobą jakikolwiek sprzęt?

Kiedy?

W najbliższy poniedziałek, od godziny 2 w nocy. Choć najciekawsze będzie się działo dopiero dwie godziny później. Kilka minut po godzinie 3 nad ranem tarcza Księżyca w całości będzie znajdowała się w tzw. strefie półcienia”. Ale na prawdę widowiskowo zacznie być dopiero o 4:11. Wtedy cały Księżyc będzie w cieniu Ziemi. Nie zniknie jednak tylko będzie się stawał coraz bardziej czerwony (z domieszką brązu). Do 4:47 tarcza Księżyca będzie stawała się coraz ciemniejsza, a od tego momentu z każdą chwilą będzie się rozjaśniała. O 5:23 nastąpi koniec fazy całkowitego zaćmienia. Strefę pełnego cienia, Księżyc opuści o 6:27.  W skrócie mówiąc to co najciekawsze wydarzy się pomiędzy 4:11 a 5:23 i potrwa 72 minuty.

Gdzie?

lunar_201509Krwawy Księżyc będzie w Polsce widoczny wszędzie. Zresztą nie tylko w Polsce, ale także w całej Ameryce Południowej, w prawie całej Ameryce Północnej i Afryce. Księżyc, a szczególnie Księżyc w pełni to bardzo duży i jasny obiekt, stąd będzie widoczny także w miejscach „zanieczyszczonych” sztucznym światłem, a więc np. w centrach miast. Oczywiście obserwacje będą lepsze, gdy będą prowadzone z dala od sztucznych świateł.

Całkowite zaćmienie Księżyca nastąpi w chwili gdy Srebrny Glob będzie nisko nad horyzontem. Oznacza to, że niczego nie zobaczymy np. górskich dolinach, albo w mieście, w otoczeniu wysokich budynków. Do obserwacji trzeba więc wybrać miejsce, w którym nie będzie przeszkód patrząc w kierunku zachodnim i południowo-zachodnim i zachodnim. Optymalnie, gdyby takie miejsce było na wzniesieniu.

To, że Księżyc będzie nisko nad horyzontem spowoduje, że obserwacje będą ciekawsze. Oczywiście pod warunkiem, że niebo nie będzie przysłonięte chmurami.

Jak?

Księżyc jest tak dużym i jasnym obiektem, że bez problemu można do obserwować gołym okiem. Zwykłą lornetka, nie mówiąc o nawet najprostszym teleskopie będzie można zjawisko „zacieniania” Księżyca zobaczyć bardzo dokładnie. Tak samo jak będzie można z dużymi detalami oglądać obiekty na powierzchni Księżyca.

Dobrym pomysłem jest fotografowanie i filmowanie zjawiska. Podobnie jak z obserwacją, nie potrzeba do tego żadnego specjalistycznego sprzętu. Wystarczy zwykły aparat fotograficzny (nawet kompaktowy automat). Jedyne o co warto się zatroszczyć to statyw. Z reki obraz będzie nieatrakcyjny.

Zainteresowanym obserwacją i fotografowaniem Krwawego Księżyca polecam mój kolejny wpis. KLIKNIJ TUTAJ !!!

5 komentarzy do Kiedy, gdzie i jak obserwować Krwawy Księżyc?

Pociąg wagi państwowej

Styk nauki (historii), polityki i ogromnych pieniędzy zawsze wzbudza emocje. Nie mam bladego pojęcia, czy w okolicach Wałbrzycha jest wyładowany złotem niemiecki pociąg pancerny. Byłoby jednak lepiej, gdyby urzędnicy i politycy nad tym tematem zamilkli.

Styk nauki (historii), polityki i ogromnych pieniędzy zawsze wzbudza emocje. Nie mam bladego pojęcia, czy w okolicach Wałbrzycha jest wyładowany złotem niemiecki pociąg pancerny. Byłoby jednak lepiej, gdyby urzędnicy i politycy nad tym tematem zamilkli.

Sprawa wygląda w skrócie tak. Wrocław, a właściwie Breslau, był drugim największym, po Berlinie, miastem III Rzeszy. Miastem bogatym nie tylko w tradycje i idee, ale także pieniądze. To tutaj znajdował się sporej wielkości skarbiec Rzeszy, to tutaj były banki, a w nich depozyty. Gdy sytuacja na frontach II wojny światowej zaczęła rozwijać się dla Niemców niepomyślnie, władze miasta zaapelowały do obywateli, by ci zdeponowali swoje bogactwa. Wszystko zostało skrupulatnie policzone i skatalogowane (jak to w Niemczech). Zamknięte w metalowych skrzyniach i zabezpieczone. W maju 1945 roku nie można jednak było dłużej czekać. Rosjanie zbliżali się do Wrocławia. Wtedy postanowiono skarb wywieźć. Było go za dużo na samochody, zdecydowano się więc na pancerny pociąg. Ten wyjechał z Wrocławia i w okolicach Wałbrzycha… słuch o nim zaginął.

70 lat później, w sierpniu 2015 roku na konferencji prasowej Generalny Konserwator Zabytków (nie żaden specjalista, polityk z nadania PSLowskiego) mówi, że na 99 proc. tzw. „złoty pociąg” znajduje się w miejscu wskazanym przez anonimowych poszukiwaczy skarbów. Konserwator (w randze wiceministra) przyznał także, że widział zdjęcia georadarowe, a na nich wyraźnie rozpoznał nie tylko pociąg i jego wagony, ale także ich uzbrojenie. W tym miejscu kilka słów o georadarach. One nie służą do identyfikacji czegokolwiek. One służą do zobrazowania warstw podłoża. Gdy w badanym podłożu znajdują się jakiekolwiek artefakty, specjalista na „wydruku” zobaczy, że w ziemi „coś” się znajduje. Dopiero na podstawie danych georadarowych przeprowadza się kolejne, bardziej wnikliwe analizy. Mówienie, że na zdjęciach z georadaru Generalny Konserwator Zabytków widział elementy uzbrojenia, wydają się być mało prawdopodobne. Dzisiaj dość trudno te informacje zweryfikować, bo wspomniane zdjęcia zaginęły. Nie ma ich np. w dokumentacji jaką anonimowi znalazcy pociągu złożyli w Urzędzie Miasta Wałbrzycha.

Złoty pociąg zyskał międzynarodowy rozgłos właśnie po słowach Generalnego Konserwatora Zabytków. Do jeszcze nie odnalezionego pociągu prawo roszczą sobie Rosjanie. Do jego zawartości Światowy Kongres Żydów. Można się oburzać, ale… jeżeli tam jest złoto Wrocławia, w części jest to złoto zrabowane właśnie Żydom. Reszta to depozyty niemieckiej ludności miasta. Z kolei ustalenia kończące II Wojnę Światową mówią dość wyraźnie, że niemiecki sprzęt wojskowy z terenów wyzwalanych przez Armię Czerwoną, należy się Związkowi Radzieckiemu (a więc Rosji). Prawa majątkowe w takich sytuacjach przedawniają się dopiero po upływie 100 lat. W tej sytuacji nam nie należy się oczywiście nic. No, może za wyjątkiem satysfakcji z wydanych na badania i ewentualne wydobycie pociągu pieniędzy.

Nie mam bladego pojęcia, czy w okolicach Wałbrzycha znajduje się niemiecki pociąg pancerny. Nawet jeżeli tam rzeczywiście jest, nie wiem, czy to ten sam, który wywoził skarby Wrocławia, czy jakiś inny. 70 lat po wojnie mamy bardzo małą wiedzę na temat labiryntu korytarzy drążonych przez Niemców w Sudetach. Nigdy nie ogłoszono zakrojonego na szeroką skalę programu naukowego, którego celem byłoby zidentyfikowanie czy przebadanie tego co w Sudetach robili Niemcy. A szkoda. Skala niemieckich prac musiała być ogromna, skoro w okolice zamku Książ miał być przeniesiony cały ośrodek zajmujący się badaniem, udoskonalaniem i produkcją niemieckich rakiet V. Swoją drogą, po wojnie zarówno sprzęt, dokumentację jak i ludzi „przejęli” Amerykanie. Tylko dzięki temu amerykański program kosmiczny dzisiaj jest wiodącym. W skrócie mówiąc, to Naziści postawili człowieka na Księżycu. A wracając do „złotego pociągu”. Polskie władze, zarówno na poziomie samorządu, województwa jak i stolicy, zabrały się za sprawę totalnie nieprofesjonalnie. Urzędnik rządowy (Generalny Konserwator Zabytków) chlapie językiem na lewo i prawo, inny urzędnik (wojewoda dolnośląski) zaprzecza wszystkiemu, a kolejny (prezydent Wałbrzycha) coś niecoś sugeruje. Efekt jest taki, że o niejasnej sprawie piszą światowe media, a w lasach wokoło Wałbrzycha na każdym kroku jakiś poszukiwacz skarbów. Niektórzy z nich nie znają subtelnych metod badawczych. Kilka dni temu w jednym z „podejrzewanych” miejsc ktoś podpalił las. Zamieszanie absolutnie nie służy nie tylko sprawie samego pociągu, ale utrwala także negatywny i NIESPRAWIEDLIWY obraz Polski za granicą. Jeszcze trochę, a przeczytamy, że to Polacy zrabowali złoto i kosztowności Niemcom i Żydom, których następnie podstępnie z Wrocławia wypędzili. Pasuje jak ulał do polskich obozów śmierci.

Teren, na którym pociąg jest, albo być może jest, powinien zostać natychmiast zamknięty i dobrze pilnowany. Badania powinno robić wojsko i specjaliści archeolodzy, a nie domorośli poszukiwacze przygód. A jeżeli cokolwiek będzie tam znalezione, powinno zostać w tajemnicy przetransportowane w miejsce, gdzie na spokojnie będzie można to zbadać i skatalogować. Dopiero wtedy, bez pośpiechu, na poziomie rządu, powinna zapaść decyzja, czy cokolwiek światu komunikujemy, czy naszym jedynym komunikatem będzie „no comments”. I tak przez przynajmniej kolejnych 30 lat.

 

Tekst ukazał się na portalu gosc.pl, zdjęcie pochodzi ze strony Stowarzyszenia Pamięci Powstania Warszawskiego 1944 (www.sppw1944.org)

1 komentarz do Pociąg wagi państwowej

Czujnik w nas

W Szwajcarii stworzono czujnik, który wszczepiony pod skórę jest w stanie kontrolować kilka parametrów życiowych równocześnie. Kilka lat temu pisałem o takich czujnikach jak o dalekiej przyszłości.

W Szwajcarii stworzono czujnik, który wszczepiony pod skórę jest w stanie kontrolować kilka parametrów życiowych równocześnie. Kilka lat temu pisałem o takich czujnikach jak o dalekiej przyszłości.

Czujnik, a właściwie elektroniczny chip, powstał w laboratoriach politechniki w Lozannie EPFL (École polytechnique fédérale de Lausanne). Ma wielkość paznokcia w małym palcu i nie trzeba wymieniać mu baterii. Ładuje się go przez indukcję, przez skórę. Wszystko, co zbada i zmierzy, przesyła bezprzewodowo do smartfona. Jest to bodaj pierwsze urządzenie tego typu, które może być wykorzystywane komercyjnie u pacjentów. Poprzednie konstrukcje nie były co prawda większe, ale miały ogromną wadę – badały tylko jeden parametr, tylko jedną zmienną. Ten równocześnie rejestruje ich kilka.

Od czego się zaczęło?

Czujnik, o którym mowa, wpisuje się w rozwój dziedziny zwanej nanotechnologią. Co prawda urządzenia nano są znacznie, znacznie mniejsze, ale bardzo szybki wyścig do miniaturyzacji zawdzięczamy właśnie nanotechnologii. Za ojca tej dziedziny uważany jest genialny fizyk Richard Feynman. Uczestniczył w pracach nad budową pierwszej bomby atomowej (projekt Manhattan), a po wojnie pracował na najlepszych uniwersytetach amerykańskich. Zajmował się kwantową teorią pola i grawitacji, fizyką cząstek i nadprzewodnictwem. To on jako pierwszy podał koncepcję komputera kwantowego i – w 1960 roku – zapowiedział powstanie nowej dziedziny nauki – nanotechnologii. W 1965 r. otrzymał Nagrodę Nobla z fizyki. Feynman wielokrotnie zwracał uwagę na to, że przyszłość będzie nano, że zrozumienie tego, co dzieje się w nanoświecie, świecie na poziomie pojedynczych cząstek i atomów, będzie kluczowe dla naszego przyszłego rozwoju.

Trudno oczywiście dokładnie określić, kiedy nanotechnologia rzeczywiście powstała, ale nie ma wątpliwości, że wiele dziedzin przemysłu coraz chętniej zwraca głowę w kierunku ekstremalnej miniaturyzacji. Jedną z dziedzin, które robią to szczególnie często, jest medycyna. Nanomedycyna dzisiaj rozwija się w dwóch kierunkach. Jeden to próby (coraz częściej udane) stworzenia nanocząsteczek, które będą nośnikami leków, a nawet genów. Wnikając do organizmu, będą uwalniać przenoszony czynnik dokładnie w tym miejscu i dokładnie o tym czasie, jaki jest optymalny. Drugi kierunek to nanosensory. Te mogą być wykorzystywane nie tylko w medycynie, ale także na przykład w ochronie środowiska. Dobrym przykładem jest nanosensor służący do analizy krwi. Z zewnątrz wygląda jak siateczka z ogromną ilością otworów. W rzeczywistości to mikroskopijne kanaliki krzemowe, w których znajdują się przeciwciała wyłapujące komórki nowotworowe. Analiza przeciwciał pozwala stwierdzić, czy w krwi znajdują się komórki rakowe, a jeżeli tak, to ile i jakie. Taka informacja nie może być pozyskana w trakcie standardowej analizy, bo komórek nowotworowych w krwi jest bardzo mało. Co ciekawe, testowana metoda jest dużo tańsza niż dzisiaj stosowane, a do analizy wystarczy jedna, dosłownie, kropla krwi.

Myszy już mają

Nanomedycyna jednoznacznie kojarzy się jednak z budową nanorobotów, które wpuszczone do ludzkiego krwiobiegu będą nie tylko monitorowały funkcje życiowe, ale także reagowały na stany kryzysowe organizmu. Te skojarzenia – przynajmniej na razie – są całkowicie chybione. Co nie znaczy oczywiście, że prace nad miniaturyzacją robotów nie są prowadzone. Już dzisiaj tworzone są roboty, których rozmiary umożliwiają użycie ich w rzeczywistych warunkach szpitalnych. Na przykład kapsułka monitorująca wnętrze układu trawiennego skonstruowana przez japońską firmę Denso Research jest wielkości standardowej tabletki. Jest wyposażona we własne zasilanie i kamerę CCD wysokiej rozdzielczości oraz urządzenie do przesyłania informacji drogą radiową do urządzenia bazowego. Po połknięciu „kapsułka endoskopowa” przekazuje wysokiej jakości obraz w czasie rzeczywistym. Nie ma własnego napędu, porusza się pod wpływem… siły grawitacji i perystaltyki jelit. Ale na rynku są już urządzenia niewiele większe, które mogą poruszać się samodzielnie, choć na razie jeszcze nie w układzie krwionośnym. Kilka lat temu na jednej z konferencji nanotechnologicznych pokazano nanosilnik, który jest mniejszy od główki od szpilki. Jego koła napędowe były 100 razy cieńsze niż kartka papieru, a ich średnica mniejsza niż średnica ludzkiego włosa. Silnik obracał się z częstotliwością jednego obrotu na sekundę i teoretycznie mógłby być elementem systemu napędowego jakiegoś małego urządzenia pływającego. Zanim te powstaną, miną jeszcze lata. Wcześniej do medycyny wejdą inteligentne czujniki, które być może będą wszczepiane pod skórę na dłuższy czas osobom o podwyższonym ryzyku zdrowotnym. Takim czujnikiem jest wspomniany sensor stworzony w Lozannie. Ma wielkość poniżej centymetra i w czasie rzeczywistym monitoruje obecność oraz stężenie kilku molekuł. Może badać odczyn (pH), temperaturę, ale przede wszystkim cholesterol, glukozę, poziom tlenu oraz stężenie przynajmniej kilku leków. To ostatnie będzie szczególnie ważne dla osób, które z powodu swojej choroby muszą regularnie zażywać jakieś medykamenty. Ich przedawkowanie jest wtedy bardzo łatwe. Pełna kontrola nad poziomem substancji czynnej we krwi jest bardzo istotna. Sensor został przetestowany na myszach, a testy kliniczne na ludziach rozpoczną się za kilka lat.

Brak komentarzy do Czujnik w nas

Pluton jak Biedronka

Wczorajszy przelot sondy New Horizons w pobliżu Plutona natchnął mnie do pewnych przemyśleń. Po co badać coś tak odległego jak Pluton? Po co badać delfiny, motyle czy orangutany? Po co zajmować się gwiazdami, płytami tektonicznymi i DNA?

Wczorajszy przelot w pobliżu Plutona i związanych z nim sporo pytań natchnął mnie do pewnych przemyśleń. Niemal za każdym razem, gdy w nauce dochodzi do jakiegoś odkrycia, do wysłania sondy, do zbudowania nowego rodzaju mikroskopu czy znalezienia nowej cząstki elementarnej, pada pytanie, po co to wszystko? Po co wydawać miliony dolarów by dowiedzieć się co słychać np. na globie, który oddalony jest od nas o miliardy kilometrów. Dajmy na to na takim Plutonie. Wczoraj udało się sfotografować jego powierzchnię z odległości nieco ponad 12 tysięcy kilometrów. To 30 razy mniej niż odległość pomiędzy Ziemią i naszym Księżycem. Sonda która tego dokonała to New Horizons. Leciała w kierunku Plutona prawie 10 lat przebywając w tym czasie 5 miliardów kilometrów. No i po co to wszystko? Po co lecieć tak daleko, po co wydawać niemałe przecież pieniądze, po co zaangażowanie ogromnej grupy ludzi przez długi okres czasu?

Zacznijmy od pieniędzy. Całkowity koszt misji New Horizons, wszystkich urządzeń sondy, jej wystrzelenia, ale także analizy danych a nawet obsługi medialnej wydarzenia to około 700 milionów dolarów, czyli nieco ponad 2 miliardy i 600 milionów złotych. To dziesięć razy mniej (!!!) niż wynosi roczny przychód supermarketów Biedronka w Polsce. To mniej niż budowa 20 kilometrowego odcinka autostrady A1. W końcu to mniej niż zakup i 13 letnia obsługa 4 samolotów F16, które służą w polskiej armii (w sumie kupiliśmy ich 48). Tyle jeżeli chodzi o koszty. Tak, te są duże… dla przeciętnego obywatela. Niewielu byłoby stać na wybudowanie i wysłanie w kosmos sondy New Horizons (choć np. Jan Kulczyk, najbogatszy Polak, mógłby takich sond wysłać 7), ale w skali państwa, dla budżetu państwa rozwój nauki to grosze. Grosze zainwestowane najlepiej jak można sobie wyobrazić. Grosze, które w przyszłości przyniosą miliony poprzez rozwój technologii a w dalszej perspektywie rozwój przemysłu. Każda ekspansja to wyzwanie i konieczność znajdowania rozwiązań na problemy z których nie zdawaliśmy sobie sprawy. Przecież loty w kosmos mają bezpośrednie przełożenie na komunikację, elektronikę i materiałoznawstwo. Rozwój technik obrazowania (nieważne czy w astronomii czy w biologii) od razu jest wykorzystywany w medycynie. Nasze miasta byłyby skażonymi pustyniami gdyby nie powstawały zaawansowane technologicznie silniki i komputery, które tymi silnikami sterują.

A wracając do Plutona, delfinów, motyli i orangutanów. Po co je badać? Bo one są częścią nas, a my częścią świata którego różnorodność – przynajmniej mnie – powala na kolana. Wszystkie lekkie atomy, które nas budują powstały w czasie Wielkiego Wybuchu. Wszystkie ciężkie w czasie wybuchu gwiazdy. Warto rozwijać zarówno kosmologię, astrofizykę jak i fizykę cząstek. Nasze DNA to uniwersalny język całej przyrody, a gatunki (zarówno zwierzęce jak i roślinne), które zamieszkują Ziemię (a pewnie także inne globy) powstawały jedne z drugich. To dlatego nie można zaniedbywać biologii (w tym egzobiologii) i medycyny. Oddychamy powietrzem w którego skład wchodzą różne gazy. To dlatego warto rozwijać chemię i interesować się tym jak zmieniały się atmosfery na innych planetach. Ta wiedza może być bezcenna gdy zacznie zmieniać się nasza atmosfera. Bo to że wszystko jest wokoło nas zmienne – to oczywiste. Kontynenty są w ruchu (nie tylko zresztą na Ziemi) i dzięki temu mogło powstać życie. Ale to nie powstałoby, gdyby Ziemia nie miała swojego pola magnetycznego. A tego by nie było gdyby jądro planety nie było gorące i półpłynne. Ale nawet gdyby było, Ziemia byłaby martwa, gdyby nie było Księżyca, który stabilizuje ruch Niebieskiej Planety wokół Słońca. A Księżyc powstał w kosmicznej katastrofie w której w Ziemię uderzyła planetoida wielkości Marsa. Geologia, geografia, fizyka, astronomia, biofizyka i biochemia… Mam dalej wymieniać? Czy jest sens wymieniać? Czy jest sens pytać, po co badamy coś tak odległego jak Pluton? Po co badamy delfiny, motyle czy orangutany, a nawet biedronki (chodzi o owada, nie o sieć sklepów)? Moim zdaniem szkoda na to czasu. Lepiej go wykorzystać na zaspokajanie swojej ciekawości. Bo to ciekawość idzie przed odkryciami. Tak było zawsze i tak będzie zawsze.

3 komentarze do Pluton jak Biedronka

Ludowców gra grafenem

W jednym z najbardziej znanych na świecie polskich instytutów naukowych, w miejscu w którym produkuje się grafen, doszło dziwnych i niezrozumiałych kombinacji podczas wyboru dyrektora placówki. Sprawa wygląda na polityczną ustawkę, która może utopić polski grafen.

W jednym z najbardziej znanych na świecie polskich instytutów naukowych, w miejscu w którym produkuje się grafen, doszło dziwnych i niezrozumiałych kombinacji podczas wyboru dyrektora placówki. Sprawa wygląda na polityczną ustawkę, która może utopić polski grafen.

O sprawie pisałem już w Tygodniku Gość Niedzielny. Dotychczasowym szefem Instytutu Technologii Materiałów Elektronicznych (ITME) w Warszawie był doktor Zygmunt Łuczyński. Zasłużony fizyk i człowiek, który wiele lat temu zainicjował w tej jednostce badania nad nowymi postaciami węgla, czyli nad grafenem („wie pan, chodziłem za tym, jak jeszcze nikt nie wiedział czym jest grafen„). Dzisiaj ITME jest światowym liderem technologii. To w Warszawie powstają jedne z największych kawałków grafenu na świecie. Naukowcy pracujący w „grupie grafenowej” są zaangażowani w najbardziej prestiżowe projekty międzynarodowe, a sam instytut w rankingach jest plasowany na czołowych pozycjach. Dla przypomnienia, grafen to postać węgla, która ma niespotykane w innych materiałach właściwości. Jest bardzo wytrzymały, a równocześnie elastyczny. Lekki i przezroczysty, ale odporny na działanie sił zewnętrznych. Doskonale przewodzi prąd i ciepło. I choć trudno znaleźć dziedzinę w której grafen nie mógłby być wykorzystywany, największe nadzieje wiąże się z grafenem w elektronice. Panuje powszechne przekonanie, że w najbliższej przyszłości, to grafen, czy ogólnie węgiel, wyprze z elektroniki krzem, który dzisiaj jest jej fundamentem. W skrócie mówiąc, grafen, pod wieloma względami jest materiałem przyszłości.

Doktorowi Łuczyńskiemu kilka miesięcy temu kończyła się kadencja dyrektorska i starając się o kolejną, wystartował w ogłoszonym konkursie. Wraz z nim do konkursu stanęło jeszcze trzech innych kandydatów. Każdy z nich odpadł jednak na kolejnych etapach procedury konkursowej. Konkurs sprzed kilku miesięcy wygrał więc bezapelacyjnie dotychczasowy szef Instytutu, dr Zygmunt Łuczyński. Tą wygraną potwierdziła odpowiednią uchwałą Komisja Konkursowa, a Rada Naukowa Instytutu skierowała do Ministra Gospodarki pismo z rekomendacją i prośbą o powołanie nowego (starego) dyrektora na kolejną kadencję. Skany tych pism zamieszczam na dole wpisu.

Mimo tej wygranej, doktor Łuczyński dyrektorem jednak nie został, bo jego nominacji nie podpisał Minister Gospodarki, Janusz Piechociński z PSLu. Nie pomogło to, że do ministra zwróciła się z prośbą o podpisanie nominacji Rada Naukowa Instytutu oraz Rada Główna Instytutów Badawczych. Nie pomogło nawet to, że na biurku ministra znalazł się list podpisany przez 190 pracowników Instytutu popierających swojego poprzedniego dyrektora.  W liście do premiera Piechocińskiego, szef Rady Głównej Instytutów Badawczych pisał, że Rada wyraża pogląd, że konkurs na stanowisko dyrektora instytutu badawczego ITME został przeprowadzony zgodnie z obowiązującymi wymaganiami prawnymi.  A potem dodawał: „Rada Główna Instytutów Badawczych popiera stanowisko Rady Naukowej ITME. W imieniu Rady Głównej zwracam się do Pana Premiera o reasumpcję odmowy powodłania dr. Zygmunta Łuczyńskiego na stanowisko dyrektora ITME.” Premier Piechociński zdania jednak nie zmienił.

Dlaczego? Otóż ministerstwo twierdzi, że zostały złamane procedury, bo nie wszyscy kandydaci przeszli pełną ścieżkę konkursową. To prawda, ale to nie jest niezgodne z prawem. Nie wszyscy kandydaci dotrwali do końca procedury konkursowej, bo odpadli wcześniej. Pomijając nazwiska (choć te są w dokumentach zamieszczonych poniżej), jeden z panów odpadł na egzaminie z angielskiego. Jego wiadomości były zdaniem komisji konkursowej dużo poniżej tych, które deklarował w dokumentach. Drugi kandydat zrezygnował, gdy trzeba było podzielić się z komisją swoją wizją na temat rozwoju i przyszłości instytutu. Trzeci nie dopełnił formalności przy zgłoszeniu swojej kandydatury i dlatego komisja w ogóle nie rozpatrywała jego podania.

Napisałem do Ministerstwa Gospodarki maila z pytaniem o dziwne praktyki konkursowe. Po kilku dniach otrzymałem odpowiedź, że konkurs trzeba było powtórzyć z powodu złamania procedur. Jak to możliwe, skoro szefem Komisji Konkursowej był przedstawiciel ministerstwa, który na piśmie oświadczył, że wszystkie procedury były zachowane? Zerknijcie proszę w dokumenty poniżej. Gdy do rzeczniczki ministra Piechocińskiego napisałem kolejnego maila z prośbą o wyjaśnienie tej niezgodności (ministerstwo twierdzi, że prawo zostało złamane, przedstawiciel ministerstwa zaświadcza, że wszystko odbyło się zgodnie z przepisami), nie otrzymałem żadnej odpowiedzi. Mimo, że już dawno minął ustawowy termin na odpowiedź jaki prawo narzuca urzędnikom.

Ministerstwo Gospodarki postawiło na swoim i po unieważnieniu konkursu, rozpisało nowy. Dotychczasowy dyrektor – doktor Łuczyński – przepadł, szefem Instytutu Technologii Materiałów Elektronicznych został były prezes Grupy Azoty (Kędzierzyn Koźle) Ireneusz Marciniak. – O tej osobie mówiło się jak o kandydacie forsowanym przez ministerstwo gospodarki – powiedział mi dr Zygmunt Łuczyński. Ireneusz Marciniak był związany z różnymi spółkami skarbu państwa od kilkunastu lat.

Trzy miesiące temu dr Łuczyński udzielił pismu Elektronik wywiadu pod znamiennym tytułem „Kto jest zainteresowany przejęciem ITME?„, w którym tłumaczył naciski i motywy stojące za próbą przejęcia sterów w jednym z najbardziej znanych na świecie polskich ośrodków naukowych. – Z moich informacji wynika, że istnieje porozumienie pomiędzy Ministerstwem Gospodarki a Politechniką Warszawską, na mocy którego niedługo ma nastąpić konsolidacja Politechniki i ITME – mówił Łuczyński. Zapytany o to porozumienie rzecznik Politechniki Warszawskiej, zaprzeczył istnieniu jakiejkolwiek umowy. Doktor Łuczyński, we wspomnianym wywiadzie opowiada także, że ośrodek którym kierował znajduje się w wielu rankingach instytucji naukowych na czołowych pozycjach. Prowadzi bardzo ważne naukowo i biznesowo projekty (w tym bardzo prestiżowe, międzynarodowe), znajduje dofinansowanie i ma świetny sprzęt. – Nietrudno zatem dojść do wniosku, że ITME jest łakomym kąskiem do przejęcia – powiedział mi doktor Łuczyński. I dodawał, że przejęcie ITME to „bilet do wielu prestiżowych programów o charakterze międzynarodowym”. Tyle tylko, że dyrektor Łuczyński nie godził się na zmiany organizacyjne w instytucie. – Uczestnictwo w światowym wyścigu technologicznym, czego grafen jest doskonałym przykładem, wymaga 100-procentowej i maksymalnej koncentracji oraz podporządkowania się temu celowi – mówił Łuczyński w Elektroniku. A potem dodawał, że laboratoria Instytutu pracują na trzy zmiany, bo w tak zaciętym wyścigu technologicznym z jakim mamy do czynienia, liczy się każda godzina. – To moim zdaniem jest wystarczający powód, aby nie zmieniać konia w czasie gonitwy – mówił. I dodawał, że jakiekolwiek zmiany personalne w kierownictwie czy organizacyjne nie dają gwarancji utrzymania kadry, co jest kluczowe dla rozwoju prac. – Nie jest tajemnicą, że większość ze specjalistów pracujących nad grafenem ma liczne propozycje i możliwość natychmiastowego przejścia do innych (zagranicznych) ośrodków badawczych. Każda niestabilność związana z działalnością placówki jest tutaj realnym zagrożeniem, a w konsekwencji grozi utratą pozycji Polski w tej dziedzinie – mówił doktor Łuczyński. No właśnie. Pozycja Polski. Wydaje się, że w tym wszystkim najmniej chodzi o pozycję Polski i polskich badań.

 

DOKUMENTY015_Strona_2

Uchwała Komisji Konkursowej stwierdzająca zwycięstwo w konkursie dr. Zygmunta Łuczyńskiego

 

DOKUMENTY015_Strona_1

List Komisji Konkursowej rekomendujący dr. Łuczyńskiego na stanowisko dyrektora ITME

 

DOKUMENTY015_Strona_3-kolorowy

Uchwała Rady Naukowej Instytutu, w które potwierdzona zostaje prawidłowość procedury konkursowej, w której wygrał dr Zygmunt Łuczyński

 

List RGJB do Piechocińskiego-podkreślenia

List Przewodniczącego Rady Głównej Instytutów Badawczych do Premiera Piechocińskiego z prośbą o zmianę decyzji wsp. niepowoływania dr. Łuczyńskiego na stanowisko dyrektora ITME.

 

Wniosek  Rady Nauk do Ministra_Strona_1

Wniosek Rady Naukowej ITME o reasumpcję odmowy powołania dr. Zygmunta Łuczyńskiego na stanowisko dyrektora ITME

 

Wniosek  Rady Nauk do Ministra_Strona_2

Uzasadnienie wniosku o reasumpcję odmowy powołania dr. Zygmunta Łuczyńskiego na stanowisko dyrektora ITME strona 1

Wniosek  Rady Nauk do Ministra_Strona_3

Uzasadnienie wniosku o reasumpcję odmowy powołania dr. Zygmunta Łuczyńskiego na stanowisko dyrektora ITME strona 2

Wniosek  Rady Nauk do Ministra_Strona_4

Uzasadnienie wniosku o reasumpcję odmowy powołania dr. Zygmunta Łuczyńskiego na stanowisko dyrektora ITME strona 3

Wniosek  Rady Nauk do Ministra_Strona_5

Uzasadnienie wniosku o reasumpcję odmowy powołania dr. Zygmunta Łuczyńskiego na stanowisko dyrektora ITME strona 4

 

36 komentarzy do Ludowców gra grafenem

Muzyka to drgania

Dla niektórych muzyków informacja o tym, że całe swoje życie poświęcają produkcji drgań może być niemiłym zaskoczeniem. Setki, tysiące godzin prób, ból, łzy i emocje, a wszystko po to, by cząsteczki powietrza wyprowadzić z położenia równowagi.

Dla niektórych muzyków informacja o tym, że całe swoje życie poświęcają produkcji drgań może być niemiłym zaskoczeniem. To samo dotyczy także tych, którzy śpiewają. Setki, tysiące godzin prób, ból, łzy i emocje, a wszystko po to, by cząsteczki powietrza wyprowadzić z położenia równowagi.

Co to znaczy z położenia równowagi? To w przypadku cząsteczek powietrza, niezbyt fortunne stwierdzenie. Tlen, azot, wodór – atomy tych i wielu innych pierwiastków wchodzących w skład powietrza i tak nigdy nie są w spoczynku. Poruszają się chociażby pod wpływem różnicy temperatur czy ciśnienia (jedno z drugim jest zresztą powiązane). Jeżeli ktoś nie wierzy, niech spojrzy za okno, a najlepiej nich wyjdzie na świeże powietrze. Wiatr to właśnie ruch cząsteczek powietrza. Zimą wbijający się w ubranie jak szpilki, latem zwykle przyjemnie schładzający naszą skórę. Co ten ruch ma wspólnego z dźwiękami? Nic. Gdy wieje wiatr, cząsteczki powietrza przemieszczają się z miejsca na miejsce, jak samochody jadące szeroką autostradą. Z dźwiękami jest inaczej. Tutaj ruch bardziej przypomina zakorkowane miasto, gdzie na ulicach samochody stoją zderzak w zderzak. Albo nie, przypomina klik-klaka. Kulka z brzegu zostaje odchylona i uderza w swoją sąsiadkę, a ta w kolejną itd. Ale środkowe kulki zmieniają położenie tak nieznacznie, że nawet tego nie widać. Co nie przeszkadza im przekazywać energię. To przekazywanie energii od jednej kulki, do kolejnej dojdzie w końcu do ostatniej, która energicznie odskakuje. Podobnie jest z dźwiękiem. Cząsteczki powietrza przekazują sobie energię dźwięku tak jak kuleczki klik – laka. Z tą różnicą, że kuleczek w popularnej zabawce jest najwyżej kilka, a cząsteczek powietrza pomiędzy źródłem dźwięku a naszym uchem mogą być setki milionów.

Gęściej znaczy szybciej

Dźwięk rozchodzi się oczywiście nie tylko w powietrzu, nie tylko w gazach, ale także w cieczach i ciałach stałych. Czym gęstszy jest ośrodek, tym dźwięk szybciej się w nim rozchodzi. Na pozór to nielogiczne, ale gdyby się dłużej zastanowić… Skoro cząsteczki przekazują energię dźwięku nie jak posłańcy poruszający się na dużych odległościach, tylko raczej jak ludzie czekający w kolejce, czym bliżej siebie będą cząsteczki, tym szybciej dźwięk będzie przekazywany. Tym więcej energii zostanie przekazanej dalej. W powietrzu dźwięk porusza się z prędkością około 1200 km/h. W wodzie prędkość dźwięku jest prawie 5 razy większa i wynosi około 5400 km/h, a w stali wibracje poruszają się z prędkością bliską 18 000 km/h. Z drugiej strony, gdy cząsteczek nie ma wcale, albo gdy są bardzo daleko od siebie, dźwięk nie jest przekazywany w ogóle. W próżni panuje idealna cisza.

Dźwięki można wytwarzać na wiele różnych sposobów. Wytworzenie, to zwykle jednak za mało. Żeby były słyszalne, trzeba je wzmocnić. I mowa tutaj nie o mikrofonach i głośnikach, tylko o wzmacnianiu dźwięków przez same instrumenty. Człowiek wydaje dźwięki bo powietrze wychodzące z płuc, wprawia w drgania cienkie błony zwane strunami głosowymi. Dźwięki wydawane przez człowieka wzmacniane są w klatce piersiowej. W wielu instrumentach dźwięk wzmacnia pudło rezonansowe. W innych, są za to odpowiedzialne tzw. fale stojące. Sporo w tym fizyki, ale ciekawsze od tego jest to, co dzieje się z dźwiękiem po „opuszczeniu” instrumentu.

To oczywiste że drgania mogą być mocniejsze, albo słabsze. Wtedy dźwięk jest głośniejszy, albo cichszy. Ale to nie jedyna cecha drgań. W końcu ten sam dźwięk grany na skrzypcach i na pianinie różnią się od siebie. Falę wyobrażamy sobie jako sinusoidę (góry i doliny). To wyobrażenie jest jak najbardziej prawidłowe, tyle tylko, że trochę wyidealizowane. W rzeczywistości „górki” i „doliny” nie są gładziutkie, tylko składają się z wielu mniejszych „góreczek”. To w tych nieregularnościach zawarta jest informacja o dźwiękach. Nie o ich głośności, ale o ich brzmieniu. Jak to rozumieć, że w czymś zawarta jest informacja o brzmieniu?

Kostki na całe życie

W końcu fala akustyczna (czyli drganie od cząsteczki do cząsteczki) dojdzie do ucha, a konkretnie do błony bębenkowej. Od środka jest ona połączona z trzema kosteczkami – młoteczkiem, kowadełkiem i strzemiączkiem. To najmniejsze kości w całym ciele człowieka. I co ciekawe, od urodzenia do śmierci nie zmieniają one swoich rozmiarów. Nie rosną – jak wszystkie inne kości naszego organizmu. Trzy wspomniane kosteczki przenoszą drgania błony bębenkowej w głąb ucha, ale to nie jedyna ich funkcja. Są tak ze sobą połączone (na zasadzie dźwigni), że znacząco te drgania wzmacniają. Aż o 20 razy!

Kosteczki słuchowe przenoszą drgania do ślimaka. To zakręcony kanał, który jest wypełniony płynem. We wnętrzu kanału znajdują się czułe na drgania cieczy komórki. Wibracje powietrza na zewnątrz ucha, przez zmyślny system zamieniane są na wibracje płynu wypełniającego ślimak. A tam, drgania płynu zamieniane są na impulsy nerwowe. I w zasadzie dopiero od tego momentu można mówić o „słyszeniu”. Ucho nie słyszy, tylko zamienia drgania cząsteczek powietrza na impulsy elektryczne. To mózg tym impulsom nadaje znaczenie i interpretacja. To dopiero w zakamarkach mózgu odpowiedniej sekwencji impulsów elektrycznych przypisywane są dźwięki skrzypiec czy trąbki. To mózg, a nie ucho rozróżnia i potrafi nazwać te same dźwięki grane przez różne instrumenty.

Słuch jest pierwszym zmysłem człowieka. Już w pierwszych tygodniach życia płodowego, wykształcają się organy słuchowe. Długo przed porodem, dziecko słyszy. Słuch jest jedynym zmysłem, który tak wcześnie pozwala poznać dziecku świat zewnętrzny. Zaraz po porodzie dziecko prawie nie widzi. Słyszy doskonale i odczuwa zapachy. Od kilku lat wiadomo, że dziecko uczy się naśladować dźwięki, jakie słyszało jeszcze przed urodzeniem. W czasopiśmie Current Biology grupa francuskich i niemieckich uczonych opublikowała raport z którego wynika, że zaraz po urodzeniu dzieci płaczą zgodnie z melodią języka biologicznej matki. Francuskie noworodki na przykład płakały z intonacją wznoszącą się, a niemieckie z intonacją opadającą. To odzwierciedla melodię charakterystyczną dla tych języków. Dziecko rozwijając się w łonie matki, choć nie rozumie znaczenia słów, uczy się naśladować melodykę języka. Po co? Inne badania wskazują, że gdy płacz dziecka ma podobną „strukturę” jak język matki, noworodkowi łatwiej jest przyciągnąć uwagę swojej rodzicielki.

Muzyka to drgania cząsteczek powietrza. Brzmi wręcz banalnie prosto. Ale z prostotą ma niewiele wspólnego. Te drgania, ich wydobywanie, przenoszenie, rejestrowanie i interpretacja, to jedno z najciekawszych zagadnień w przyrodzie.

Brak komentarzy do Muzyka to drgania

Złapali kwant !!!

Dwójce młodych fizyków, doktorantów Uniwersytetu Warszawskiego, jako pierwszym na świecie udało się sfotografować kwanty, cząstki światła, w bardzo szczególnym momencie – chwili, w której się parują.

Dwójce młodych fizyków, doktorantów Uniwersytetu Warszawskiego, jako pierwszym na świecie udało się sfotografować kwanty, cząstki światła, w bardzo szczególnym momencie – chwili, w której się parują.

Tak, światło składa się z cząstek. A właściwie sprawa jest bardziej złożona. Światło ma cechy fali (podobnej do tej na wodzie), ale wykazuje też cechy korpuskularne. W skrócie mówiąc, jest i falą, i cząstką. Trudno to odnieść do naszej rzeczywistości, bo w makroświecie cechy fali i cząstki wykluczają się. W świecie kwantów nic się nie wyklucza.

Quantum paparazzi spying identical photon pairs

„Łapacze fotonów”, młodzi fizycy z UW, na tym zdjęciu zachowują się jak fotony. Są w dwóch miejscach równocześnie. Obok układu pomiarowego Radosław Chrapkiewicz (po prawej) oraz Michał Jachura (stojący za nim) .

W zasadzie proste 

Cząstki światła nazywają się kwantami. Nie mają masy spoczynkowej, nie da się ich zatrzymać i przyjrzeć im się „na spokojnie”. Przeciwnie, pędzą z prędkościami, które trudno sobie nawet wyobrazić. 300 tys. kilometrów na sekundę! Ile to jest? Odległość między Zakopanem i Trójmiastem (prawie 700 km) światło pokonuje w tysięczne części sekundy. Jak złapać, jak sfotografować coś, co porusza się z taką prędkością? – Układ, który zastosowaliśmy do naszych pomiarów, jest dość złożony, ale sama idea nie jest skomplikowana – powiedział mi Michał Jachura z Uniwersytetu Warszawskiego. – Źródłem fotonów jest fioletowy laser. Padają one na urządzenie, w którym z jednego fotonu powstaje jeden elektron. Następnym elementem jest wzmacniacz powielający ten jeden elektron. Tak powstaje kilka milionów elektronów, które następnie padają na płytkę z fosforu, gdzie powodują błysk światła. Ten błysk rejestrujemy specjalną kamerą – mówi drugi z młodych badaczy, Radosław Chrapkiewicz. – I to w zasadzie wszystko – dodaje. Niektóre elementy układu, w którym udało się złapać fotony, np. wzmacniacz obrazu, to urządzenia wykorzystujące technologię wojskową. Samo sfotografowanie pojedynczej cząstki światła to jednak nie było topowe osiągnięcie Michała i Radka. Im udało się zobaczyć moment, w którym fotony się parowały. Ale zanim o tym, warto powiedzieć trochę o samych fotonach.

Światło wprost ze światłowodu

Światło wprost ze światłowodu. Obiektyw aparatu Radka Chrapkiewicza był skierowany dokładnie w kierunku światłowodu (wyjścia) z lasera femtosekundowego. Ten laser emituje bardzo krótkie błyski światła, których długość nie przekracza 100 fs (femtosekund). Femtosekunda to jedna bilionowa część sekundy. W czasie jednej femtosekundy światło pokonuje drogę sto razy krótszą niż grubość ludzkiego włosa!

Jaki kształt? Jaki kolor?

Fotografia kojarzy nam się z odwzorowywaniem rzeczywistości. Skoro foton dał się sfotografować, można chyba zapytać, jak on wygląda. Zacznijmy od kształtu. Da się go określić? – W jednym pomiarze nie, ale robiąc wiele pomiarów, wiele zdjęć, udaje się to zrobić, choć od razu trzeba powiedzieć, że kształt fotonu nie jest stały. Może się różnić w zależności od tego w jakim otoczeniu się znajduje – tłumaczy Michał. – W naszej aparaturze obserwowaliśmy np. fotony o wydłużonych kształtach, takich trochę jak ołówek, ale udawało nam się także obserwować fotony rozseparowane, czyli takie, w których jeden foton był rozdzielony na dwie części. I to części, które znajdują się od siebie w odległości nawet centymetra – dodaje Radek. A kolor? Tutaj sprawa zaczyna się komplikować jeszcze bardziej. – Foton ma trzy cechy, które nazywamy stopniami swobody – opowiada Michał Jachura.

– Pierwszy to struktura w przestrzeni, czyli w pewnym sensie kształt. Drugi stopień swobody – spektralny – to innymi słowy kolor. Fotony mogą być czerwone, niebieskie, ale możemy mieć fotony w tak zwanej superpozycji, np. fotony białe, składające się z wielu barw dla których określony kolor ustala się dopiero w momencie pomiaru. Ten sam foton mierzony wielokrotnie może mieć różne kolory. Ostatni stopień swobody to polaryzacja, tzn. kierunek, w jakim foton drga. Jeżeli dwa fotony mają identyczne trzy stopnie swobody, nie ma żadnej możliwości, by odróżnić je od siebie – kończy Michał Jachura. Zatem wróćmy do osiągnięcia dwóch doktorantów. Fotografowali oni fotony, które dobierały się w pary. W czasie tego procesu zauważyli, że dwa różne fotony skazane są na samotność. Nawet gdy znajdą się obok siebie, „nie widzą” się i zwykle nie dobierają się w pary. Sytuacja wygląda zupełnie inaczej, gdy fotony są identyczne, to znaczy, gdy wszystkie trzy stopnie swobody dwóch cząstek są takie same. Wtedy powstają pary, które na dodatek są wyjątkowo jednomyślne. Jeden foton „idzie” zawsze tam, gdzie ten drugi. Chociaż trudno powiedzieć, który jest pierwszy, a który drugi, skoro obydwa są identyczne. Łączenie fotonów nazywa się efektem Hong-Ou-Mandela i na Wydziale Fizyki Uniwersytetu Warszawskiego po raz pierwszy na świecie udało się go sfilmować.

Quantum memory - glowing green

Układ pamięci nowej generacji do komputerów kwantowych. Zielona tuba to pamięć. Za pomocą lasera (czerwona wiązka) w atomach rubidu „zapisywana” jest informacja, która następnie może być odczytywana. Ta pamięć to także dzieło doktorantów z UW.

Nauka podstawowa

Pozostaje tylko znaleźć odpowiedź na pytanie, po co tego typu badania się robi. – Być może kiedyś uda się wyniki naszych eksperymentów wykorzystać w rozwijanych technologiach kwantowych, na razie myślimy jednak o naszych eksperymentach w kategoriach badań podstawowych – mówi Michał Jachura. – Nas bardziej niż kształt samego fotonu interesuje to, jaki kształt będzie miała para fotonów, które zaczną ze sobą interferować, zaczną się na siebie nakładać. To można wykorzystać do zupełnie nowego rodzaju mikroskopii o bardzo wysokiej rozdzielczości. – uzupełnia Radosław Chrapkiewicz.

17 komentarzy do Złapali kwant !!!

Oczywista… oczywistość

Mogło by się wydawać, że naukowcy czasami wyważają dawno otwarte drzwi. Po długich testach dochodzą do wniosków, które… dla każdego są logiczne. Sztuka dla sztuki ? Nie, w nauce wszystko musi zostać sprawdzone i przetestowane. Inaczej jest tylko hipotezą.

Wszystko zaczęło się od robienia porządku w komputerze. A w zasadzie chęci zrobienia porządku. Skończyło się jak zawsze, znalazłem artykuł, który odłożyłem sobie do przeczytania na później. Artykuł był sprzed… siedmiu lat! No i postanowiłem coś napisać.

Tekst pochodził z anglojęzycznego serwis popularno-naukowego POPSCI.COM i był w zasadzie listą najbardziej oczywistych badań jakie prowadzono w 2007 roku. Obok informacji o tym co było obiektem badań i jaki ośrodek naukowy je przeprowadzał, podano także wnioski jakie z nich wynikają. Niektóre naprawdę zaskakujące.

– Fajtłapy nie są lubiane w szkole. Do takich wniosków doszła Janice Causgrove Dunn z Uniwersytetu Alberta w Kanadzie. Przebadała 100 chłopców i 110 dziewcząt w wieku szkolnym. Jej praca ukazała się w Journal of Sport Behavior. Autorka badań twierdzi, że eksperymentalne odkrycie znanej przecież prawdy jest ważne, bo dopiero teraz można ilościowo analizować a w konsekwencji zrozumieć związek pomiędzy kondycją fizyczną, rozwojem fizycznym a samotnością czy – bardziej ogólnie – szczęściem.

– Nieletni piją alkohol dla zabawy. Badania były przeprowadzone przez naukowców z Uniwersytetu Penn State w USA. Rozmawiano z prawie dwoma tysiącami młodych ludzi, pytając o powody dla których sięgnęli po alkohol, mimo młodego wieku. Naukowcy wyodrębnili trzy kategorie motywów. Eksperyment, chęć zrelaksowania się i poszukiwanie przygody. Okazało się jednak że bardzo duża grupa pytanych nie mieściła się w żadnej z tych szufladek. Po dogłębniejszych studiach okazało się, że te osoby sięgają po alkohol, bo… są przekonane że picie to świetna zabawa. Badania, choć mogłyby się wydawać naiwne są niezwykle ważne. To dzięki takim studiom specjaliści, którzy zajmują się prewencją i przeciwdziałaniem problemom alkoholowym mogą tworzyć programy profilaktyczne i terapeutyczne dla młodych alkoholików.

– Sen i kofeina zwalczają senność. Logiczne ? Tak, ale… Francuscy badacze zrobili następujący test. Grupie kilkunastu 20latków i kilkunastu 40latków pozwolili na 30 minutową drzemkę w samochodzie. W tym samym czasie analogiczne grupy 20 i 40latków piły kawę. Następnie wszyscy byli proszeni o przejechanie dystansu około 250 kilometrów samochodem. Okazało się, że tak jak kawa pomagała zachować trzeźwość umysłu niezależnie od wieku, tak drzemka działała ożywczo tylko na młodszych. Starszym w ogóle nie pomagała.

– Wakacje bez komórki są bardziej udane. Do takich wniosków doszli uczeni z Uniwersytetu w Tel Avivie w Izraelu. Ci, którzy biorą służbowy telefon komórkowy czy jakiekolwiek inne urządzenie związane z pracą na urlop nie są w stanie wypocząć psychicznie. Często zdarza, że szaf wymaga od swojego pracownika, by ten był w pełnym kontakcie ze swoją firmą nawet w czasie urlopu. To z kolei powoduje, że pracownik po urlopie wcale nie jest bardziej wypoczęty niż przed. A ten stan jest większą stratą dla firmy niż potencjalny zysk z racji ciągłego kontaktu. Z zacytowanych badań pracodawcy powinni wyciągnąć jasne wnioski. Jak pozwalasz pracownikowi jechać na urlop, odbierz mu służbowy telefon.

– Samotność jest szkodliwa. Badacze z Uniwersytetu Chicago przebadali wpływ jaki ma na fizyczne i psychiczne samopoczucie życie w samotności. Sprawdzili to dla ludzi młodych, tych w wieku średnim oraz takich, którzy przekroczyli 60 rok życia. Czego można się było spodziewać, samotność najgorzej wpływa na najstarszych. Samotni mają wyższe ciśnienie a także zaburzone niektóre parametry krwi. Poza tym – jak wskazują statystyki – są bardziej narażeni m.in. na choroby serca. W USA 25 proc społeczeństwa nie potrafi wskazać osoby sobie bliskiej. Bogate społeczeństwa stają się coraz bardziej samotne. Ta sytuacja zmusza badaczy do badania wpływu takiego trybu życia na ogólną kondycję obywateli.

Pewien polityk mawiał, że coś jest oczywistą oczywistością. Nie wiem jak w polityce, ale w nauce niewiele rzeczy jest oczywistych i lepiej wszystko dokładnie sprawdzić. Czyż oczywiste – na pierwszy rzut oka nie jest to, że to Słońce krąży wokół Ziemi, a nasz glob jest płaski?

Brak komentarzy do Oczywista… oczywistość

Zabawa w określanie wieku

Internetowa zabawa która polega na odgadywaniu wieku osób na fotografiach służy temu, by informatyczny gigant nauczył się czegoś, na czym w przyszłości będzie zarabiał krocie. A jeżeli chodzi o zdjęcia… cóż. Niby są twoje. Niby.

Internetowa zabawa która polega na odgadywaniu wieku sfotografowanych osób służy temu, by informatyczny gigant nauczył się czegoś, na czym w przyszłości będzie zarabiał krocie. A jeżeli chodzi o zdjęcia… cóż. Niby są twoje. Niby.

Po pierwsze nieprawdą jest, że to pierwsza tego typu aplikacja (a takie informacje pojawiły się w wielu miejscach). Odgadywać wiek, płeć i nastrój na podstawie zdjęcia czy sekwencji zdjęć (video) wiele firm próbuje od dawna. Aplikacja Microsoftu jest zabawą tylko dla użytkowników, dla firmy jest cenną nauką.

Po co komu takie programy? Pierwszy, kto nauczy się rozpoznawać emocje innych osób będzie miał w ręku ogromną władzę i ogromne pieniądze. Wiele lat temu, w USA, testowano system, który z tłumu ludzi wyławiał konkretne jednostki. Złapana w kadrze kamery twarz jest przez odpowiedni algorytm analizowana i porównywana ze zdjęciami zamieszczonymi w bazie danych. W ten sposób można z tłumy wyławiać np. przestępców, którzy uciekli z więzienia, podejrzanych, którzy się ukrywają, czy ludzi, których służby bezpieczeństwa z jakiś powodów inwigilują. Już kilka lat temu profesjonalne systemy osiągały zdolność analizowania do miliona twarzy na sekundę! Do komputera głównego systemu można dodatkowo wprowadzić algorytm, który np. pozwoli po sposobie chodzenia wyławiać z tłumu tych, którzy pod płaszczem czy kurtką niosą coś ciężkiego. Albo tych, którzy mają odpowiedni nastrój. Co to znaczy odpowiedni? Zależy od tego kto płaci. Jeżeli służby bezpieczeństwa, wyławiane z tłumu na lotnisku mogą być np. osoby zestresowane. Jeżeli system ma pracować dla kogoś kto sprzedaje dobra luksusowe będzie wyszukiwał raczej ludzi zadowolonych z siebie. Podekscytowani faceci być może będą bardziej skłonni kupować gadżety elektroniczne, a osoby zamyślone czy rozmarzone książki. Psycholodzy, socjolodzy  wiedzą lepiej jak połączyć emocje z zachowaniami konsumenckimi. Mają w tym zresztą dość sporą praktykę. Niektóre produkty kupujemy chętniej gdy muzyka w sklepie jest spokojna, inne, gdy jest rytmiczna. W wielu rozpylane są zapachy, których świadomie nie czujemy. Nie tylko sklepach, ale także biurach, fabrykach czy miejscach publicznych. Dużą praktykę mają w tym Japończycy. Wszystko po to, by projektować nasze zachowania. Na prawdę myślisz, że jesteś panem samego siebie i że świadomie podejmujesz decyzje? Jeżeli tak myślisz, mylisz się bardzo.

W pismach dla facetów reklamuje się inne produkty, niż w gazetach dla młodych matek. To logiczne. Wraz z rozwojem systemów rozpoznających emocje i intencje, targetowanie przekazu reklamowego wejdzie na zupełnie nowy poziom. Pozostaje do rozwiązania jeszcze jedna kwestia. Jak komunikować się z potencjalnym klientem? Można sobie wyobrazić tradycyjne nośniki reklamowe, które będą wyświetlały reklamy w zależności od tego kto na nie patrzy. Możliwe, ale chyba mało skuteczne. Dużo bardziej prawdopodobne jest to, że ktoś zrobi użytek z kamerek zamontowanych w komputerach, tabletach, telefonach komórkowych. Oczywiście za zgodą właścicieli. Zgodzimy się na wszystko, już tyle razy sprzedaliśmy się dla zwykłej wygody, że i na to przymkniemy oko. Już dzisiaj w wyszukiwarkach internetowych działają algorytmy, które podpowiadają treści (nie tylko reklamowe) w zależności od naszej aktywności w internecie. W przyszłości algorytmy wyszukiwania i proponowania zostaną wzbogacone o płeć, wiek i nastrój osoby, która w danym momencie korzysta z urządzenia elektronicznego.

A wracając do aplikacji służącej do „odgadywania” wieku na podstawie zdjęcia. Nie da się jednoznacznie określić wieku czy emocji na podstawie konkretnych, fizycznych cech twarzy. Łatwiej jest z określaniem płci. Po to by tego typu programy dobrze działały, muszą się tego nauczyć. Do nauki potrzebna jest jednak odpowiednia liczba przykładów. Osób, które dobrowolnie prześlą swoje zdjęcie a wynikami pochwalą się w mediach społecznościowych. Wiedza, którą zyska algorytm stojący za aplikacją warta będzie miliardy. Witajcie w klatce – króliczki doświadczalne 🙂

I jeszcze jedno. Co dzieje się ze zdjęciami, które wrzucamy do serwisu? Microsoft twierdzi, że ich nie przetrzymuje („We don’t keep the photo”) ale gdy wklikać się głębiej (w Terms of Use), wśród wielu akapitów można znaleźć stwierdzenia, które temu przeczą.

Microsoft does not claim ownership of any materials you provide to Microsoft (…). However, by posting, uploading, inputting, (…) your Submission, you are granting Microsoft, its affiliated companies, and necessary sublicensees permission to use your Submission in connection with the operation of their Internet businesses.

Co w wolnym tłumaczeniu znaczy:

Microsoft nie rości sobie praw własności jakichkolwiek materiałów (…). Jednak zamieszczając, przesyłając, wprowadzając (…) materiały, użytkownik przekazuje firmie Microsoft oraz jej spółkom zależnym i licencjobiorcom prawo do korzystania z tych materiałów w związku z działalnością tych firm.

Dalej przepisy precyzują, że firma ma prawo bez ograniczeń kopiować, rozpowszechniać, przekazywać, odtwarzać, publicznie wykonywać, powielać, edytować, tłumaczyć przekazane jej materiały. A jako, że firma nie rości sobie praw do materiałów, zrobi to podpisując nazwiskiem właściciela.

Podsumowując. Zabawa która polega na odgadywaniu wieku osób na zdjęciach służy temu, by gigant informatyczny nauczył się skutecznego radzenia sobie z tym, z czym matematyka (algorytmy informatyczne) radzą sobie kiepsko. Dzięki wrzucaniu prywatnych zdjęć dajemy firmie możliwość stworzenia unikalnej bazy z której w przyszłości, przy tworzeniu profesjonalnych narzędzi będzie mogła korzystać. I grubo na tym zarabiać. A jeżeli chodzi o zdjęcia… cóż. Niby są twoje. Niby.

1 komentarz do Zabawa w określanie wieku

Bajkał – zimne morze

Nad Bajkałem byłem w zimie. Śnieg mienił się jak diamenty, termometr wskazywał prawie minus 30 st C, a woda parowała tak, jak gdyby była gorąca.

Nad Bajkałem byłem w zimie. Śnieg mienił się jak diamenty, termometr wskazywał prawie minus 30 st C, a woda parowała tak, jak gdyby była gorąca.

W zasadzie była gorąca. Była o około 40 st. C cieplejsza niż otoczenie. Gorące lata na Syberii nagrzewają ogrom wody w Bajkale. Gdy przyjdzie zima, trzeba miesięcy, by jezioro tę energię oddało. Mimo kilkudziesięciostopniowego mrozu Bajkał zwykle zamarza dopiero na przełomie stycznia i lutego. Ale nawet gdy taflę pokryje czasami wielometrowa warstwa lodu, Bajkał nie przestaje czarować. Powolne zamarzanie wody powoduje, że zdążą z niej „uciec” wszystkie bąbelki powietrza. W efekcie lód staje się idealnie przezroczysty. W przeciwieństwie do lodu, który powstaje, gdy woda zamarza szybko. Ten ostatni jest matowy, jak gdyby mleczny. Wystarczy zobaczyć kostki lodu w zamrażalniku.

P1020173

 

 

 

 

 

 

Z pary odrywającej się od powierzchni wody, tworzą się nisko zawieszone chmury. Wznoszą się coraz wyżej, aż w końcu znikają gdzieś za horyzontem. Parująca woda osiada także na wszystkim co znajduje się w pobliżu brzegu jeziora.

Dziedzictwo przyrody

Nie ma przesady w stwierdzeniu, że Bajkał odkryli Polacy. Odkryli dla nauki. Mowa tutaj o polskich zesłańcach, głównie po powstaniu styczniowym. Oni jako pierwsi przeprowadzili profesjonalne i obiektywne badania samego jeziora i jego otoczenia, flory i fauny, a także pierwsze badania klimatyczne rejonu Bajkału. I tak, dzięki pracom Benedykta Dybowskiego, lekarza i przyrodnika, wiemy dzisiaj, że w jeziorze i jego najbliższym sąsiedztwie żyje 1500 gatunków zwierząt i około 1000 gatunków roślin. Prawie 80 procent z nich to endemity, czyli gatunki niewystępujące nigdzie indziej na świecie.

Tylko tutaj żyje nerpa, czyli słodkowodna foka, i omul – jedyna na świecie słodkowodna ryba z rodziny łososiowatych. Przykłady można długo mnożyć. Inny Polak, Aleksander Czekanowski, geolog i meteorolog, odkrył ogromne pokłady węgla i sporządził pierwsze profesjonalne archiwum danych pogodowych, z kolei Jan Czerski, geolog i paleontolog, jako pierwszy dokładnie opisał pasma górskie, znajdujące się wokół Bajkału. Ostatni z wielkich polskich badaczy, Wiktor Godlewski, jako pierwszy sporządził mapę dna jeziora. Do dzisiaj okazuje się, że zrobione 150 lat temu badania są potwierdzane pomiarami nowoczesnymi.

Bajkał zajmuje powierzchnię 31 500 kilometrów kwadratowych i wywiera ogromny wpływ na klimat dużego obszaru Syberii. Zimą podnosi temperaturę, latem ją obniża. Podnosi wilgotność atmosfery, a to ma ogromny wpływ na ilość opadów. To dzięki temu wokół jeziora występuje bardzo bogate i różnorodne życie. Samych roślin wodnych na brzegach jeziora żyje kilkaset gatunków. O bogactwie przyrody można pisać bez końca. Może wystarczy wspomnieć, że w 1996 roku Bajkał wraz z przyległymi obszarami został wpisany na listę światowego dziedzictwa przyrodniczego UNESCO.

Nieodrobiona lekcja

Ogromne bogactwo przyrody i krystalicznie czysta woda nie są oczywiście dane na zawsze. W 2013 roku zamknięto ogromny kombinat papierniczy, który regularnie wylewał do Bajkału ścieki. Nadal pracuje jednak wiele innych zakładów, także produkujących nawozy sztuczne. Do jeziora, pośrednio przez wpływające do niego rzeki, albo bezpośrednio, swoje ścieki wylewają miasta z dużego obszaru. Kilka lat temu istniało ogromne ryzyko wycieku do wód Bajkału ropy z rurociągu Syberia–Pacyfik. Ostatecznie jego trasę zmieniono, tak by rura przechodziła w pewnym oddaleniu od akwenu.

Zagrożeniem – bardziej dla terenów przybrzeżnych niż samego jeziora – jest turystyka. Bajkał każdego roku odwiedza kilkaset tysięcy ludzi. Widok ludzi myjących samochody w płytkich wodach jeziora, wycinających drzewa, po to, by założyć dziki kamping, czy urządzających sobie rajdy samochodowe po obszarach porośniętych zagrożonymi gatunkami roślin, nie jest niczym szczególnym. W oczy rzucają się także góry pozostawionych przez turystów śmieci. Ostatnio do tych zagrożeń doszło jeszcze jedno. Od wielu lat w Bajkale jest coraz mniej wody. Tegorocznej zimy jej poziom jest tak niski, że władze na Syberii ogłosiły stan wyjątkowy. W ciągu roku poziom wody spadł o 40 centymetrów. Ostatni raz taka okoliczność miała miejsce ponad 60 lat temu. Sytuacja jest dość trudna, ale wszyscy czekają do kwietnia. To wtedy powoli zaczynają topnieć śniegi w otaczających jezioro górach, a we wpływających do Bajkału rzekach przybywa wody. W kwietniu okaże się więc, czy niski poziom był tylko anomalią, czy jest trwałym trendem. Gdyby chodziło o ten drugi przypadek, trudno sobie wyobrazić zmiany – te krótkoterminowe i długoterminowe – jakie mogą czekać Syberię.

Nie do końca wiadomo, co jest powodem ubytku wody. Jak zawsze w takich sytuacjach czynników jest zapewne kilka. Ostatnie lato na Syberii było suche, ale tym nie da się wytłumaczyć aż tak dużego ubytku. Wiadomo też, że brzegi jeziora oddalają się od siebie, co w dłuższej perspektywie czasu musi mieć wpływ na poziom wody. Eksperci wskazują także na rabunkową gospodarkę wodną dużych zakładów przemysłowych i miast. Na rzekach, które doprowadzają wodę do jeziora, funkcjonują elektrownie wodne, a po to, by nieprzerwanie działały, trzeba budować zbiorniki retencyjne. Te mają wpływ na ilość wody w jeziorze. Niski poziom wody w Bajkale przyczynia się nie tylko do rozchwiania równowagi ekologicznej dużego obszaru, ale także może mieć wpływ na dostawy ciepła i prądu do miast, które wybudowane są wzdłuż brzegów rzeki Angara, w tym do sześciusettysięcznego Irkucka. Choć porównanie Bajkału do występującego dzisiaj w szczątkowej formie Jeziora Aralskiego jest mocno przesadzone, może warto by wyciągnąć wnioski z tego, co zdarzyło się na terenach dzisiejszego Kazachstanu i Uzbekistanu. Działalność człowieka w zaledwie kilkadziesiąt lat spowodowała praktycznie zniknięcie olbrzymiego jeziora, a także dewastację, a właściwie zamianę w pustynię ogromnych obszarów lądu.

P1020180
O Bajkale słów kilka

Bajkał może być jednym z najstarszych zbiorników wodnych na naszej planecie. Powstał kilkadziesiąt milionów lat temu w wyniku trzęsienia ziemi. To wtedy pomiędzy płytą amurską i płytą euroazjatycką powstało ogromne zagłębienie (ryft bajkalski), które zaczęło wypełniać się wodą. I nadal się wypełnia. Ten proces nie jest zauważalny gołym okiem, no chyba że… Pod koniec XIX wieku w rejonie Bajkału wystąpiło silne trzęsienie ziemi. W jego wyniku jezioro w jednej chwili powiększyło się. Powstała głęboka na 11 metrów zatoka Prował. Takie sytuacje to jednak rzadkość. Brzegi jeziora oddalają się od siebie, tak jak gdyby ciężar wody je rozsuwał. Płyty amurska i euroazjatycka odsuwają się. Każdego roku jezioro jest szersze o kilka centymetrów. Dzisiaj Bajkał ma objętość 23 400 kilometrów sześciennych (23,4 biliona metrów sześciennych wody). Powierzchnia jeziora stanowi 10 proc. powierzchni całej Polski, a jego długość (636 km) jest zbliżona do odległości pomiędzy Trójmiastem a Bieszczadami w linii prostej. Bajkał jest najgłębszym jeziorem świata, miejscami dno znajduje się około 1700 metrów poniżej tafli wody. Dla porównania, Bałtyk w najgłębszym miejscu ma 459 metrów. W Bajkale znajduje się około 20 proc. słodkiej wody całej planety.

Brak komentarzy do Bajkał – zimne morze

Po co zmieniamy czas?

Zmiana czasu na którą godzimy się dwa razy w roku nie ma żadnego sensu. Miała sens może dwieście lat temu. Dzisiaj powoduje straty, zamieszanie i uszczerbek na zdrowiu.

Podobno na zmianę czasu z zimowego na letni wpadł autor konstytucji USA Benjamin Franklin. Gdy była ambasadorem w Paryżu zauważył, że z powodu niedostosowanej do pory dnia godziny, ludzie śpią choć słońce było wysoko, wieczorem zaś pracują oświetlając pomieszczenia świecami. Franklin był nie tylko politykiem i dyplomatą, ale także naukowcem i wynalazcą. Choć nie do końca wiadomo jak, obliczył, że gdyby przesuwać czas na wiosnę „do przodu” a jesienią „do tyłu” można by w samym tylko Paryżu zaoszczędzić 30 mln kilogramów wosku rocznie. Wosku z którego robiono świecie. Pomysł Franklina był jak najbardziej – na tamte czasy – logiczny. Ludzie używali świec, bo funkcjonowali, pracowali, bawili się czy uczyli po zachodzie słońca. Gdyby więc przesunąć godziny wstawania, a co się z tym wiąże także zasypiania, świece nie byłyby w takich ilościach potrzebne.

Raz jest, a raz go nie ma

Pomysł Franklina nie od razu został podchwycony. Pierwsi którzy go zrealizowali byli Niemcy. To były trudne czasy, I Wojna Światowa, kryzys i braki w energii, która była potrzebna do produkcji broni i amunicji. W 1916 roku po raz pierwszy w Niemczech przesunięto czas. Obywatele ogarniętego wojną kraju mieli wcześniej chodzić spać, po to by nie oświetlać swoich mieszkań po zmroku. Chwile później zmianę czasu wprowadziły inne kraje europejskie. Argumenty o oszczędnościach nie przekonały wszystkich. Mówiono o zamieszaniu w rozkładach jazdy i o tym, że jest całkiem spora grupa zawodów które wykonywać trzeba niezależnie od umownie ustalonej godziny. Tarcia pomiędzy przeciwnikami i zwolennikami zmiany czasu były tak duże, ze w wielu krajach czasowo rezygnowano z regulacji zegarków, po to by po kilku latach do pomysłu wrócić. Tak było także w Polsce. U nas po raz pierwszy przestawiono czas w okresie międzywojennym. Później ze sprawy zrezygnowano. Czas zimowy i czas letni przywrócono pod koniec lat 40tych, a później znowu z niego zrezygnowano (na prawie 10 lat). W 1957 roku zmianę czasu wprowadzono, ale w 1965 roku znowu zarzucono. Na stałe Polska jest krajem „dwuczasowym” od 1976 roku.

Danych o oszczędnościach jakie mają wynikać ze zmiany czasu, praktycznie nie ma. Są niepewne oszacowania, które na dodatek nie są wcale jednoznaczne. Oszczędność energii da się policzyć (choć nie jest to takie proste, bo w zimie i w lecie są przecież inne warunki i nie da się tych dwóch okresów bezkrytycznie przyrównać), ale jak oszacować zamieszanie związane z przestawianiem wskazówek? Pomińmy na razie to ostatnie. A pozostańmy na samych oszczędnościach energii. Jeden z nielicznych raportów na ten temat wydał ponad 30 lat temu Amerykański Departament Energii (ADE). Z jego obliczeń wynika, że zmiana czasu rzeczywiście oznacza mniejszą konsumpcję prądu. O cały 1 proc i to na dodatek tylko przez dwa miesiące, marzec i kwiecień. Później dzień jest tak długi, że dodatkowa godzina nie wpływa na mniejsze zużycie prądu. Wyniki raportu ADE podważały poważne instytucje naukowe. Uważały, ze rachunki były błędne, a o żadnych oszczędnościach nie ma mowy. Argumentowano, że każdego roku rośnie zapotrzebowanie na energię elektryczną, a tego ADE nie wziął pod uwagę w obliczeniach. To był rok 1976. Jeżeli już wtedy wyniki analiz nie były jednoznaczne, co dopiero teraz.

Oszczędności brak

Od czasów Franklina, od czasów I Wojny Światowej, ba nawet od czasów kiedy opublikowano raport Amerykańskiego Departamentu Energii, bardzo dużo się zmieniło. I tutaj dochodzimy do sedna problemu. Zmiany godziny mogą wpłynąć na oszczędność energii, ale tylko tej którą zużywa się na oświetlenie pomieszczeń. I to pomieszczeń prywatnych. Toster, czajnik bezprzewodowy czy bojler, niezależnie od godziny zużywają przecież tyle samo energii. A żelazka, pralki, komputery? Można kręcić wskazówkami do oporu, a ilość zużywanej przez te sprzęty energii i tak nie ulegnie zmianie. To samo dotyczy zresztą oświetlenia ulic (a to pobiera znacznie więcej prądu niż oświetlenie mieszkań prywatnych), które działa od zmierzchu do świtu, niezależnie od tego o której godzinie zaczyna się świt. Dzisiaj oświetlenie pomieszczeń „pożera” mniej niż 1 proc prądu który produkują elektrownie. Co więcej, choć prądu w ogóle zużywamy coraz więcej, na oświetlenie mieszkań i domów potrzebujemy go coraz mniej. Głównie dlatego, że coraz częściej korzystamy z energooszczędnych źródeł światła. A wiec co konsumuje coraz więcej? Podnosimy swój standard życia. Coraz częściej kupujemy klimatyzatory, większe lodówki, elektryczne systemu grzewcze czy sprzęty kuchenne. Nowoczesne telewizory (wielkości okna) konsumują więcej energii niż starsze ich typy. To wszystko zużywa znacznie więcej energii niż oświetlenie, a równocześnie korzystamy z tego niezależnie od wskazywanej przez zegarki godziny. Najwięcej prądu potrzebują fabryki (przemysł), transport czy kopalnie. Przestawianie wskazówek nic tutaj nie zmieni.

Rolnicy liczą straty

Jedną z najdłużej opierających się zmianie czasu grup zawodowych byli rolnicy. Dla nich ważny jest jasny poranek a nie długi wieczór. Zwierzęta nie przestawiają przecież zegarków. W USA, gdzie rząd w Waszyngtonie nie ingeruje zbyt mocno w życie obywateli, w stanach rolniczych (m.in. Arizona i Indiana) wciąż są hrabstwa, które czasu nie przestawiają. Choć powoduje to gigantyczne zamieszanie, wola obywateli jest tam świętością. W 2006 roku kilka hrabstw w Indianie zdecydowało się jednak dostosować. Dla naukowców to była idealna okazja by sprawdzić jak to z tymi oszczędnościami energii elektrycznej jest. Obszar na którym zdecydowano się po raz pierwszy zmienić czas na letni nie był duży, więc badacze z Uniwersytetu Kalifornijskiego mogli sobie pozwolić na prześledzenie rachunków za energię elektryczną każdego domostwa. I co się okazało? Nie było żadnego zysku, tylko gigantyczna strata. W sumie na stosunkowo niewielkim terenie rachunki za prąd wzrosły o prawie 9 mln dolarów. Skonsumowano do 4 proc więcej energii niż przed zmianą czasu. To nielogiczne ! Skąd się wzięły te procenty? Naukowcy zauważyli, że istotnie nieco spadła ilość energii używanej do oświetlenia domów. Równocześnie znacznie zwiększyła się ilość energii zużywanej przez klimatyzatory i ogrzewanie. To ostanie włączano, bo wcześniejszym rankiem niektórym w mieszkaniach było za zimno. Gdy wieczorem trzeba było się wcześniej kłaść spać, okazywało się, że niektóre mieszkania są zbyt nagrzane po ciepłym dniu i do komfortowego snu, trzeba je nieco schłodzić.

Dzisiaj jedynym bezdyskusyjnym zyskiem z przesuwania czasu jest bezpieczeństwo na drogach. Dzięki temu, że po południu, w czasie powrotów z pracy jest wciąż jasno, zdarza się mniej wypadków. Szczególnie tych z udziałem pieszych. Zresztą ten argument (a nie oszczędność prądu) przekonał brytyjskich parlamentarzystów na początku XX wieku do zgody na zmianę czasu. Bezpieczniej na drogach jest jednak nie przez cały okres obowiązywania czasu letniego, ale tylko w pierwszych jego miesiącach.

Policzyć da się wszystko. Ciekawe, że na razie nikt nie zrobił jednak rachunku zysków i strat związanych ze zmianą czasu. I nie chodzi tylko o pobór energii elektrycznej, ale także bezpieczeństwo na drogach, zamieszanie w transporcie lotniczym czy kolejowym oraz niedogodności zdrowotne. Z czasem coraz więcej prądu zużywać będą urządzenia ułatwiające (umilające) nam życie. Z czasem oszczędności na oświetleniu (o ile jakiekolwiek są), będą więc wraz ze zmianą czasu coraz mniejsze. A o tym, ze bez zmiany czasu da się żyć mogą zaświadczyć najliczniejsze narody Azji. W Chinach, Japonii i Indiach nikt przestawianiem zegarka nie zaprząta sobie głowy.

W Unii Europejskiej (dyrektywa UE 2000/84/EC) czas zmienia się z zimowego na letni w ostatnią niedzielę marca, a letniego na zimowy w ostatnią niedzielę października. W marcu tracimy godzinę, a w październiku zyskujemy.

 

Tekst ukazał się w tygodniku Gość Niedzielny

1 komentarz do Po co zmieniamy czas?

Jak obserwować Słońce?

Taka sytuacja nie zdarza się zbyt często. 20 marca, w Polsce będzie częściowe zaćmienie Słońca. Tarcza Księżyca w około 70 procentach zakryje tarczę słoneczną. O ile niebo nie będzie bardzo zachmurzone, efekt zaćmienia będzie bardzo widoczny. Ale Słońce warto obserwować także bez zaćmienia. O ile spełnione są podstawowe warunki bezpieczeństwa.

Taka sytuacja nie zdarza się zbyt często. 20 marca, w Polsce będzie częściowe zaćmienie Słońca. Tarcza Księżyca w około 70 procentach zakryje tarczę słoneczną. O ile niebo nie będzie bardzo zachmurzone, efekt zaćmienia będzie bardzo widoczny. Ale Słońce warto obserwować także bez zaćmienia. O ile spełnione są podstawowe warunki bezpieczeństwa.

Maksimum zaćmienia nastąpi około godziny 10.50, ale już godzinę wcześniej tarcza Księżyca zacznie nasuwać się na tarczę Słońca. Słońce w tym czasie będzie się znajdowało niezbyt wysoko nad horyzontem, a więc jeżeli ktoś nastawia się na obserwacje, powinien zawczasu wybrać odsłonięty teren. Najlepiej całe zjawisko obserwować pomiędzy 10:30 a 11:30. Kilka minut przed południem spektakl zakończy się.

Kolejne spektakularne zaćmienie Słońca, w Polsce będzie miało miejsce dopiero w 2026 roku. 
Wcześniej nastąpi kilka mniejszych zaćmień.

Tegoroczne zaćmienie jest wyjątkowe. Choć Księżyc na tle tarczy Słonecznej przechodzi nawet dwa razy w roku, za każdym razem cień rzucany na powierzchnię Ziemi przez Srebrny Glob pada na inne miejsce planety. W efekcie zaćmienie Słońca w jednym miejscu występuje co kilkanaście lat. Zdarza się, że do zaćmienia dochodzi albo w chwili wschodu albo zachodu Słońca, a to utrudnia obserwację. Tak będzie w Polsce przy kolejnym zaćmieniu, które przypada na rok 2026.

Jak obserwować Słońce by coś zobaczyć i równocześnie sobie nie zaszkodzić? Słońce znajduje się 150 mln kilometrów od nas, ale ta duża odległość tylko pozornie zapewnić nam może bezpieczne obserwacje. Słońca nie wolno oglądać bezpośrednio gołym, niezabezpieczonym okiem. Tym bardziej nie wolno bez odpowiednich filtrów używać sprzętu optycznego, np. teleskopów czy lornetek. Skończyć się to może wypaleniem siatkówki i ślepotą. Filtry można kupić w internecie albo w sklepach astronomicznych. Są tanie. Folia Badeera (ND 5, która przepuszcza tylko 0.00001 część promieni słonecznych) kosztuje kilka złotych, okulary do obserwacji z taką folią niewiele więcej. Dzięki folii zjawisko zaćmienia Słońca, albo samo Słońce, to co dzieje się na jego powierzchni, można obserwować zarówno bezpośrednio, jak i przez urządzenia optyczne, o ile filtr z folii umieszczony będzie z przodu lornetki, kamery czy teleskopu a nie od strony okularu (czyli przy oku).

Jeżeli folii Badeera nie udało się kupić, odradzam domowe sposoby w rodzaju płyt CD, dyskietek czy okopconego szkła. Pod żadnym pozorem nie wolno obserwować Słońca przez nawet najciemniejsze okulary przeciwsłoneczne. Używając takich wynalazków nie macie pewności czy ilość promieni słonecznych zostanie wystarczająco mocno zredukowana zanim trafi do oka. Jest jednak jeden sposób domowy, który można wykorzystać. A mianowicie stare, zaczernione zdjęcie RTG.

Osobom, które posiadają teleskopy czy lornetki z mocowaniem, polecam tzw. metodę projekcji, czyli ustawienie ekranu za okularem teleskopu. Zastosowanie tej metody może znacznie podnieść temperaturę używanego sprzętu, więc przed obserwacją polecam sprawdzenie czy używane w nim soczewki nie są wykonane z tworzywa sztucznego.

Jak to w ogóle możliwe, że WIELOKROTNIE mniejszy Księżyc, może przysłonić całą tarczę Słońca? Księżyc jest rzeczywiście około 400 razy mniejszy od Słońca, ale jest też około 400 razy bliżej Ziemi niż Słońce. W podobny sposób ołówek w odległości kilkunastu centymetrów od oka, może przysłonić ogromne drzewo znajdujące się kilkaset metrów od obserwatora.

Wracając do zaćmienia. W mediach pojawiła się informacja o spodziewanych kłopotach europejskich elektrowni słonecznych. Coraz większa część energii elektrycznej, także w Europie, jest produkowana w ogniwach fotowoltaicznych, a zaćmienie Słońca spowoduje nagły spadek ich mocy. Organizacje zajmujące się analizą rynku energii szacują, że ten spadek na całym kontynencie może wynieść ponad 1/3. Moc europejskich elektrownie słonecznych wynosi około 90 GW, ale w wyniku zaćmienia spadnie ona do mniej niż 60 GW. Problemem nie jest spadek mocy, tylko to, że stanie się to w tym samym czasie na obszarze całej Europy. Duże zachmurzenie może niemal całkowicie zakryć Słońce, ale takie warunki nie obejmują dużych obszarów, a wtedy spadek mocy w jednym kraju (czy obszarze kraju) jest automatycznie rekompensowany przez produkcję energii w innym. Europejska sieć energetyczna jest „zautomatyzowana”. Co się jednak stanie, gdy moc ogniw słonecznych spadnie na obszarze całego kontynentu? Zobaczymy. Największe spadki mocy elektrowni dotyczą Niemców i Włochów, czyli państw, które fotowoltaikę mają rozwiniętą lepiej niż inne europejskie kraje.

A gdy zaćmienie się skończy, co można obserwować na powierzchni Słońca? Poruszające się i ewoluujące plamy Słoneczne, które często są dużo większe od naszej planety. Można obserwować tzw. granulację słońca czy protuberancje. Te ostatnie wyglądają jak płomienie wychodzące ze Słońca. Poniżej wklejam kilka linków, dzięki którym na bieżąco można śledzić pogodę słoneczną:

www.spaceweather.com – strona związana z NASA o naszym Słoneczku.

www.raben.com/maps/ – strona z mapami powierzchni Słońca.

http://eclipse.gsfc.nasa.gov/eclipse.html – Strona NASA poświęcona zaćmieniom Słońca i Księżyca.

http://www.sciencekids.co.nz/sciencefacts/space.html – Strona o Układzie Słonecznym dla dzieci.

http://theplanets.org/the-sun/ – Ciekawa strona z podstawowymi informacjami o Układzie Słonecznym.

http://sohowww.nascom.nasa.gov/ – strona domowa słonecznej misji (sondy) SOHO.

http://ulysses.jpl.nasa.gov/ – strona domowa misji Ulysses.

 

Brak komentarzy do Jak obserwować Słońce?

Type on the field below and hit Enter/Return to search

WP2Social Auto Publish Powered By : XYZScripts.com
Skip to content