Nauka To Lubię

Oficjalna strona Tomasza Rożka

Kategoria: Aktualności

Zbieramy dla ratowników medycznych

Drodzy! Od kilku tygodni w filmach, tekstach i grafikach informuję was o sytuacji związanej z epidemią koronawirusa. Chciałbym zrobić coś więcej niż tylko informować. Chciałbym pomóc. Myślę że grupą chyba…

Drodzy!

Od kilku tygodni w filmach, tekstach i grafikach informuję was o sytuacji związanej z epidemią koronawirusa. Chciałbym zrobić coś więcej niż tylko informować. Chciałbym pomóc.

Myślę że grupą chyba najbardziej narażoną na wirusa, bo bardzo słabo zabezpieczoną, są pracujący w karetkach pogotowia ratownicy medyczni. Oni są na pierwszej linii bo to oni – ze wszystkich służb medycznych – często jako pierwsi mają kontakt z człowiekiem, nie mając nawet pełnej świadomości czy jest zakażony. Często nie mają pełnych informacji, działają w terenie i pod presją czasu. Kilka dni temu usłyszałem o grupie ratowników, którzy szukali wsparcia i chcieli za własne pieniądze kupić drogie maski wielorazowe. Bez nich byli bezbronni. Takich jak oni jest więcej.

Założyłem zbiórkę na maski, kombinezony, gogle, w skrócie na sprzęt, który porządnie zabezpieczy ratowników medycznych. Jednorazowy komplet takiego zabezpieczenia to kwota około 250 złotych. Dla jednego ratownika, na jeden wyjazd. Bardzo Was proszę o wsparcie tej zbiórki. Jest nas tutaj na Nauka To Lubię całkiem sporo, a razem, w grupie, szczególnie tak dużej, można dokonać wielkich rzeczy.



Szczerze to nie interesuje mnie szukanie winnych i narzekanie, że kto inny powinien im pomóc, że to państwo, samorząd, dyrekcja pogotowia czy szpitala powinna działać. Jak jest problem, to staram się go rozwiązać. I tyle. Liczą na nas ci, których pomocy każdy z nas może kiedyś potrzebować.

Wejdź na: https://www.siepomaga.pl/dlaratownikow . Wpłać ile możesz, 50 złotych, 20 albo 5 i pomóż polskim ratownikom medycznym.

Razem to zróbmy i razem wygrajmy!

Bardzo Cię o to proszę!

Tomasz Rożek

zbiórka dla ratowników

zbiórka dla ratowników

Brak komentarzy do Zbieramy dla ratowników medycznych

WIRUS vs EKONOMIA. JAK DŁUGO WYTRZYMAMY?

Wirus zamknął nas w mieszkaniach, ale czy jak w końcu z nich wyjdziemy będzie do czego wracać? Lockdown gospodarki może mieć fatalne skutki. Jakie? O to zapytam Marcina Kędzierskiego, doktora…

Wirus zamknął nas w mieszkaniach, ale czy jak w końcu z nich wyjdziemy będzie do czego wracać? Lockdown gospodarki może mieć fatalne skutki. Jakie? O to zapytam Marcina Kędzierskiego, doktora ekonomii, głównego eksperta Centrum Analiz Klubu Jagiellońskiego, i adiunkta w Kolegium Gospodarki i Administracji Publicznej UEK. Zapraszam na drugiego livestreama kanału Nauka. To Lubię.

 

Dostępny także na Facebooku: https://www.facebook.com/naukatolubie/videos/2630794293713637/

Brak komentarzy do WIRUS vs EKONOMIA. JAK DŁUGO WYTRZYMAMY?

Znaleziono skarb monet sprzed 2 tys. lat; trafił do Muzeum w Hrubieszowie

Ważący ok. 5,5 kg i składający się z blisko 1800 srebrnych monet skarb przekazał Muzeum w Hrubieszowie przypadkowy znalazca. Zdaniem archeologów to jeden z największych skarbów z okresu rzymskiego odkrytych…

Ważący ok. 5,5 kg i składający się z blisko 1800 srebrnych monet skarb przekazał Muzeum w Hrubieszowie przypadkowy znalazca. Zdaniem archeologów to jeden z największych skarbów z okresu rzymskiego odkrytych do tej pory w Polsce.

Brak komentarzy do Znaleziono skarb monet sprzed 2 tys. lat; trafił do Muzeum w Hrubieszowie

Pierwszy lek opracowany przez sztuczną inteligencję wchodzi do badań klinicznych

Do badań klinicznych wkracza pierwszy lek opracowany przez sztuczną inteligencje (AI) – informuje BBC News. Firmy zaangażowane w to przedsięwzięcie twierdzą, że za 10 lat wszystkie wprowadzane do testów nowe…

Do badań klinicznych wkracza pierwszy lek opracowany przez sztuczną inteligencje (AI) – informuje BBC News. Firmy zaangażowane w to przedsięwzięcie twierdzą, że za 10 lat wszystkie wprowadzane do testów nowe farmaceutyki będą wychodzić „spod ręki” AI. To początek nowej ery w medycynie.

Brak komentarzy do Pierwszy lek opracowany przez sztuczną inteligencję wchodzi do badań klinicznych

Q&A: KORONAWIRUS. Medycyna i matematyka: 2.kwietnia o godz. 20

Jeszcze trzy miesiące temu prawie nikt go nie znał. Koronawirus SARS-CoV-2 przewrócił nasze życie do góry nogami. Z Mikołajem i Marcinem, duetem lekarskim z kanału Najprościej Mówiąc, serdecznie zapraszam na…

Jeszcze trzy miesiące temu prawie nikt go nie znał. Koronawirus SARS-CoV-2 przewrócił nasze życie do góry nogami. Z Mikołajem i Marcinem, duetem lekarskim z kanału Najprościej Mówiąc, serdecznie zapraszam na Q&A na temat dzisiejszej sytuacji. Chętnie odpowiemy na Wasze pytania, bo wiemy, że macie ich sporo. Transmisja live na Facebooku i YouTube

Można oglądać także tu:

 

Brak komentarzy do Q&A: KORONAWIRUS. Medycyna i matematyka: 2.kwietnia o godz. 20

Fizyka i jajka

Kiedyś dziecko zapytało mnie jak to możliwe, że kura nie zgniata jajka, które wysiaduje. W sumie to pytanie można by zadać inaczej. Jak to jest możliwe, że średniowieczne katedry są tak wytrzymałe? Wbrew pozorom odpowiedź na obydwa pytania jest taka sama. Chodzi o kształt.

Kiedyś dziecko zapytało mnie jak to możliwe, że kura nie zgniata jajka, które wysiaduje. W sumie to pytanie można by zadać inaczej. Jak to jest możliwe, że średniowieczne katedry są tak wytrzymałe? Wbrew pozorom odpowiedź na obydwa pytania jest taka sama. Chodzi o kształt.

To może trochę niekonwencjonalne postepowanie, ale żeby dobrze zrozumieć to zagadnienie, warto wybrać się do starej katedry… z jajkiem właśnie. Wielka Sobota i świecenie potraw temu sprzyja. W końcu w koszyczkach mamy też jajka. Mając to jajko w dłoni (albo w pamięci), warto w takim starym kościele spojrzeć w górę, na łuki które podtrzymują sklepienie. Okazuje się, że ich krzywizna jest bardzo podobna do krzywizny jajka. Wszystkie ptasie jajka, niezależnie od gatunku, mają podobny kształt. Mają węższy czubek i nieco szerszy. Oraz mają wydłużone boki. Gdy jajko leży na boku, nie jest specjalnie odporne na nacisk. Gdy jednak stoi na sztorc, jest w stanie wytrzymać naprawdę sporo.

Jajko w katedrze

Jak sporo? Nietrudno jest zrobić eksperyment w którym na trzech kurzych jajkach można utrzymać nawet 100 kilogramowy ciężar. Jest tylko jeden warunek, jajka muszą być ustawione idealnie na sztorc. Wtedy siła przyłożona od góry jest idealnie rozłożona na boki, a jajku (i jego zawartości) nic się nie dzieje. Podobnie jest w katedrach, akweduktach czy mostach łukowych. Siła przyłożona od góry, rozkłada się na boki. W jajku, dodatkowo ogromną rolę spełnia konstrukcja samej skorupki. Jej zewnętrzna warstwa jest twarda i mało elastyczna, a wewnętrzna błona – przeciwnie – miękka i bardzo elastyczna. Gdy te dwie warstwy zostaną z sobą zespolone (sklejone), są w stanie przetrwać naprawdę spore siły. Pod jednym warunkiem. Że warstwa twarda i nieelastyczna jest na zewnątrz. Innymi słowy, gdyby zamienić kolejność warstw i skorupkę jajka z zewnątrz otoczyć cienką błoną, cała konstrukcja nie byłaby tak wytrzymała. Jajko to wciąż nieosiągalny dla inżynierów ideał. Kształt, grubość i kolejność poszczególnych warstw, jest nie do skopiowania. A wszystko po to, by jajko mogło wytrzymywać duży nacisk z zewnątrz, ale by było stosunkowo łatwe do rozbicia od wewnątrz. Wykluwające się pisklę nie ma przecież wiele siły. Co ciekawe, u przeważającej części ptaków, pisklęta na czubku dzioba mają mały haczyk, który służy do zerwania wewnętrznej błony chwilę przed wykluciem. Rozbicie reszty skorupki jest wtedy łatwiejsze.

 Ale oczywiście jajko nie tylko z punktu widzenia sztuki inżynierskiej jest ciekawe. Wielu z nas, nie wyobraża sobie kuchni bez jajecznych potraw. Bez ciasta, jajecznicy czy makaronów. A przede wszystkim, bez jajka gotowanego w wodzie. I choć powszechnie uważa się, że ugotowanie jajka na twardo to łatwizna, w rzeczywistości nie jest to takie proste. Oczywiście, można jajko wrzucić do wody i gotować przez pół godziny. Pewność, że będzie na twardo jest całkowita (chyba że robimy na to na szczycie bardzo wysokiej góry, gdzie temperatura gotowania wody jest znacząco niższa niż 100 st C), ale to wcale nie znaczy, że jajko będzie smaczne.

Co białe a co żółte

Nie trzeba być naukowcem (a wystarczy być nawet nieogarniętym kucharzem), by wiedzieć, że jajko składa się z białka i  żółtka. To pierwsze to głównie woda i tylko w około 10 proc. rozpuszczone w niej proteiny. W surowym jajku, białko jest przezroczyste, bo cząsteczki protein pozwijane są w kłębki. Ze wzrostem temperatury te kłębki zaczynają się rozwijać, a osobne do tego momentu cząsteczki protein łączą się ze sobą. Tworzy się nieuporządkowana plątanina „proteinowych nitek”, a to z jednej strony powoduje, że białko nie jest już płynne tylko coraz bardziej galaretowate, a z drugiej strony staje się coraz mniej przezroczyste. Gdy białko jajka kurzego jest już całkowicie białe, mówimy że jest ugotowane. Bliższe prawdzie jest stwierdzenie, że jest ścięte, choć tak właściwie powinno się chyba mówić, że doszło do jego denaturacji. Co to takiego ? Każde białko zmienia swoją strukturę przestrzenną pod wpływem czynników fizykochemicznych. Jednym z nich jest temperatura właśnie. Część z tych zmian jest odwracalna (to tzw. zmiany struktury pierwszo- i  drugorzędowej), ale gdy sprawy zajdą za daleko, nie da się cofnąć czasu. Białko gotowane przez kilka minut w wodzie zmienia swoją strukturę nieodwracalnie. Podczas tego procesu (denaturacji właśnie) niszczone są wiązania wodorowe i tzw. mostki disulfidowe, które jak śruby trzymające rusztowanie w całości, nadają cząsteczce białka odpowiedni i charakterystyczny kształt. Gdy śruby (wiązania wodorowe) się odkręcą, rusztowanie zaczyna zachowywać się w sposób nieprzewidywalny. Co więcej, gdy runie, nie sposób wybudować go od nowa. Denaturacja białka kurzego następuje w temperaturze około 63 st. Celsjusza, dlatego trzymanie choćby nie wiem jak długo jajka w wodzie o temperaturze nawet trochę niższej od tej wartości nie spowoduje jego ścięcia. Co ciekawe żółtko jajka kurzego ścina się w temperaturze o około 5 st Celsjusza wyższej niż białko. Dzieje się tak dlatego, że w żółtku, w cząsteczki protein wplątane są cząsteczki tłuszczów. Trzeba więc trochę więcej energii (stąd wyższa temperatura), by proteiny od cząsteczek tłuszczu „uwolnić”. Dopiero potem mogą zajść opisane już wyżej zmiany w strukturze białka.

No dobrze, ale w takim razie jak to się dzieje, że jajko daje się przygotować „na miękko”, skoro gotujemy je w wodzie o temperaturze 100 st. C a tymczasem ścinanie białka i żółtka ma miejsce w temperaturze do 70 st C? Wytłumaczeniem jest rozkład temperatury i zjawisko przewodnictwa cieplnego. Nawet jeżeli z zewnątrz jajka temperatura wynosi 100 stopni, potrzeba czasu, by „doszła” ona do samego jego środka. Najpierw więc zetną się te części jajka, które są najbliżej skorupki, a dopiero na końcu te w samym środku. Jeżeli wybierze się odpowiedni moment i wyciągnie jajko z gotującej się wody, zewnętrzne białko będzie już ścięte, a znajdujące się w samym środku żółtko, jeszcze nie.  No i to jest pewna sztuka. Każda kucharka ma swoje sposoby, ale z obliczeń fizyków wynika, że dla świeżego, średniej wielkości jajka ten czas wynosi 3 minuty i 30 sekund. Po tym czasie białko już bardziej się nie zetnie, ale zacznie ścinać się żółtko.

Test na wiek

Gotowanie jajka na miękko, wydaje się być zajęciem dla kucharzy nieco już zaznajomionych ze sztuką kulinarną. Dla tych bez podstawowej wiedzy (i zegarka) pozostaje jajko na twardo. Choć z drugiej strony… Ugotowanie jajka na twardo, wbrew pozorom także wymaga pewnej wiedzy. Po pierwsze, jajka nie wrzucamy do lodowatej wody, ale też niedobrze jest je wrzucić do wrzątku. W tym drugim przypadku, najpewniej popęka jego skorupka i biało z żółtkiem wyleje się do wrzącej wody. Po drugie, nie wolno z czasem gotowania jajka przesadzać. Białka zbudowane są ze związków zwanych aminokwasami. Niektóre z nich (np. te które wchodzą w skład białka kurzego) zawierają małe ilości siarki. Gdy jajko będzie zbyt długo gotowane, wydziela się siarkowodór, gaz o charakterystycznym zapachu zgniłych… jaj. Poza tym wydzielanie tego gazu powoduje, że żółtko ugotowanego jajka otoczone jest sino-zieloną otoczką. Dlatego właśnie w najlepszych restauracjach jajko zaraz po ugotowaniu wrzuca się do lodu. Wtedy wierzchnie warstwy nie „przegrzeją” się, a wewnętrzne dojdą do odpowiedniej konsystencji. W domu z lodem trudno eksperymentować, ale ugotowane jajka można wrzucić do lodowatej wody.

Jajko do zimnej wody można jednak wsadzić w innym celu. Po to żeby sprawdzić ile czasu upłynęło od chwili jego zniesienia. We wnętrzu jajka, pod skorupką znajduje się pęcherzyk gazu. Ten gaz jest wynikiem powolnego rozpadu białek. Im starsze jest jajko, tym więcej tego gazu będzie pod skorupką. Po to żeby sprawdzić wiek jajka, można zrobić prosty test. Bąbelek gazu gromadzi się w jajku w szerszym jego czubku. Na czym ten test polega? Wystarczy jajko wsadzić do naczynia z wodą i obserwować. Świeże jajko w naczyniu z wodą leży płasko przy dnie, ale im jajko jest starsze, tym większy jest kąt pomiędzy osią jajka a dnem naczynia. Innymi słowy, im starsze jajko, tym bardziej unosi się gruby jego czubek. Gdy ten kąt wynosi mniej więcej 90 st, czyli wąski czubek jest przy dnie, a szerszy pionowo u góry, jajko ma około 30 dni. Przy kącie około 45 st. jajko ma od 12 do 15 dni. To też skoro. Najlepsze do gotowania (i jedzenia) są te jajka, które mają powyżej dwóch dni, ale nie więcej niż siedem.

Gotowanie jajek to trudna sztuka. Fizyka może oczywiście pomóc, ale nie zastąpi w kuchni… intuicji. Acha i jeszcze jedno. Nie wspomniałem o tym, że jajko powinno się trzymać w lodówce węższym czubkiem w dół. I o tym, że gdy są gotowane w niższym ciśnieniu… są podobno lepsze w smaku.

3 komentarze do Fizyka i jajka

Fizyk który nie znał granic

14 marca, zmarł urodzony 76 lat temu fizyk, Stephen Hawking. Człowiek odważny i wybitny, znany na całym świecie nie tylko z powodu teorii fizycznych, którymi się zajmował. Gdyby chcieć powiedzieć o nim jedno zdanie. Brzmiałoby ono… człowiek, który nie znał granic.

14 marca, zmarł urodzony 76 lat temu fizyk, Stephen Hawking. Człowiek odważny i wybitny, znany na całym świecie nie tylko z powodu teorii fizycznych, którymi się zajmował. Gdyby chcieć powiedzieć o nim jedno zdanie. Brzmiałoby ono… człowiek, który nie znał granic.

A granice, akurat Hawking powinien znać doskonale. Od wczesnej młodości cierpiał na stwardnienie zanikowe boczne. Choroba doprowadziła go do stanu, w którym w żadnym aspekcie życia nie był samodzielny. W żadnym, z wyjątkiem myślenia. I tutaj znowu wracamy do braku granic. Stephen Hawking był matematykiem i fizykiem teoretykiem. Zajmował się tematami tak abstrakcyjnymi, że nawet dla kolegów po fachu jego prace były niezwykle skomplikowane. Przez 40 lat swojej naukowej kariery opracował hipotezę parowania czarnych dziur, zajmował się grawitacją kwantową i opracował twierdzenie dotyczące osobliwości. Czyli takich obszarów, miejsc w których przyspieszenie grawitacyjne, albo gęstość materii mają nieskończoną wartość. W osobliwości mają nie działać prawa przyrody które znamy z naszego nie-osobliwego otoczenia.

Jak wszyscy mylił się i błądził. Wielu z tych rzeczy którymi się zajmował, nie potwierdziło się eksperymentalnie. Ale tak właśnie działa nauka. Teoretycy szukają, fizycy eksperymentalni, próbują podważyć. Zresztą podważaniem zajmował się i sam Hawking. Wielokrotnie mówił, że zabawa sztuczną inteligencję jest bardzo groźna. Mówił też, że nie mamy wyjścia, w dłuższej perspektywie, musimy opuścić Ziemię. Zresztą uważał, że kosmos jest pełen życia. „Na mój matematyczny rozum, same liczby sprawiają, że myślenie o istotach pozaziemskich jest całkowicie racjonalne. Prawdziwym wyzwaniem jest dowiedzieć się, jak te istoty mogą wyglądać – powiedział kiedyś.

Dla szerszego odbiorcy Stephen Hawking nie był jednak znany ani z prac o czarnych dziurach, ani z rachunków dotyczących osobliwości, ani tym bardziej z hipotez dotyczących grawitacji kwantowej. Był znany jako autor książki Krótka Historia Czasu, którą wydał w 1988 roku. Krótko po jej wydaniu powiedział, że jego marzeniem było napisanie książki o fizyce, którą będą sprzedawali na lotniskach. I dopiął swego. Jego książka przez wiele tygodni nie schodziła z listy bestsellerów w wielu krajach świata.

Dziesięć lat temu, obchodząc swoje 65 urodziny Hawking powiedział, że weźmie udział w suborbitalnym locie, że chce poczuć nieważkość. I poczuł. Zaledwie kilka miesięcy później fizyk znalazł się na pokładzie specjalnie dostosowanego do tego typu eksperymentów Boeinga 727. Samolot 8 razy wznosił się na wysokość około 8 kilometrów, a następnie „wyłączał” silniki i spadał w dół. Dzięki temu, biorący udział w eksperymencie ludzie, czuli w nim nieważkość. W ten sposób szkoli się ludzi, którzy zostaną wysłani w kosmos. Hawking nie zdążył polecieć na orbitę, ale spełnił swoje marzenie. W wielu wywiadach później wspominał, że w nieważkości, po raz pierwszy od 40 lat mógł się poruszać bez wózka inwalidzkiego. I znowu przekroczył granicę, która dla osób całkowicie sparaliżowanych, byłą dotychczas nieprzekraczalna.

7 komentarzy do Fizyk który nie znał granic

Osiągnięcia Polskiej Nauki 2016

W najbliższych tygodniach na facebookowym fanpage Nauka. To Lubie będę opisywał kolejne odkrycia, które zostały uznane za największe osiągnięcia polskiej nauki w 2016 roku. Całą publikację możecie ściągnąć TUTAJ >>>…

W najbliższych tygodniach na facebookowym fanpage Nauka. To Lubie będę opisywał kolejne odkrycia, które zostały uznane za największe osiągnięcia polskiej nauki w 2016 roku. Całą publikację możecie ściągnąć TUTAJ >>>

Publikacja powstała w Ministerstwie Nauki i Szkolnictwa Wyższego.

2 komentarze do Osiągnięcia Polskiej Nauki 2016

Spór jest „po coś”

Prawdziwą rolę sporu doceniłem dopiero pracując naukowo. Gdy spory są „po coś”, mogą budować. Te „po nic” są do niczego. Marnują na nie energię i potencjał. No i czas, którego nie uda się już odzyskać. W końcu nigdy nie masz tyle racji, by twój rozmówca nie miał jej choć troszeczkę.

Prawdziwą rolę sporu doceniłem dopiero pracując naukowo. Gdy spory są „po coś”, mogą budować. Te „po nic” są do niczego. Marnują energię i potencjał. No i czas, którego nie uda się już odzyskać. W końcu nigdy nie masz tyle racji, by twój rozmówca nie miał jej choć troszeczkę.

Pamiętam swoją pierwszą konferencję naukową. Zawsze myślałem, że spotkania naukowców są nudne. No bo czym się tu ekscytować? Przecież oni wszyscy się znają. Wielu z nich razem pracuje. Zwykle prezentują wyniki badań, które albo zostały już opublikowane, albo – przynajmniej w dużej części – omówione. Konferencja w Krakowie (ta pierwsza na której byłem dotyczyła chemii jądrowej) była jednak zupełnie inna. Ci ludzie się tam kłócili! Nie była to jednak zwykła awantura. To był spór, w którym padały argumenty.

Po tej pierwszej, byłem na dziesiątkach różnych konferencji. W Polsce (te u nas nazwałbym łagodnymi), za granicą, na takich, które gromadziły setki uczestników i takich kameralnych na kilkanaście osób. Na konferencjach nie chodzi o to by podzielić się wynikami swoich badań czy opowiedzieć o swojej nowej koncepcji (hipotezie). Temu służą publikacje naukowe. Tutaj chodzi o to, by to co się zmierzyło, zbadało i wyliczyło, skonfrontować z innymi. Głownie z tymi, którzy zajmują się czymś podobnym. Spór – na konferencjach naukowych – jest po coś. Coś z niego wynika. Bez niego, bez wymiany poglądów, myśli czy pomysłów nie ma rozwoju i grozi nam dreptanie w miejscu. Nie raz byłem świadkiem sporów, które kończyły się zawiązywaniem nowych kolaboracji, czyli grup naukowych. Nie raz gorąca dyskusja pomiędzy naukowcami była pierwszym krokiem do podpisania umowy o współpracy pomiędzy instytucjami naukowymi. – Ok, twierdzisz, że wyciągam złe wnioski z tego co wyliczyłem? Twierdzisz, że popełniłem jakiś błąd? W porządku, usiądźmy razem, policzmy to wspólnie. Zobaczymy który z nas się myli.

Szkoda, że spory z których coś wynika tak rzadko pojawiają się poza salami wykładowymi i centrami konferencyjnymi. Szkoda, że tak rzadko pojawiają się np. w życiu publicznym, w tym na internetowych forach. Tam królują spory „po nic”. Po nic, czyli do niczego. Nie chodzi w nich o skonfrontowanie się z inaczej myślącymi. Chodzi o to by się spierać dla samego spierania. Tak jest łatwiej! Spór merytoryczny wymaga przemyślania swoich racji, wymaga przygotowania argumentów, wymaga poświęcenia czasu interlokutorowi. A co jak racje zmienia się, w zależności od miejsca w którym się siedzi? A co jak nie ma się żadnych sensownych argumentów albo z intelektualnego lenistwa nie chce się ich uporządkować? A co jak interlokutora ma się za zdrajcę, kurdupla, agenta albo nieudacznika? W skrócie za człowieka gorszego sortu? Nie warto poświęcać mu czasu – logiczne, prawda? No to mamy gonienie króliczka po to by go gonić, a nie po to by go złapać. No to mamy prężenie muskułów przed kamerami albo na mównicach, zamiast prężyć szare komórki w mózgu na spotkaniach roboczych. Ile my marnujemy czasu i energii na spory „po nic”… Tego czasu nam już nikt nie zwróci.

Mój profesor, bardzo znany fizyk, Walter Oelert, człowiek, który jako pierwszy na świecie „wyprodukował” atom antymaterii dbał o to, żeby jego doktoranci regularnie dzielili się wynikami swoich pomiarów, żeby każdy miał czas na wspólne dyskutowanie. Tylko tak da się uprawiać naukę. Konfrontując się, argumentując i ścierając. W końcu nigdy nie masz tyle racji, by twój rozmówca nie miał jej choć troszeczkę.

Tomasz Rożek

3 komentarze do Spór jest „po coś”

Nagroda za mikroskop

Nagroda Nobla z chemii zostałą przyznana za technikę, która zrewolucjonizowała biochemię. Mowa o mikroskopii krioelektronowej, dzięki której można obserwować i to w trzech wymiarach cząsteczki np. białek, bez uszkadzania ich.

Nagroda Nobla z chemii zostałą przyznana za technikę, która zrewolucjonizowała biochemię. Mowa o mikroskopii krioelektronowej, dzięki której można obserwować i to w trzech wymiarach cząsteczki np. białek.

Jacques Dubochet, Joachim Frank, Richard Henderson

„for developing cryo-electron microscopy for the high-resolution structure determination of biomolecules in solution”

Co niezwykle ważne, dzięki nagrodzonej metodzie, jesteśmy w stanie zobrazować nieuszkodzoną cząsteczkę białka w jej „naturalnym” środowisku. Uszkodzone białko nie niesie dla nas interesującej informacji. Nie jesteśmy w stanie zobaczyć jak ono reaguje, jak łączy się z innymi cząsteczkami, w skrócie, jak ono funkcjonuje w swoim naturalnym środowisku (a nie na przysłowiowym szkiełku) czyli we wnętrzu żywej komórki czy we wnętrzu poszczególnych organelli komórki. Białka to cegiełki z których wybudowane jest życie. Przy czym analogia do cegły i budynku nie jest wystarczająca. Białka nie są pasywnymi elementami naszego ciała. Białka (jako hormony) regulują czynności a nawet modyfikują struktury tkanek (tkanek, które też są zbudowane z białek). Bez poznania białek, tego jak są zbudowane, jak funkcjonują, jak łączą się w większe kompleksy, nie ma najmniejszej szansy żeby zrozumieć życie.

Trzej panowie Jacques Dubochet (Szwajcaria), Joachim Frank (USA), Richard Henderson (Wielka Brytania) stworzyli metodę by w skuteczny sposób białka badać. Nie w środowisku sztucznym, ale naturalnym. Bo tylko złapane w akcji białko daje nam się poznać. Tylko wtedy widzimy jak rzeczywiście funkcjonuje cały mechanizm, w którym bierze ono udział. Jak białko podglądnąć tak, by rzeczywiście zobaczyć jak ono funkcjonuje? Zamrozić. Ale bardzo szybko, po to by nie zdążył przebiec proces krystalizacji. Zamrażanie – jeżeli zostanie odpowiednio przeprowadzone – niczego nie uszkadza i niczego nie fałszuje. Mrożąc kolejne próbki, jesteśmy w stanie zrobić video, klatka po klatce pokazujące procesy, które przebiegają niezwykle szybko. Złożenie tych klatek w jedną całość umożliwia nie tylko prześledzenie procesu tak jak gdyby było się jego naocznym świadkiem, ale także przyjrzenie się poszczególnym jego aktom z różnej perspektywy. I tak w trójwymiarze można zobaczyć splatanie i rozplatanie długich nici białkowych. Można zobaczyć łączenie się mniejszych białek w większe kompleksy czy np. działanie receptorów białkowych.

– Te metody były przełomowe w medycynie molekularnej. Dzięki nim nie tylko możemy patrzyć na narządy i komórki. Możemy zejść głębiej, możemy śledzić jak wyglądają i działają pojedyncze cząsteczki w szczegółach, o jakim jeszcze niedawno nam się nie śniło. – powiedział Joachim Frank, jeden z laureatów tegorocznego Nobla z chemii, w rozmowie telefonicznej którą zaaranżowano w trakcie ogłaszania werdyktu.

Na zdjęciu głównym model wirusa zapalenia mózgu otrzymany dzięki technice mikroskopii krioelektronowej.

1 komentarz do Nagroda za mikroskop

Nobel z fizyki za fale

Prace nad wykrywaniem i analizą fal grawitacyjnych musiały kiedyś zostać uhonorowane Nagrodą Nobla. No i stało się.

Kosmiczny detektor, kosmiczne zagadnienie. W świecie fizyków i kosmologów po raz kolejny będzie mówiło się o falach grawitacyjnych. Kilkanaście dni temu dzięki pracy kolaboracji LIGO/VIRGO zmarszczki przestrzeni były w czołówkach serwisów na całym świecie. Dzisiaj też będą. Z powodu Nagrody Nobla z fizyki.

Rainer Weiss, Barry C. Barich, Kip S. Thorne

„for decisive contributions to the LIGO detector and the observation of gravitational waves”

waves-101-1222750-1600x1200

Fale grawitacyjne to kompletny odlot. Człowiekiem który sprawę rozumiał, ba, który ją wymyślił, a w zasadzie wyliczył był nie kto inny tylko Albert Einstein (swoją drogą powinien dostać nagrodę za odkrycie najbardziej nieintuicyjnych zjawisk we wszechświecie). Z napisanej przez niego 100 lat temu Ogólnej Teorii Względności wynika, że ruch obiektów obdarzonych masą,  jest źródłem rozchodzących się w przestrzeni fal grawitacyjnych (lub inaczej – choć nie mniej abstrakcyjnie – zaburzeń czasoprzestrzennych). Jak to sobie wyobrazić? No właśnie tu jest problem. Bardzo niedoskonała analogia to powstające na powierzchni wody kręgi, gdy wrzuci się do niej kamień. W przypadku fal grawitacyjnych zamiast wody jest przestrzeń, a zamiast kamienia poruszające się obiekty. Czym większa masa i czym szybszy ruch, tym łatwiej zmarszczki przestrzeni powinny być zauważalne. Rejestrując największe fale grawitacyjne, tak jak gdybyśmy bezpośrednio obserwowali największe kosmiczne kataklizmy: zderzenia gwiazd neutronowych, czarnych dziur czy wybuchy supernowych. Trzeba przyznać, że perspektywa kusząca gdyby nie to… że fale grawitacyjne to niezwykle subtelne zjawiska. Nawet te największe, bardziej będą przypominały lekkie muśnięcia piórkiem niż trzęsienie ziemi. W książce „Zmarszczki na kosmicznym morzu” (Ripples on a Cosmic Sea: The Search for Gravitational Waves) australijski fizyk, prof. David Blair, poszukiwanie fal grawitacyjnych porównuje do nasłuchiwania wibracji wywołanych przez pukanie do drzwi z odległości dziesięciu tysięcy kilometrów. Detektory zdolne wykryć fale grawitacyjne powinny być zdolne zarejestrować wstrząsy sejsmiczne wywołane przez upadek szpilki po drugiej stronie naszej planety. Czy to w ogóle jest możliwe? Tak! Od 2002 roku działa w USA Laser Interferometer Gravitational Wave Observatory w skrócie LIGO czyli Laserowe Obserwatorium Interferometryczne Fal Grawitacyjnych. Zanim budowa ruszyła, pierwszy szef laboratorium prof. Barry Barrish na dorocznym posiedzeniu AAAS (American Association for the Advancement of Science) oświadczył, że pomimo wielu trudności nadszedł w końcu czas na zrobienie czegoś, co można nazwać prawdzią nauką (swoją drogą, odważne słowa na zjeździe najlepszych naukowców na świecie).

>>> Więcej naukowych informacji na FB.com/NaukaToLubie

This_visualization_shows_what_Einstein_envisioned

Symulacja łączenia się czarnych dziur – jedno ze zjawisk, które wytwarza najsilniejsze fale grawitacyjne

Z falami grawitacyjnymi jest jednak ten problem, że przez dziesięciolecia, mimo prób, nikomu nie udało się ich znaleźć. Gdyby komuś zaświtała w głowie myśl, że być może w ogóle ich nie ma, spieszę donieść, że gdyby tak było naprawdę, runąłby fundament współczesnej fizyki – Ogólna Teoria Względności, a kosmologię trzeba byłoby przepisać od początku. Dzisiaj głośno mówi się, że fale grawitacyjne zostały przez LIGO zarejestrowane. Panuje raczej atmosfera lekkiego podniecenia i oczekiwania na to, co stanie się za chwilę. Potwierdzenie istnienia fal grawitacyjnych nie będzie kolejnym odkryciem, które ktoś odfajkuje na długiej liście spraw do załatwienia.  Zobaczymy otaczający nas wszechświat z całkowicie innej perspektywy.

Jako pierwszy falowe zmiany pola grawitacyjnego, w latach 60 XX wieku próbował zarejestrować amerykański fizyk Jaseph Weber. Budowane przez niego aluminiowe cylindry obłożone detektorami nie zostały jednak wprawione w drgania. Co prawda Weber twierdził, że złapał zmarszczki wszechświata, ale tego wyniku nie udało się potwierdzić. Dalsze poszukiwania trwały bez powodzenia, aż do 1974 roku, gdy dwóch radioastronomów z Uniwersytetu w Princeton (Joseph Taylor i Russel Hulse) obserwując krążące wokół siebie gwiazdy (PSR1913+16) stwierdziło, że układ powoli traci swoją energię, tak jak gdyby wysyłał … fale grawitacyjne. Mimo, że samych fal nie zaobserwowano, za pośrednie potwierdzenie ich istnienia autorzy dostali w 1993 roku Nagrodę Nobla. Uzasadnienie Komitetu Noblowskiego brzmiało: „za odkrycie nowego typu pulsara, odkrycie, które otwiera nowe możliwości badania grawitacji”.

>>> Więcej naukowych informacji na FB.com/NaukaToLubie

virgoviewInstalacja, która z lotu ptaka wygląda jak wielka litera L, to dwie rury o długości 4 km każda, stykające się końcami pod kątem prostym. Choć całość przypomina przepompownię czy oczyszczalnię ścieków jest jednym z najbardziej skomplikowanych urządzeń kiedykolwiek wybudowanych przez człowieka. Każde z ramion tworzy betonowa rura o średnicy 2 metrów. W jej wnętrzu – jak w bunkrze – znajduje się druga ze stali nierdzewnej, która jest granicą pomiędzy światem zewnętrznym a bardzo wysoką próżnią. Z miejsca w którym rury się stykają, „na skrzyżowaniu”, dokładnie w tym samym momencie wysyłane są wiązki lasera. Ich celem są zwierciadła umieszczone na końcu każdej z rur. 2000px-Ligo.svgOdbijane przez zwierciadła tam i z powrotem około 100 razy promienie, wpadają z powrotem do centralnego laboratorium i tam zostają do siebie porównane. Dzięki zjawisku interferencji możliwe jest wyliczenie z wielką dokładnością różnicy przebytych przez obydwie wiązki światła dróg. A drogi te powinny być identyczne, no chyba że… chyba że w czasie pomiaru przez Ziemie – podobnie jak fala na powierzchni wody – przejdzie fala grawitacyjna. Wtedy jedno z ramion będzie nieco dłuższe, a efekt natychmiast zostanie wychwycony w czasie porównania dwóch wiązek. Tyle tylko, że nawet największe zaburzenia zmienią długość ramion o mniej niż jedną tysięczną część średnicy protonu (!). To mniej więcej tak, jak gdyby mierzyć zmiany średnicy Drogi Mlecznej (którą ocenia się na ok. 100 tys. lat świetlnych) z dokładnością do jednego metra. Czy jesteśmy w stanie tak subtelne efekty w ogóle zarejestrować ? Lustra na końcach każdego z korytarzy (tuneli) mogą zadrgać (chociażby dlatego, że przeleciał nad nimi samolot, albo w okolicy przejechał ciężki samochód). By tego typu efekty nie miały wpływu na pomiar zdecydowano się na budowę nie jednej, ale dwóch instalacji, w Handford w stanie Waszyngton i w Livingston w stanie Luizjana. Są identyczne, choć oddalone od siebie o ponad 3 tys. kilometrów. Ich ramiona maja takie same wymiary i maja takie same układy optyczne. Nawet gdy w jednym LIGO zwierciadło nieoczekiwanie zadrga, niemożliwe by to samo w tej samej chwili stało się ze zwierciadłem bliźniaczej instalacji. Zupełnie jednak inaczej będzie gdy przez Ziemię przejdzie z prędkością światła fala grawitacyjna. Zmiany jakie wywoła zajdą w dokładnie tej samej chwili w obydwu ośrodkach.

>>> Więcej naukowych informacji na FB.com/NaukaToLubie

A kończąc, pozwólcie na ton nieco nostalgiczny. Wszechświat jest areną niezliczonych kataklizmów a dramatyczne katastrofy, to naturalny cykl jego życia. To nic, że od tysięcy lat na naszym niebie królują te same gwiazdozbiory. W skali kosmicznej taki okres czasu to nic nieznacząca chwila, a nawet w czasie jej trwania widoczne były wybuchy gwiazd. Z bodaj największego kataklizmu – Wielkiego Wybuchu – „wykluło” się to co dzisiaj nazywamy kosmosem. Obserwatoria grawitacyjne (np. takie jak LIGO) otworzą oczy na inne wielkie katastrofy, i to nie tylko te które będą, ale także te które były. Już prawie słychać zgrzyt przekręcanego klucza w drzwiach. Już za chwilę się otworzą. Najpierw przez wąską szparę, a później coraz wyraźniej i coraz śmielej będziemy obserwowali wszechświat przez nieznane dotychczas okulary. Ocenia się, że to co widzą „zwykłe” teleskopy (tzw. materia świecąca) to mniej niż 10% całej masy Wszechświata. A gdzie pozostałe 90% ? Na to pytanie nie znaleziono dotychczas odpowiedzi. Tzw. ciemna materia powinna być wszędzie, a nie widać jej nigdzie. Przypisuje się jej niezwykłe właściwości, łączy się ją z nie mniej tajemniczą ciemną energią. Czy LIGO, pomoże w rozwiązaniu tej intrygującej zagadki? Czy będzie pierwszym teleskopem, przez który będzie widać ciemną materię? Jeżeli obserwatoria grawitacyjne będą w stanie „zobaczyć” obiekty, które można obserwować także w świetle widzialnym (np. wybuch supernowej), a nie będą widziały ani grama ciemnej materii, to zagadka staje się jeszcze bardziej tajemnicza. Bo albo ta materia nie podlega prawom grawitacji, albo nie ma żadnej ciemnej materii. Konsekwencje obydwu tych scenariuszy są trudne do przewidzenia. Czy teraz rozumiecie dlaczego odkrycie fal grawitacyjnych jest tak ważne? 

9 komentarzy do Nobel z fizyki za fale

Nobel za biologiczny zegar

Ciekawa koincydencja. W dniach w których zmieniamy czas letni na zimowy, Komitet Nagrody Nobla ogłosił, że tegorocznymi laureatami z dziedziny fizjologii i medycyny są badacze, którzy zrozumieli jak działa nasz biologiczny zegar.

Ciekawa koincydencja. W dniach w których zmieniamy czas letni na zimowy, Komitet Nagrody Nobla ogłosił, że tegorocznymi laureatami z dziedziny fizjologii i medycyny są badacze, którzy zrozumieli jak działa nasz biologiczny zegar.

Jeffrey C. Hall, Michael Rosbash and Michael W. Young

for their discoveries of molecular mechanisms controlling the circadian rhythm

Ta nagroda w pewnym sensie łączy medycynę, a właściwie fizjologię z astronomią. Czasami chyba zapominamy, że życie nie funkcjonuje w oderwaniu od otoczenia. Podział szkolnych zajęć na przedmioty (biologia, fizyka, chemia,…)  nie pomaga zrozumieć złożoności tego świata. Jak to się dzieje, że czujemy się senni gdy zapada zmrok? Jak to się dzieje, że inne zwierzęta budzą się wtedy gdy zachodzi słońce? Co dzieje się w naszym organizmie gdy za krótko śpimy? I wtedy gdy podróżując samolotem, zmieniając strefy czasowe nasz biologiczny zegar totalnie się pogubi? Na te pytania bardzo długo nie było konkretnej odpowiedzi. Teraz już jest. I to – co może zadziwiać – udało się je uzyskać m.in dzięki badaniom muszek owocówek. Swoją drogą, tym małym niepozornym owadom, ktoś powinien wystawić chyba pomnik. Niewiele jest organizmów żywych, które bardziej przysłużyły się nauce. I to wielu dziecinom równocześnie. No ale to inny temat.

A wracając do pór dnia i nocy. Pór niższej temperatury i wyższej. Pór odpoczynku i aktywności. Te pory są skutkiem obrotu Ziemi wokół własnej osi. Mieliśmy (my czyli ziemskie życie) grubo ponad 3 miliardy lat na dostosowanie się do tego cyklu. Więcej, wzrastaliśmy, ewoluowaliśmy w świecie który jest cykliczny. Różnych cykli mamy wiele, ale ten który bodaj ma n nas największy wpływ to właśnie cykl dnia i nocy. Nawet najbardziej prymitywne bakterie mają biologiczny zegar. Działa na tyle dobrze, że my mamy go w zasadzie w niezmienionej wersji.

W zegarze o którym mowa nie chodzi tylko o to żeby wiedzieć kiedy mamy się położyć do łóżka. W zasadzie – w przypadku ludzi – to jest tylko skutek uboczny. Biologiczny zegar taktuje tym wszystkim co w naszym ciele dzieje się poza naszą świadomością. Metabolizmem, temperaturą ciała, produkcją i wydzielaniem hormonów a także aktywnością seksualną, cyklami życiowymi czy nawet poczuciem głodu i sytości. Tegoroczni laureaci Nagrody Nobla zostali uhonorowani za opisanie tego jak ten skomplikowany system działa.

Już kilkaset lat temu zauważono, że rośliny pozbawione dostępu światła zachowują się tak, jak gdyby to światło cały czas okresowo do nich docierało. Tak jak gdyby kiedyś nastawiony (nakręcony) zegar teraz tykał i działał niezależnie od tego czy światło pada na liście czy też nie. Podobnie zachowują się zwierzęta, w tym ludzie. To dlatego mamy kłopoty z zaśnięciem i koncentracją gdy szybko zmienimy strefę czasową. Tych kłopotów by nie było, gdyby nasz wewnętrzny zegar automatycznie dostosowywał się do pory dnia i nocy.

W latach 70tych XX wieku zaczęto poszukiwać źródeł (mechanizmu) tego biologicznego zegara. Najpierw – a jakże – u muszek owocówek. Poszukiwano i znaleziono – w największym skrócie – mechanizmy w którym w zależności od pory dnia (natężenia światła) produkowane są specyficzne białka (nazwane PER). Te gromadzą się w ciągu nocy, a rozpadają się w ciągu dnia. Badacze odkryli u muszek gen, który gdy zostanie uszkodzony zaburza rytm dobowy. Gen został wyizolowany dopiero w połowie lat 80tych XX wieku. To w nim był przepis na produkcję wspomnianego wcześniej białka PER. Tego, które gromadzi się w ciagu nocy a rozpada w ciagu dnia. Dziesięć lat później, w połowie lat 90tych odkryto drugi gen kodujący „zegarowe” białko. I gen i białko nazwano TIM. Białka TIM i PER łączą się z sobą wtedy gdy noc przechodzi w dzień. To sygnał żeby komórka wstrzymała produkcję biała PER. Mamy wiec produkcję białka i wiemy co powoduje że wstrzymywana jest jego produkcja. A jaki czynnik powoduje, że produkcja PER znowu rusza z kopyta? Skąd komórka wie, że dzień zamienia się w noc? Pod koniec lat 90tych odkryto trzeci gen odpowiedzialny za tykanie biologicznego zegara. gen DBT. I tak zamyka się 24godzinny cykl.

Zegar tyka nawet wtedy gdy przez jakiś czas organizm odcięty jest od światła. Z czasem, zegar się jednak rozregulowuje. U roślin ten okres swego rodzaju bezwładności wynosi kilka dni. U człowieka od 2-3 dni (stąd niektórzy są w stanie dość łatwo przestawiać się na pracę w nocy) do kilkudziesięciu (dlatego istnieją osoby, które nie są w stanie przyzwyczaić się do zmiany czasu o godzinę). Gdy zegar się zatrze, nie staje w miejscu, tylko zaczyna odmierzać czas nieprawidłowo. Np.  u niektórych wydłużając dobę dwukrotnie a u innych skracając o kilka godzin. Wiemy to, bo kilku śmiałków w ramach eksperymentu zamknęło się w kompletnych ciemnościach na czas od kilkunastu do kilkudziesięciu dni. W naszym przypadku sercem zegara nie jest jednak pojedyncza komórka, tylko szyszynka, czyli ta cześć mózgu, która „widzi” czy jest dzień czy noc. To ona daje sygnał, który jest podchwytywany przez miliardy drobnych zegarków już na poziomie komórkowym. Gdyby tykały jak zegarki ze wskazówkami, wydawalibyśmy dźwięki jak zakład zegarmistrza.

2 komentarze do Nobel za biologiczny zegar

Jak to się zaczęło?

W pierwszych latach XX wieku Albert Einstein pracował nad Ogólną Teorią Względności. Z jego rachunków jasno wynikało, że wszechświat jest zmienny, dynamiczny. Wiara w to, że jest stały i niezmienny była jednak w tamtych czasach tak powszechna, że… Einstein, wolał tak pokombinować w równaniach by wyszło na jego, niż pójść pod prąd. Gdy eksperymentalnie dowiedziono, że wszechświat jest dynamiczny, stary już Albert miał stwierdzić, że „manipulowanie” równaniami było największą pomyłką jego życia.

W pierwszych latach XX wieku Albert Einstein pracował nad Ogólną Teorią Względności. Z jego rachunków jasno wynikało, że wszechświat jest zmienny, dynamiczny. Wiara w to, że jest stały i niezmienny była jednak w tamtych czasach tak powszechna, że… Einstein, wolał tak pokombinować w równaniach by wyszło na jego, niż pójść pod prąd. Gdy eksperymentalnie dowiedziono, że wszechświat jest dynamiczny, stary już Albert miał stwierdzić, że „manipulowanie” równaniami było największą pomyłką jego życia.

To „manipulowanie” w równaniach  Ogólnej Teorii Względności polegało na dopisaniu do nich dodatkowego członu, tak zwanej stałej kosmologicznej. To ona, na kartce papieru, wszechświat dynamiczny „zamieniała” na statyczny. I prawie wszyscy byli zadowoleni. Prawie. Jedną z osób, które podważały koncepcję wszechświata stacjonarnego był katolicki ksiądz, Georges Lemaitre.

Uparty jak Einstein

Koncepcje Lemaitre’a (swoją teorię nazwał Hipotezą Pierwotnego Atomu) traktowano z pobłażaniem. Lemaitre nie był fizykiem, tylko matematykiem. Gdy spotkał się z Einsteinem (by przekonać go do swojej koncepcji początku wszechświata), ten stwierdził, że Lemaitrowi brakuje wiedzy z zakresu fizyki. To co mówił Lemaitr było w zasadniczej sprzeczności z tym, co powszechnie w jego czasach sądzono. Lemaitr często spotykał się z argumentem, że jego hipoteza jest błędna, bo nawet z rachunków Alberta Einsteina wynika, że wszechświat jest statyczny. No tak, ale z rachunków… nieco „podkręconych”.

Jeszcze na początku lat 20tych XX wieku, za wyjątkiem garstki badaczy spoza głównego nurtu, uważano, że wszechświat jest stały. I wtedy do największego ówcześnie ośrodka astronomicznego, do obserwatorium na górze Wilsona w Kalifornii przyjechał Edwin Hubble. Był już znany w środowisku astronomów jako niepokorny badacz, który ma dosyć oryginalne poglądy. Hubble’a twierdził bowiem, że niewyraźne obłoczki pomiędzy gwiazdami, które obserwowano przez działające już wtedy niemal na całym świecie teleskopy, to nie większe skupiska pyłu międzygwiazdowego czy bliżej nieokreślone mgławice, tylko osobne galaktyki. Pogląd ten był nawet bardziej niż oryginalny, bo powszechnie uważano wtedy, że we wszechświecie jest tylko jedna galaktyka. Galaktyka Drogi Mlecznej.

Hubble odkrywca

Jednym z pierwszych bardzo wyraźnych zdjęć galaktyki jakie Hubbleowi udało się zrobić było zdjęcie galaktyki Andromedy. Świat, nie tylko naukowy był w szoku, gdy Hubbleowi udało się obliczyć (na podstawie pomiaru jasność gwiazd), że najbliższa galaktyka znajduje się ponad milion lat świetlnych od nas. To jedno obliczenie, ta jedna obserwacja „rozszerzyło wszechświat” o miliony, miliardy razy. Hubble odmienił nasze rozumienie wszechświata. Hubble pokazał, że wszechświat to ogromny kosmos, a nasza galaktyka jest niepozornym okruszkiem.

Ale na tym się nie skończyło. OK., wszechświat może i jest o miliardy razy większy niż nam się wydawało, ale czy jest stacjonarny czy dynamiczny – pytano. Kilka lat obserwacji dalszych i bliższych galaktyk pozwoliło Hubble’owi na sformułowanie prawa, które przewróciło do góry nogami wiedzę na temat wszechświata. Analizując światło galaktyk, astronom zauważył, że one się poruszają. Odkrył że czym odleglejsza galaktyka, tym szybciej się od nas oddala. Jeżeli wszystkie galaktyki się od nas oddalają, jeżeli wszystkie oddalają się od siebie, wszechświat się rozszerza. Innego wytłumaczenia nie ma. Łatwo to można sobie wyobrazić. Gdy namalujemy na powierzchni słabo napompowanego balonika kilka kropek a następnie zaczniemy go nadmuchiwać (rozszerzać), kropki zaczną się od siebie oddalać.

Lemetre tryumfuje

W 1931 roku spotkało się trzech badaczy, którzy są chyba głównymi bohaterami tej historii. Hubble, Einstein i Lemetre. To w czasie tego spotkania powstały podstawy współczesnej kosmologii. To wtedy Einstein przekonał się do koncepcji wszechświata dynamicznego. To wtedy zrozumiał swój błąd. I to wtedy stałą kosmologiczną nazwał „największą pomyłką życia”. Trudno mu się dziwić. Wiele lat wcześniej, gdy pracował nad Ogólną Teorią Względności matematyka, jak na tacy podała mu prawdziwy obraz wszechświata. On jednak nie uwierzył.

Jeżeli galaktyki oddalają się od siebie, znaczy, że wczoraj były bliżej siebie, niż są dzisiaj. A rok temu? A milion lat temu? To co Hubble zaobserwował i to co wynikało z równań Ogólnej Teorii Względności (przed tym, gdy Einstein dodał do nich stało kosmologiczną), potwierdzało koncepcję jaką od początku forsował Georges Lemaitre. Wszechświat był kiedyś skupiony w jednym, nieskończenie gęstym punkcie. Lemaitre ten punkt nazwał pierwotnym atomem. W 1947 roku amerykański kosmolog pochodzenia rosyjskiego George Gamow opracował matematyczne podstawy koncepcji Lemaitra. Całość została ochrzczona Teorią Wielkiego Wybuchu (ang. Big Bang).

Obserwacje Hubble’a nie wszystkich jednak przekonały. Nie chodziło o to, że w nie nie uwierzono, ale uważano, że wyciągnięto z nich nieprawdziwe wnioski. W 1948 roku powstała Teoria Stanu Stacjonarnego. W największym skrócie mówi ona, że co prawda galaktyki się rozszerzają, ale w pustych przestrzeniach pomiędzy nimi cały czas powstaje materia.  W ten sposób próbowano pogodzić ogień i wodę. Wszystko się rozszerza, ale gęstość wszechświata pozostaje stała, bo nieustannie produkowana jest nowa materia. Jak to się dzieje i gdzie ona powstaje? To były pytania bez odpowiedzi.

Gamow przewiduje

To wtedy nastąpił symboliczny kres koncepcji stanu stacjonarnego. Pogrzeb wizji wszechświata niezmiennego, statycznego.

Promieniowanie reliktowe to echo Wielkiego Wybuchu i jedyny sposób by zajrzeć w historię tak odległą. Promieniowanie, które teraz potrafimy rejestrować to nic innego jak resztki światła, które emitował rozgrzany i potwornie ściśnięty młody wszechświat. Tak jak żarzące się włókno żarówki czy rozgrzany do czerwoności rozpalony w ogniu metalowy pręt. Poświata Wielkiego Wybuchu wydostała się z gorącej zupy materii dopiero, gdy zaczął się z niej formować przezroczysty gaz atomów. Szacuje się, że było to ok. 380 tyś lat po Wielkim Wybuchu. Gdy skonstruowano odpowiednie anteny, w którąkolwiek ze stron je kierowano, zawsze rejestrowano podobny szum. Hałas radiowy nie ustawał. Tak było na powierzchni Ziemi. W 1989 roku w przestrzeń kosmiczną wysłano satelitę COBE (Cosmic Background Explorer). I potwierdziło się to co przewidywał Gamow. Wszechświat jest wypełniony promieniowaniem, poświatą Wielkiego Wybuchu. COBE zarejestrował coś jeszcze. Wspomniane promieniowanie nie jest jednorodne. Te niewielkie różnice odpowiadają strukturom, które formowały się we wczesnym wszechświecie.  Chłodniejsze rejony (na większości z map zaznaczane kolorem niebieskim) to miejsca gdzie materia w niemowlęcym okresie życia wszechświata skupiała się tworząc galaktyki. W połowie 2001 roku w przestrzeń została wystrzelona sonda WMAP. Następca COBE. Z większą dokładnością, potwierdziła to, co zmierzyła misja COBE.

 

Jak w ciągu 90 lat zmienił się wszechświat?

  • Rok 1917 – Albert Einstein do równań Ogólnej Teorii Względności wprowadza stałą kosmologiczną. „Dzięki” niej wszechświat staje się statyczny.
  • Rok 1923 – Edwin Hubble odkrył, że Droga Mleczna to zaledwie mały wycinek Wszechświata.
  • Rok 1927 – Belgijski ksiądz i matematyk Georges Lemaitre prezentuje Hipotezę Pierwotnego Atomu, która później została ( w założeniu złośliwie) ochrzczona jako Big Bang.
  • Rok 1931 – Edwin Hubble zaobserwował, że galaktyki oddalają się od Ziemi tym szybciej, im dalej się znajdują. Wszechświat jest jednak dynamiczny. Einstein wprowadzenie stałej kosmologicznej nazwał „największą pomyłką życia”.
  • Rok 1948 – George Gamow stwierdza, że jeżeli Wielki Wybuch rzeczywiście miał miejsce, kosmos musi być wypełniony tzw. mikrofalowym promieniowaniem tła.
  • Rok 1964 – zarejestrowanie mikrofalowego promieniowania tła, upadek konkurencyjnej do Wielkiego Wybuchu koncepcji wszechświata stacjonarnego.
  • Lata 70te XX wieku – dokładna analiza rotacji galaktyk budzi wątpliwości co do ilości materii w nich zawartych. Bez istnienia ciemnej materii, nie można wytłumaczyć budowy wszechświata. Dalsze prace potwierdzają, że ciemnej materii jest wielokrotnie więcej niż tej „zwykłej”, widzialnej.
  • Rok 1989 – wystrzelenie na orbitę okołoziemską pierwszego satelity zbudowanego wyłącznie do badań kosmologicznych. Zadaniem COBE (Cosmic Background Explorer) było wykonanie pomiarów kosmicznego promieniowania tła.
  • Rok 1990 – na orbitę okołoziemską wystrzelony zostaje teleskop Hubble’a – jedno z najważniejszych narzędzi współczesnej nauki służące do badania losów wszechświata.
  • Rok 2003 – Prezentacja obrazu mikrofalowego promieniowania tła całego wszechświata wykonanego przez satelitę WMAP (doskonalszego następcę misji COBE). – „ Ten obraz jest jednym z najważniejszych rezultatów naukowych w historii ludzkości” – powiedział rzecznik NASA.

A po więcej ciekawych informacji o Einsteinie odsyłam do nowego serialu National Geographic pt. „Geniusz”. Premiera 23 kwietnia o 21.30.

1 komentarz do Jak to się zaczęło?

Uważaj jak chodzisz

Ze sposobu w jaki się poruszamy, naukowcy potrafią wyciągnąć zadziwiającą ilość informacji. Osoby, które obserwują model chodu charakterystyczny dla mężczyzn mają wrażenie, że postać się do nich zbliża. Równocześnie gdy obserwują chód żeński, wydaje im się, że postać się oddala.

Ze sposobu w jaki się poruszamy, naukowcy potrafią wyciągnąć zadziwiającą ilość informacji. Osoby, które obserwują model chodu charakterystyczny dla mężczyzn mają wrażenie, że postać się do nich zbliża. Równocześnie gdy obserwują chód żeński, wydaje im się, że postać się oddala.

Amerykańska firma Visionics opracowała system który potrafi analizować twarze. Zainstalowany w centrum monitoringu miejskiego (czy lotniskowego) „wyławia” z tłumu przechodniów osoby które ma w swojej bazie danych. Rozpoznaje je po rozstawie oczu, kształcie ust czy wysokości czoła. Czy istnieje lepszy sposób na znalezienie osoby poszukiwanej ?

Chód świetlnych punkcików

Oprogramowanie Visionics, ale także aplikacje wielu innych firm zajmujących się szeroko rozumianym bezpieczeństwem, potrafi znacznie więcej. Automatycznie wykrywa osoby, po… sposobie chodzenia. Może np. z tłumu wyłowić osobę, która pod kurtką niesie coś ciężkiego. Jak to robi ? Za dogłębne przeanalizowanie chodu kobiet i mężczyzn zabrali się badacze z Southern Cross Univeristy w Coffs Harbour (w Australii). Wyniki ich badań opublikował tygodnik „New Scientist” oraz czasopismo „Current Biology” (vol 18, R728-R729). Czy kobiety i mężczyźni poruszają się inaczej ? To oczywiste, ale jak matematycznie opisać i zmierzyć te różnice ? Najpierw naukowcy sfilmowali chód 50 kobiet i 50 mężczyzn, a następnie, komputerowo każdy staw (biodrowy, barkowy, łokciowy,…) badanej osoby zaznaczyli jako świecący punkt. Z filmu przedstawiającego poruszającą się postać powstała animacja poruszających się punktów świetlnych, a równocześnie biblioteka chodów ludzkich. Zbiór sposobów w jakich poruszają się ludzie.

Okazało się, że nawet powierzchowna analiza pozwala wyłapać charakterystyczne cechy męskiego i żeńskiego chodu. To ważne, bo jeżeli problem da się opisać matematycznie, jest też nadzieja, że uda się go przełożyć na język rozumiany przez komputery. Po sposobie chodzenia można też określić wiek obserwowanego. Głębsza analiza pozwala powiedzieć w jakim jest nastroju i czy jest zmęczony, jakie ma wady postawy i czy dźwiga coś ciężkiego. Stosunkowo łatwo jest też określić czy obserwowany kuleje czy tylko udaje (to ważne wtedy gdy ktoś chciałby zmylić system monitoringu). Te wszystkie informacje są niezwykle ważne dla służb, która zajmują się bezpieczeństwem, ale mogą być też wykorzystywane przez psychologów.

Odchodzi czy przychodzi

Szef grupy badaczy Rick van der Zwan chód najbardziej kobiecy porównał do poruszania się koni w czasie parady. Zauważył, że panie podnoszą wysoko kolana a stopy stawiają jedna za drugą w tej samej linii. Jak zatem wygląda chód typowo męski ? Wg autorów badań można go porównać do toczenia się.

Przy okazji badań badacze zauważyli bardzo ciekawą prawidłowość. Osoby, które obserwują model chodu charakterystyczny dla mężczyzn mają wrażenie, że postać się do nich zbliża. Równocześnie gdy obserwują chód żeński, wydaje im się, że postać się oddala. Dlaczego tak się dzieje ? Trudno powiedzieć, ale autorzy spekulują, że odpowiedzi należy szukać w ewolucji. – Gdy zauważymy mężczyznę i nie mamy pewności czy się do nas zbliża czy oddala, lepiej założyć to pierwsze – powiedział Zwan. Dlaczego ? Bo naszym dalekim przodkom bezpieczniej było w takiej sytuacji przygotować się do ucieczki albo konfrontacji niż później żałować. Dlaczego w takim razie chód kobiecy kojarzy nam się z oddalającą postacią ? Choć to znowu przypuszczenie, autorzy także w tym przypadku wskazują na ewolucję. „Kiedy jest się małym dzieckiem i nie do końca jest się pewnym czy mama stoi przodem do nas czy odchodzi, prawdopodobnie bezpieczniej jest założyć, że jednak odchodzi, aby być gotowym do pójścia za nią” – tłumaczy van der Zwan.

Kto zwraca uwagę na chód ? Modelki, aktorzy,… Okazuje się, że nawet ze stawiania nogi za nogą specjaliści potrafią wyciągnąć zaskakujące wnioski. Wnioski dotyczące nas dzisiaj i nas przed wieloma wiekami.

Tomasz Rożek

Brak komentarzy do Uważaj jak chodzisz

Smog? Bez spiny, jest super!

Na portalu TwojaPogoda.pl pojawił się kilka dni temu artykuł pt. „Histeria z powodu smogu. Kto ją wywołuje i dlaczego?” No właśnie. Kto histeryzuje? Po co? I kto na tym zyskuje?

Na portalu TwojaPogoda.pl pojawił się kilka dni temu artykuł pt. „Histeria z powodu smogu. Kto ją wywołuje i dlaczego?” No właśnie. Kto histeryzuje? Po co? I kto na tym zyskuje?

Pod artykułem nie podpisał się autor, wiec rozumiem, że to tekst redakcyjny. Dziwię się, że portal, który sam wielokrotnie ostrzegał przed powietrzem złej jakości (np. „Rekordowy smog spowija Polskę. Trujący każdy wdech” z 2017-01-08), sam wielokrotnie opisywał tragiczne skutki oddychania zatrutym powietrzem (np. „Smog w stolicy Iranu zabija tysiące ludzi” z 2007-08-03), dzisiaj postanowił odwrócić smoga ogonem.

Zrzut ekranu 2017-02-19 o 18_Fotora

Tekst można streścić do następujących punktów:

  1. Kiedyś było gorzej.
  2. Na Zachodzie wcale nie jest tak czysto.
  3. Ekologiczne lobby jest na pasku producentów pieców.
  4. Smogu nie trzeba się obawiać.

No to po kolei.

Ad1. Kiedyś było gorzej. Tak, kiedyś było znacznie gorzej. Choć to dzisiaj jest więcej rakotwórczych dioksyn i furanów niż kiedyś. Ale nawet gdyby dzisiaj stężenia wszystkich szkodliwych substancji były niższe niż powiedzmy 20 lat temu, czy to automatycznie oznacza że jest super? No nie. Trzeba spojrzeć w statystyki i w pomiary. I okazuje się, że super nie jest. Że jest źle. I to bardzo. To, że niektórzy obudzili się dopiero wczoraj nie oznacza że kiedyś smogu nie było. Oznacza tylko… że niektórzy obudzili się wczoraj. Ani mniej, ani więcej. Organizacje ekologiczne od wielu lat mówią o zatrutym powietrzu. Tyle tylko, że dotychczas niewielu tego słuchało. W tym roku media informują o smogu częściej niż w poprzednich latach. Dlaczego? Dlatego, że Internet o tym więcej pisze, bo świadomość ludzi wzrosła. To system naczyń połączonych. Odczuwam osobistą satysfakcje, że i ja w budzeniu tej świadomości miałem swój udział publikując prosty pokaz z wacikiem i odkurzaczem. Zrobiłem to w pierwszych dniach stycznia. Choć powietrze było dużo gorsze w listopadzie i grudniu, przeważająca większość materiałów w mediach została zrobiona dopiero w styczniu. Do dzisiaj na różnych platformach moje video zobaczyło ponad 2 mln ludzi. Od tego czasu ten sam pokaz był powtarzany kilkukrotnie we wszystkich serwisach informacyjnych głównych stacji telewizyjnych.

>>> Więcej naukowych informacji na FB.com/NaukaToLubie.

Ad2. Na Zachodzie wcale nie jest tak czysto. Szczerze. Co mnie obchodzi jakie jest powietrze w Londynie, Brukseli czy Paryżu? Oddycham powietrzem w Warszawie albo na Śląsku. I to mnie obchodzi. Argumentowanie, że nie ma co panikować, bo za granicą nie jest wcale tak zielono jak mogłoby się wydawać, jest poniżej poziomu piwnicy.

Ale, podejmując wyzwanie… Jakość powietrza w stolicach zachodniej Europy jest dużo lepsza niż w miastach Polski. Znane są zestawienia mówiące, że to nasze miasta są w czołówce najbrudniejszych miast kontynentu. To, że w Niemczech spala się więcej węgla nie oznacza, że ten węgiel w większym stopniu zanieczyszcza powietrze. Bo,

  • w Niemczech węgiel nie jest palony w prywatnych piecach tylko w elektrowniach i elektrociepłowniach, a te zakłady (także w Polsce) mają filtry i nie dokładają się do smogu. Tymczasem w Polsce sporo węgla spala się w prywatnych piecach.
  • W Polsce nie obowiązują żadne normy dotyczące jakości węgla. W efekcie to u nas spala się węgiel wydobywany np. w Czechach, który tam nie mógłby zostać sprzedany.

Już wiesz redakcjo dlaczego argument o ilości spalanego w Niemczech i Polsce węgla jest jak kulą w płot?

>>> Więcej naukowych informacji na FB.com/NaukaToLubie.

Ad3. Ekologiczne lobby jest na pasku producentów pieców. Gdy pisałem o elektrowniach jądrowych (uważam, że w Polsce powinny powstać), słyszałem, że jestem przeciwko górnictwu na pasku lobby jądrowego. Teraz słyszę, że opłaca mnie lobby producentów węglowych pieców, bo piszę i alarmuję na temat złej jakości powietrza. Robię to zresztą od wielu lat każdego roku w czasie sezonu grzewczego. W międzyczasie byłem na pasku przemysłu farmaceutycznego (tak, uważam, że szczepionki to jedno z największych osiągnieć ludzkości), oraz przemysłu biotechnologicznego (tak, nie znajduję naukowych dowodów przeciwko GMO).

Zarzucenie komuś, że jest skorumpowany jest bajecznie proste, ale intelektualnie dość małe. Redakcja TwojaPogoda.pl naprawdę wierzy, że ci, którzy ostrzegają przed złej jakości powietrzem są kupieni przez producentów nowoczesnych pieców? Dodam tylko, że po to by ulżyć powietrzu nie trzeba koniecznie pieca wymieniać. Dużo da przeczyszczenie przewodów kominowych. Sporo da odczyszczenie przed sezonem grzewczym, a nawet w trakcie jego trwania samego pieca i odpowiedni sposób składania ognia w piecu. Te czynności nic nie kosztują, a pozwalają oszczędzić pieniądze bo podnoszą sprawność pieca i instalacji. Nie jest wiec prawdą, że smog można zlikwidować tylko wymieniając stary piec na nowiutki. Jest wiele innych rozwiązań, a niektóre z nich przynoszą oszczędności. No ale tego z tekstu o histerii smogowej się nie dowiemy. Nie możemy się dowiedzieć, bo to złamałoby linię argumentacji redakcji, że ci, którzy piszą i mówią o smogu są w kieszeni producentów drogich pieców.

>>> Więcej naukowych informacji na FB.com/NaukaToLubie.

Ad4. Smogu nie trzeba się obawiać. Redakcja portalu twierdzi, że cała ta histeria ze smogiem została „opracowana przez niektóre organizacje” i „wcale nie chodzi [w niej] o ochronę naszego zdrowia”.

Był taki czas, kiedy uważano, że zdrowe jest naświetlanie się promieniami jonizującymi. I choć w pewnym momencie stało się jasne, że te mogą być źródłem raka, wiele osób dalej się naświetlało. Był taki czas, gdy twierdzono, że zdrowe jest palenie papierosów. Firmy tytoniowe przedstawiały opracowania które tego dowodziły. Przez lata dowodzono też, że ołów z benzyny nie ma nic wspólnego ze złym stanem zdrowia ludzi wdychających spaliny albo mieszkających niedaleko szlaków komunikacyjnych. Dzisiaj benzyny są bezołowiowe, na paczkach papierosów są ostrzeżenia o nowotworach spowodowanych paleniem a źródła promieniowania jonizującego są zamykane w pancernych szafach żeby nie wpadły w niepowołane ręce.

Nie ma w naszym ciele organu czy układu, który nie byłby narażony z powodu powietrza złej jakości. Są na to tysiące naukowych dowodów. Serce, płuca, ale także mózg. Układ hormonalny, układ nerwowy, krwionośny… Tam gdzie powietrze jest bardziej zanieczyszczone jest mniejsza masa urodzeniowa dzieci, a ludzie żyją krócej. Ocenia się że w Polsce każdego roku umiera z powodu powietrza złej jakości ponad 40 tys. osób. Szczególnie narażeni są chorzy (np. na astmę), osoby starsze i dzieci. „Smogu nie trzeba się obawiać”? W tekście z TwojaPogoda.pl znalazł się właśnie taki śródtytuł. Trzeba, i to bardzo. Dobrze, że coraz lepiej zdajemy sobie z tego sprawę. To, że są ludzie czy firmy, które na rosnącej świadomości robią pieniądze, to naturalne i oczywiste. Są firmy, które robią pieniądze na produkcji samochodowych pasów bezpieczeństwa i systemów ABS, choć gdy je wprowadzano mówiło się że to tylko sposób na wyciąganie pieniędzy z kieszeni klienta. Tam gdzie jest popyt tam pojawia się i podaż. Od nas, klientów, zależy czy damy się nabierać na tanie  sztuczki (np. maseczki) czy zdecydujemy się na rozwiązania, które problem rozwiązują choć w części.

Zanim zakończę, chciałbym jeszcze wyjaśnić trzy kwestie.

  1. Węgiel nie jest źródłem smogu. Źródłem smogu jest palenie węglem niskiej jakości i śmieciami w piecach, które nie są odpowiednio przygotowane do eksploatacji. Takie są fakty. Mówienie więc, że walka ze smogiem to walka z węglem jest bzdurą i niepotrzebnie rozgrzewa emocje. W Polsce kilka milionów ludzi żyje dzięki przemysłowi wydobywczemu. Ten przemysł jest przestarzały i zżerany wewnętrznymi problemami. Nie da się jednak (z wielu różnych powodów) po prostu wszystkich kopalń zamknąć. Węgiel może być czarnym złotem o ile wykorzystamy go w sposób nowoczesny i innowacyjny. Np. gazując pod ziemią, budując instalacje niskoemisyjne czy zeroemisyjne. Podkreślanie, że walka o czyste powietrze to walka z węglem, powoduje u milionów ludzi żyjących z wydobycia węgla (i przemysłu który z tym jest związany) automatyczną niechęć do działań mających na celu poprawę jakości powietrza.
  1. Wiarygodność pomiaru. „Jeśli na jednej ulicy pomiary wskazują na duże skażenie powietrza, wcale nie oznacza to, że w Twojej okolicy jest równie niebezpiecznie.” Nieprawdą jest, co pisze redakcja TwojaPogoda.pl, że pomiaru z jednej stacji nie można stosować do całego miasta. W przeciwieństwie do temperatury, która rzeczywiście może się szybko zmieniać, zanieczyszczenie powietrza jest dość jednorodne na większym obszarze. W Polsce nie mamy niedoboru stacji pomiarowych. A na tak duże miasto jak np. Warszawa wystarczy ich kilka, by wiarygodnie przedstawić jakość powietrza w mieście. Nawet jeżeli na danym obszarze znajdują się pojedyncze punkty pomiarowe, odpowiednie algorytmy (biorące pod uwagę wiele zmiennych) wyliczają stężenie prawdopodobne. Jest ono (a robi się takie testy) bardzo bliskie stężeniom rzeczywistym. Warto rzeczywiście zwrócić uwagę, by dane na których się opieramy (w tym dane w aplikacjach w telefonach komórkowych) pochodziły z oficjalnych stacji, a nie były zniekształcane przez mierniki prywatne albo komercyjne, których dokładność jest zła, albo bardzo zła.
  1. Skarga na Polskę. Niektóre organizacje ekologiczne za zanieczyszczone powietrze postanowiły złożyć na Polskę skargę do Komisji Europejskiej. Taki ruch uważam za totalnie antyskuteczny. Smogu nie pozbędziemy się (nie zminimalizujemy) dekretami rządu czy uchwałami samorządu, bo smog powstaje nie w dużych zakładach przemysłowych tylko w naszych prywatnych kominach i rurach wydechowych. Komisja Europejska może nałożyć na nas karę i co? I to nas, Polaków, przekona do zmiany głupich i szkodliwych przyzwyczajeń? Myślę, że raczej utwierdzi w przekonaniu, że Bruksela znowu nas atakuje. I z całą pewnością atakuje dlatego, że chce położyć łapę na naszym węglu. Składając skargę do Komisji Europejskiej niektóre organizacje ekologiczne właśnie dały do ręki argument tym, którzy ze smogiem nie mają zamiaru walczyć. Sorry, taki mamy klimat. 

Tomasz Rożek

>>> Więcej naukowych informacji na FB.com/NaukaToLubie.

4 komentarze do Smog? Bez spiny, jest super!

Oddychamy trucizną!!!

W pewnym miasteczku pod Krakowem zanieczyszczenie powietrza w sylwestrową noc przekroczyło poziom zanieczyszczenie powietrza w Pekinie. O sprawie napisał nawet The Financial Times. Na 50 najbardziej zanieczyszczonych miast Europy, 33 leżą w Polsce!

>>> Polub FB.com/NaukaToLubie to miejsce w którym komentuję i popularyzuję naukę.

Burmistrz Skały – bo to o to miasto chodzi – tłumaczył, że jakość powietrza w jego miejscowości przekraczała unijne limity 20krotnie tylko przez kilka godzin. Marne pocieszenie. W Polsce mamy 33 miasta z 50 najbardziej zanieczyszczonych miast w Europie. 33 na 50!

Najgorsi w Unii

Dowodów na to, że zatrute powietrze powoduje wiele groźnych chorób jest tak wiele, że aż trudno zrozumieć dlaczego wciąż tak mało energii poświęcamy jego ochronie. Z badań ankietowych wynika, że aż 81 proc. pytanych nie uważa zanieczyszczenia powietrza za problem miejsca w którym mieszka. Fakty są jednak takie, że poziom zanieczyszczenia powietrza w Polsce jest najwyższym w Unii Europejskiej. Pod względem stężenia pyłu zawieszonego PM10 wywołującego m.in. astmę, alergię i niewydolność układu oddechowego w całej Europie gorsza sytuacja niż w Polsce jest tylko w niektórych częściach Bułgarii. W przypadku pyłu PM2,5 stężenie w polskim powietrzu jest najwyższe spośród wszystkich krajów w Europie, które dostarczyły dane. Podobnie jest ze stężeniem rakotwórczego benzopirenu. Gdy Polskę podzielono na 46 stref w których badano jakość powietrza, okazało się, że aż w 42 poziom benzopirenu był przekroczony. Wczytywanie się w statystyki, liczby, tabelki i wykresy może przyprawić o ból głowy. Okazuje się bowiem, że wśród 10 europejskich miast z najwyższym stężeniem pyłów zawieszonych, aż 6 to miasta polskie; Kraków, Nowy Sącz, Gliwice, Zabrze, Sosnowiec i Katowice. Są miasta w których ponad połowa dni w roku ma przekroczone normy jakości powietrza. Kraków jest trzecim najbardziej zanieczyszczonym miastem europejskim. Brudne powietrze to nie tylko takie w którym przekroczone są normy stężania pyłów zawieszonych czy wielopierścieniowych węglowodorów aromatycznych (WWA), w tym benzopirenu (te powstają w wyniku niecałkowitego spalania np. drewna, śmieci czy paliw samochodowych). My i nasze dzieci (także te, które jeszcze się nie urodziły) oddychamy tlenkami azotu (główne źródło to spaliny samochodowe), tlenkami siarki (spalanie paliw kopalnych), przynajmniej kilkoma metalami ciężkimi np. kadmem, rtęcią, ołowiem, a także tlenkiem węgla.

Piece i samochody

Źródła poszczególnych zanieczyszczeń występujących w atmosferze są różne, ale w brew pozorom nie są one związane z przemysłem. Głównym ich źródłem jesteśmy my sami, a konkretnie indywidualne ogrzewanie domów i mieszkań oraz transport drogowy. Ponad 49 proc. gospodarstw domowych ma własne piece centralnego ogrzewania. Samo to nie byłoby problemem gdyby nie fakt, że przeważająca większość tych pieców to proste konstrukcje, które można scharakteryzować dwoma określeniami: są wszystkopalne i bardzo mało wydajne. Duża ilość paliwa, którą trzeba zużyć oraz fakt, że często używane jest w nich paliwo niskiej jakości powodują, że duże miasta w Polsce w okresie jesienno – zimowym praktycznie są cały czas zasnute mgłą. Swoje dokładają także samochody. Liczba samochodów osobowych zarejestrowanych w Polsce wynosi 520 pojazdów na 1000 mieszkańców a to więcej niż średnia europejska. Nie jest to bynajmniej powód do dumy. Spory odsetek samochodów na naszych drogach nie zostałby zarejestrowany w innych unijnych krajach. Także ze względu na toksyczność spalin.

>>> Polub FB.com/NaukaToLubie to miejsce w którym komentuję i popularyzuję naukę.

O szkodliwości zanieczyszczonego powietrza można by pisać długie elaboraty. W zasadzie nie ma organu, nie ma układu w naszym ciele, który nie byłby uszkadzany przez związki chemiczne zawarte w zanieczyszczeniach. Przyjmuje się, że z powodu zanieczyszczenia powietrza umiera w Polsce ponad 40 tys. osób rocznie. To ponad 12 razy więcej osób niż ginie wskutek wypadków drogowych! Grupami szczególnie narażonymi są dzieci i osoby starsze. Zanieczyszczenia bardzo negatywnie wpływają na rozwój dziecka przed urodzeniem. Prowadzone także w Polsce badania jednoznacznie wskazywały, że dzieci, których matki w okresie ciąży przebywały na terenach o dużym zanieczyszczeniu powietrza, miały mniejszą masę urodzeniową, były bardziej podatne na zapalenia dolnych i górnych dróg oddechowych i nawracające zapalenie płuc w okresie niemowlęcym i późniejszym, a nawet wykazywały gorszy rozwój umysłowy.

To problem każdego!

W sondażu przeprowadzonym na zlecenie Ministerstwa Środowiska w sierpniu 2015 r. czystość powietrza była wymieniana jako jedna z trzech – obok bezpieczeństwa na drogach i poziomu przestępczości – najważniejszych kwestii, od których zależy komfort życia w danej miejscowości. Problem z tym, że większość pytanych nie widzi tego problemu w miejscowości w której mieszka. Temat dla nich istnieje, ale jest abstrakcyjny, mają go inni. Prawda jest inna. Nawet w wypoczynkowych miejscowościach jak Zakopane czy Sopot jakość powietrza jest koszmarna. Tymczasem problem w dużej części można rozwiązać bez dodatkowych inwestycji czy zwiększania rachunki np. za ogrzewanie. Wystarczy zmienić własne nawyki. Kupno węgla o odpowiednich parametrach to pozornie wyższy wydatek. Lepszy węgiel ma jednak wyższą wartość opałową, czyli trzeba go zużyć mniej by wyprodukować podobna ilość ciepła. Nic nie kosztuje dbanie o sprawność domowego pieca przez regularne czyszczenie go. Nic nie kosztuje (można dzięki temu nawet zaoszczędzić), zamiana w mieście samochodu na komunikacje miejską albo rower.

A miejsce śmieci… jest w śmietniku. Inaczej pozostałości z ich spalania, będę kumulowały się w naszych płucach. Polacy w domowych piecach spalają rocznie do 2 mln ton odpadów. W konsekwencji do atmosfery i do naszych płuc trafiają m.in. toksyczne dioksyny, furany, cyjanowodór.

Tomasz Rożek

>>> Polub FB.com/NaukaToLubie to miejsce w którym komentuję i popularyzuję naukę.
1 komentarz do Oddychamy trucizną!!!

Ciemno to widzę

Dzisiaj nad ranem agencje prasowe podały smutną wiadomość. W wieku 88 lat, z powodów naturalnych, zmarła Vera Rubin. Amerykańska astrofizyk, odkrywczyni ciemnej materii. Tej jest znacznie więcej niż materii, która nas buduje. Czym jest? Ciemna materia to jedna z największych zagadek współczesnej nauki.

Dzisiaj nad ranem agencje prasowe podały smutną wiadomość. W wieku 88 lat, z powodów naturalnych, zmarła Vera Rubin. Amerykańska astrofizyk, odkrywczyni ciemnej materii. Tej jest znacznie więcej niż materii, która nas buduje. Czym jest? Ciemna materia to jedna z największych zagadek współczesnej nauki.

 

Gdyby zważyć cały wszechświat, wszystkie gwiazdy, planety, mgławice, komety, asteroidy,… wszystkie te obiekty stanowiłyby zaledwie kilka procent masy całości. Większość, przeważającą większość stanowiłaby nieznana forma materii i jeszcze bardziej tajemnicza forma energii.

Uparta dziewczyna

Co takiego może być tajemniczego w materii? Cóż, problem polega na tym, że my nie mamy pojęcia czy ciemna materia wygląda tak jak nasza, czy jest zbudowana tak jak nasza. Więcej, nie wiemy czy obowiązują ją te same prawa przyrody co materię naszą. Naszą czyli tą, z której jesteśmy zbudowani my i wszystko co nas otacza. Patrząc w niebo, nawet jeżeli używamy największych teleskopów nie widzimy ciemnej materii. Skąd zatem wiemy, że ona w ogóle istnieje? Z odpowiedzią na to pytanie wiąże się historia pewnej upartej młodej naukowiec.

>>> Więcej naukowych informacji na FB.com/NaukaToLubie.

W 1970 roku młoda doktorantka jednego z amerykańskich uniwersytetów, Vera Rubin, postanowiła zmierzyć prędkość gwiazd w standardowej galaktyce spiralnej. Badania nie zapowiadały się ciekawie, bo wiedza o tym, że gwiazdy w galaktyce spiralnej poruszają się jak woda w wirze, była wtedy powszechna. Uważano, że te gwiazdy, które znajdują się dalej od centrum galaktyki powinny poruszać się wolniej, niż gwiazdy, które znajdują się bliżej jej środka. Verze odradzano zajmowanie się tym tematem.

q-100No bo w końcu po co robić pomiary, skoro wiadomo jaki będzie ich wynik? Vera uparła się jednak, że chce swoje obserwacje przeprowadzić. I odkryła… że niezależnie od odległości od centrum galaktyki, gwiazdy mają taką samą prędkość. Ta jedna obserwacja zburzyła fundament na którym stała wiedza o galaktykach. Od teraz nic się nie zgadzało. Takie galaktyki nie miały prawa istnieć. A przecież istniały. Jeżeli ktokolwiek miał wątpliwość, mógł spojrzeć przez teleskop. Próba wyjaśnienia tego fenomenu była jeszcze bardziej zaskakująca niż samo odkrycie.  Nikt – z Verą Rubin włącznie – nie miał wątpliwości, że za ruch gwiazd w galaktyce odpowiedzialna jest grawitacja. Problem polegał na tym, że jej źródło głównie znajduje się w centrum galaktyki. Tak przynajmniej myślano. Tymczasem Vera Rubin uznała, że centrum galaktyki wcale nie musi być jedynym miejscem silnie przyciągającym gwiazdy. Uznała, że pomiędzy gwiazdami musi być jakaś masa dodatkowa, taka, która nie świeci (i jej nie widać). To ona jest źródłem siły grawitacyjnej, która powoduje, że wszystkie gwiazdy w galaktyce mają taką samą prędkość. Jak taką masę sobie wyobrazić? Może jako chmurę niewidocznej dla nas materii w której galaktyka jest zanurzona? Może gwiazdy na tej chmurze się unoszą tak jak oka tłuszczu unoszą się na powierzchni rosołu?

Coś się odkleiło

Potem zaczęto się przyglądać innym galaktykom, gromadom galaktyk i jeszcze większym strukturom. Wszędzie widziano efekt działania ogromnej siły grawitacji. Tyle tylko, że źródła tej siły, czyli samej masy nigdzie nie dostrzeżono. Szybko policzono, że gdyby nie ciemna materia, galaktyki rozsypałyby się. Siła grawitacji jest za mała by duże kosmiczne struktury utrzymywać w porządku, potrzeba kleju, czegoś co to wszystko scala. No i to jest największa tajemnica, czym ten klej jest? Jak wygląda, co jest jego źródłem? I czy stosuje się do praw natury, które obowiązują w naszym świecie?

>>> Więcej naukowych informacji na FB.com/NaukaToLubie.

Co do tego można mieć wątpliwości po ostatnich obserwacjach zespołu naukowców z największych na świecie ośrodków, w tym NASA, ESA (Europejska Agencja Kosmiczna) oraz kilku amerykańskich uniwersytetów. Korzystając z danych obserwacyjnych teleskopu kosmicznego Hubble’a oraz teleskopu VLT należącego do Europejskiego Obserwatorium Południowego, udało się sfotografować zderzenie czterech galaktyk wchodzących w skład gromady galaktyk Abell 3827. Dokładna obserwacja ruchu gwiazd wchodzących w skład tych galaktyk, dokładna obserwacja biegu promieni światła pozwoliła astronomom stwierdzić, że ciemna materia oderwała się od jednej ze zderzających się galaktyk. Brzmi co najmniej abstrakcyjnie, ale tak rzeczywiście jest. Za jedną z galaktyk, w odległości kilku tysięcy lat świetlnych ciągnie się obłok czegoś, czego co prawda nie widać, ale co wpływa grawitacyjnie na całe otoczenie. Tego „czegoś” nie powinno tam być! To „coś”, czyli ciemna materia, powinno być we wnętrzu galaktyki, pomiędzy gwiazdami, które galaktykę tworzą. Co takiego się stało, że materia „zwykła” i ciemna, w tym konkretnym przypadku odłączyły się od siebie? Na to pytanie nie ma dzisiaj odpowiedzi, trudno też powiedzieć czy takie sytuacje zdarzają się często. Ta jest pierwszą tego typu. Choć szczerze mówiąc, o niczym nie musi to świadczyć, nie jesteśmy zbyt dobrze w obserwowaniu czegoś… czego nie widać.

Pajęczyna

Jednym z pomysłów na wyjaśnienie zaobserwowanego zjawiska jest to, że ciemna materia nie stosuje się do praw, które nas obowiązują, że grawitacja działa na nią inaczej niż na obiekty „zwykłej” materii. Na razie, to zwykłe gdybanie. Ale to nie znaczy, że kosmolodzy i astrofizycy nie próbują ciemnej materii złapać. Jednym ze sposobów na jej poznanie jest tworzenie map jej rozmieszczenia. To bardzo trudna sztuka, ale czasami się udaje. Takie mapy tworzy się po to, by znaleźć klucz, by zobaczyć gdzie ciemna materia szczególnie chętnie się grupuje. To może pomóc w określeniu jej właściwości.

seqD_063Takie trójwymiarowe  mapy różnych części kosmosu powstają od wielu lat. Właśnie opublikowano kolejną, dokładniejszą niż poprzednie. Pracował nad nią zespół trzystu naukowców z całego świata. I została zaprezentowana podczas ostatniego spotkania Amerykańskiego Towarzystwa Fizycznego w Baltimore. Mapa jest dość spora, zawiera miliardy gwiazd i obejmuje całe… cztery dziesiąte procent nieba. Co ciekawe, na wielu mapach nieba, na których zaznacza się występowanie ciemnej materii, jest ona uformowana w postaci włókien. Po raz pierwszy udało się to zauważyć kilka lat temu, gdy dzięki użyciu Obserwatorium Kecka na Hawajach astrofizycy obserwowali kwazar UM287. Wyniki ich prac były opublikowane w Nature. Kwazar o którym mowa oddalony jest od Ziemi o około 10 miliardów lat świetlnych. Kwazary przypominają gwiazdy, ale w rzeczywistości są bardzo aktywnymi galaktykami, które „wyrzucają” w przestrzeń ogromne ilości energii. Badacze wykorzystali to promieniowanie tak, jak wykorzystuje się światło latarki, wchodząc do ciemnego pokoju. Światło kwazaru UM287 padało na ogromną, mającą średnicę dwóch milionów lat świetlnych chmurę gazu. Ile to jest 2 miliony lat świetlnych? Trudno to sobie wyobrazić. Układ Słoneczny ma średnicę około 30 dni świetlnych, a cała Galaktyka Drogi Mlecznej nieco ponad 100 tys. lat świetlnych. Oświetlana przez kwazar chmura pyłu była więc 20 razy większa od naszej galaktyki.

>>> Więcej naukowych informacji na FB.com/NaukaToLubie.

Wracając jednak do ciemnej materii. Astronomowie analizując rozchodzenie się światła w tej chmurze, zauważyli, że materia nie jest w niej równomiernie rozłożona, że tworzy coś w rodzaju włókien. Podali hipotezę, że to włókna ciemnej materii. Obserwacja jest w zgodzie z modelami teoretycznymi, które mówią, że ciemna materia nie jest posklejana jak materia widzialna w obiekty takie jak np. planety czy gwiazdy, czyli w struktury kuliste. Przypomina raczej pajęczynę na której „utkany” jest cały wszechświat. Kawałek tej pajęczyny właśnie zauważono. Nigdy wcześniej nie widziano bezpośrednio takich włókien.

Przegrana grawitacja

Ciemna materia – zdaniem astronomów – ma w odpowiadać za kształt dużych obiektów, takich jak np. galaktyki czy ogromne chmury gazu i materii. Trudno powiedzieć, czy może budować całe (ciemne) galaktyki. Pewne jednak jest, że wszechświat składa się z ciemnej materii w około 24 proc. Materia widzialna, taka z której i my jesteśmy zbudowani tworzy go w około 4 procentach. Razem 28 proc. Gdzie jest reszta? Czym jest reszta? I to jest chyba największa zagadka kosmologii. 72 proc. wszechświata to ciemna energia. Nie wiadomo czym jest, nie wiadomo gdzie jest. Być może wszędzie dookoła, być może jest gdzieś skupiona. Wydaje się, że na małych odległościach nie widać efektów jej działania. Być może są one tak ulotne, że nie potrafimy ich zarejestrować. Gdy jednak spojrzeć na kosmos w dużej skali, skali nawet nie galaktyk, tylko gromad galaktyk czy supergromad… Galaktyki oddalają się od siebie. Czym dalej są, tym szybciej się oddalają. Dlaczego tak się dzieje? Dlaczego grawitacja, przyciąganie, nie powoduje, że zaczną się do siebie przybliżać? Dzisiaj uważa się, że to właśnie ciemna energia powoduje puchnięcie wszechświata. A to znaczy, że w pewnym sensie działa przeciwko grawitacji. Ta ostatnia na małych dystansach tą walkę wygrywa. Ale w dużych skalach, to ciemna energia króluje.

Wszechświat jest fascynujący! I wciąż tajemniczy.

Tomasz Rożek

>>> Więcej naukowych informacji na FB.com/NaukaToLubie.

1 komentarz do Ciemno to widzę

Jak fotografować SUPERKsiężyc?

Każda pełnia Księżyca jest doskonałą okazją do fotografowania. W zasadzie to może być wstęp do astrofotografii. Po pierwsze Księżyca nie da się na nocnym niebie pomylić z jakimkolwiek obiektem niebieskim….

Każda pełnia Księżyca jest doskonałą okazją do fotografowania. W zasadzie to może być wstęp do astrofotografii. Po pierwsze Księżyca nie da się na nocnym niebie pomylić z jakimkolwiek obiektem niebieskim. Po drugie, po to by fotografować pełnię, nie trzeba inwestować w drogi sprzęt. Prawdę mówiąc nie trzeba inwestować wcale. Wystarczy aparat, który wielu z nas i tak ma w domu. 14 listopada nałożą się na siebie dwa zjawiska. Pełnia Księżyca i jego maksymalne zbliżenie do Ziemi. Choć tarcza Srebrnego Globu nie będzie zauważalnie większa, to jego jasność zwiększy się o 20 – 30 proc. Tylko jak zrobić zdjęcie, które byłoby dla nas powodem do domy (a nie wstydu)?

Oprócz aparatu, w zasadzie jedynym sprzętem o jaki warto się zatroszczyć, jest statyw. Zachęcam do ustawienia aparatu w tryb manualny. W trybie automatycznym wszystkie zdjęcia będą bardzo do siebie podobne. Na „manualu” możesz poeksperymentować.

No to do rzeczy:

Ostrość. Jeżeli mamy aparat w trybie manualnym, ostrość trzeba ustawić na nieskończoność. W trybie manualnym powinna się ustawić automatycznie (autofocus).

Czułość. Jeżeli aparat umożliwia ustawianie czułości (ISO), tym parametrem można się nieco pobawić, uzyskując czasami bardzo ciekawe efekty. Czym niższa czułość tym wyraźniejsze będzie zdjęcie (niższy poziom szumów). Niestety czym niższa czułość, tym dłuższy musi być czas naświetlania, a to może być problemem np. gdy nie mamy statywu albo gdy w kadrze są szybko poruszające się obiekty. Ich rozmazanie może być dodatkowy atutem zdjęcia. No ale to już kwestia gustu fotografa. Jeżeli chcemy by czas otwarcia migawki był jak najkrótszy, trzeba ustawić wysoką czułość. W takim wypadku na zdjęciu pojawiają się szumy („ziarno”). Może ono dodać artyzmu, ale znowu, to kwestia gustu. Dobra rada: Jak tylko będzie odpowiednia pogoda, Księżyc w pełni będzie można obserwować na tyle długo, że bez pośpiechu i stresu warto poeksperymentować. Ustawiaj różne czułości. Zawsze lepiej mieć więcej zdjęć (z których część wyląduje w koszu), niż żałować, że zrobiło się za mało.

>>> Więcej naukowych informacji na FB.com/NaukaToLubie.

Czas naświetlania. Bardzo trudno zrobić zdjęcie „z ręki” gdy czas otwarcia migawki wynosi mniej niż 1/30 s. Tym bardziej że mówimy o fotografowaniu bardzo odległego obiektu. Stąd jeszcze raz sugestia, by zaopatrzyć się w statyw, nawet gdyby miał być najprostszy. Jeżeli nie masz, obserwuj SUPERKsiężyc z miejsca w którym możesz oprzeć aparat o drzewo, krzesło czy chociażby słup ogrodzenia.

Podobnie jak w przypadku ustawiania czułości, warto poeksperymentować ustawiając różne wartości czasów otwarcia migawki. Zdziwisz się jak różne mogą być zdjęcia tego samego obiektu. Czym krótszy czas migawki, tym bardziej otwarta musi być przysłona aparatu, gdy czas jest długi, przysłona musi być „domknięta”. I tylko z pozoru nie robi to różnicy. Gdy Księżyc będzie nisko nad horyzontem, gdy w kadrze będzie nie tylko jego tarcza ale także np. drzewa albo budynki, domknięta przysłona (wartości od 11 w górę) umożliwi zrobienie zdjęcia na którym ostre będą wszystkie obiekty. Otwarta przysłona (o wartości do 4,5) spowoduje że ostre będą tylko te obiekty na które ustawiona zostanie ostrość. Reszta będzie rozmazana. Jeżeli nie czujesz się na siłach operować przysłoną, ustaw jej automatykę i operuj czasem migawki. Zdziwisz się jak różne zdjęcia uzyskasz.

Ogniskowa. Wszystko zależy od kompozycji zdjęcia, a wiec od tego co chcesz na nim mieć. Jeżeli tylko tarczę Księżyca, ustaw jak najdłuższą ogniskową (jak najbardziej przyzoomuj). Unikaj zoomu cyfrowego, zdjęcie zawsze możesz skadrować na komputerze.

>>> Więcej naukowych informacji na FB.com/NaukaToLubie.

Napisałem to już tutaj kilka razy, ale napisze jeszcze raz. EKSPERYMENTUJ. Masz sporo czasu. Nie ma sensu robienie kilkunastu czy kilkudziesięciu zdjęć przy takich samych parametrach. Baw się ustawieniami czasu, baw przysłoną i czułością. Jeżeli masz zmienne obiektywy, korzystaj z tego. Spróbuj zmienić lokalizację. Na długich czasach pięknie na tle Księżyca wyglądają np. jadące samochody, albo panorama oświetlonego miasta. Ponadto:

– Robiąc zdjęcie korzystaj z samowyzwalacza albo ze zdalnie uruchamianej migawki. W ten sposób nie poruszysz aparatu w czasie robienia zdjęcia.

– Spróbuj zrobić kilka zdjęć przy tych samych parametrach po to by potem nałożyć je na siebie. Zobaczysz, że uzyskasz ciekawy efekt.

– Spróbuj zrobić kilkanaście tak samo skadrowanych zdjęć (nie ruszając aparatu) np. co kilka minut. Nakładając je na siebie uzyskasz… prostą animację.
A jak już zrobisz dobre zdjęcie, pochwal się nim na FB.com/NaukaToLubie 

Powodzenia !!!

Brak komentarzy do Jak fotografować SUPERKsiężyc?

NASA nie zmienia horoskopu!!!

Ta wiadomość przeorała dzisiejsze internety. NASA zmienia znaki zodiaku. Co za bzdura! Astrologia nie jest żadną nauką, a NASA nie zajmuje się gusłami. Wiara w magiczną moc dnia, w którym się urodziło, jest kompletną bzdurą.

Ta wiadomość przeorała dzisiejsze internety. NASA zmienia znaki zodiaku. Co za bzdura! Astrologia nie jest żadną nauką, a NASA nie zajmuje się gusłami. Wiara w magiczną moc dnia, w którym się urodziło, jest kompletną bzdurą.

>>> Więcej naukowych informacji na FB.com/NaukaToLubie.

O zmianie znaków zodiaku słyszę regularnie od kilku już lat. Tak jak gdyby „znak zodiaku” to było coś, co ma swoje miejsce albo coś, co da się precyzyjnie określić. Tak nie jest, choć kiedyś tak było. Astronomia i astrologia były jak dwie siostry bliźniaczki. Dorastały razem i uczyły się razem. Z tą tylko różnicą, że jedna z sióstr była pilną uczennicą, która czasami musiała iść pod prąd swojej epoki, a druga była wygodna i pragmatyczna. Druga siostra, Astrologia, była konformistką. W efekcie Astronomia i Astrologia rozeszły się ponad dwa tysiące lat temu. Astronomia szła naprzód, a astrologia stała w miejscu.

Dwie latarki 

>>> Więcej naukowych informacji na FB.com/NaukaToLubie.

Układ Słoneczny znajduje się w galaktyce Drogi Mlecznej, w jednej z jej odnóg, zwanych Ramieniem Oriona. Choć kosmos to głównie pustka, zdarzają się w nim niewielkie (w porównaniu z tą pustką) wyspy materii. Są nimi właśnie galaktyki. Jesteśmy otoczeni gwiazdami. Są daleko, ale nie aż tak, by nie były widoczne. Na niebie w pogodną noc można zobaczyć kilka tysięcy świetlnych punktów. Wyobraźnia człowieka już tysiące lat temu te punkty pogrupowała w kształty, czyli konstelacje. Jedną z najbardziej znanych jest Wielki Wóz (część gwiazdozbioru Wielkiej Niedźwiedzicy), który składa się z siedmiu gwiazd.  Gwiazdozbiory to grupa gwiazd, które nie są ze sobą nijak związane, ich bliskość jest pozorna, zajmują po prostu określony obszar sfery niebieskiej. Jak to rozumieć? Wyobraźmy sobie dwie latarki zapalone w ciemną noc. Tak ciemną, że innych elementów krajobrazu nie byłoby widać. Nie jesteśmy w stanie ocenić, która latarka jest bliżej, a która dalej.  Tym bardziej że latarka bliższa może świecić słabszym światłem, a ta dalsza może być potężnym reflektorem. Tak właśnie jest z gwiazdami. Na oko wszystkie gwiazdy nocnego nieba są w takiej samej odległości od nas. Niektóre z nich układają się w figury, postacie, a nawet całe sceny. Trzeba do tego sporej wyobraźni, ale tej nigdy ludziom nie brakowało. I tak niebo dla starożytnych było teatrem, sceną, na której w różnych częściach roku pojawiały się mityczne stwory, zwierzęta, herosi i bóstwa.

12 czy 13? 

>>> Więcej naukowych informacji na FB.com/NaukaToLubie.

Dla obserwatorów nieba szczególne znaczenie odgrywały gwiazdozbiory znajdujące się w tzw. zodiaku, a więc w pasie nieba, po którym poruszają się Słońce, Księżyc i inne planety. W starożytnej Babilonii czy Asyrii wyobrażano sobie, że gwiazdozbiory leżące na zodiaku są śladami na drodze, po której porusza się nasza dzienna gwiazda. Że dzielą tę drogę na etapy, a każdy z tych etapów jest w jakimś sensie charakterystyczny. Gwiazdozbiorów leżących w zodiaku jest 13 i tutaj pojawia się pierwszy problem. Znaków zodiaku jest 12. Ten brakujący to Wężownik. Ale o tym za chwilę. 12 gwiazdozbiorów w zodiaku podzieliło rok na 12 części. Chciałoby się napisać: na „równe części”, ale… gwiazdozbiory są różnej wielkości. Z kalendarza wynika, że okresy odpowiadające poszczególnym znakom zodiaku są mniej więcej równe. Tymczasem… Słońce przez gwiazdozbiór Panny przechodzi 42 dni, a przez Skorpiona tylko 6 dni. Na dodatek granice między gwiazdozbiorami są czysto umowne. Trudno rozstrzygnąć, czy Słońce jest wciąż na tle gwiazdozbioru Skorpiona czy już Strzelca. Okresy, gdy Słońce przechodzi przez kolejne gwiazdozbiory (choć jest to ruch pozorny, bo to Ziemia się obraca i dlatego widzimy Słońce na różnym tle), są uzależnione od tego, jak zostaną wyznaczone granice między nimi. W wyniku dosyć pokrętnego podziału Słońce jest w znaku Panny przez 30 dni, choć w rzeczywistości powinno być przez wspomniane 42, a w Skorpionie przez 29 dni, choć w rzeczywistości na tle tego gwiazdozbioru znajduje się tylko 6 dni. Od czego więc zależeć mają cechy człowieka? Od rzeczywistego znaku zodiaku, w którym było Słońce w dniu urodzenia, czy od znaku uznanego zwyczajowo? To ważne pytanie, bo z tablic astronomicznych wynika, że Słońce przechodzi na tle gwiazdozbioru Panny od 16 września do 30 października. Astrologowie uważają jednak, że Słońce jest w Pannie od 23 sierpnia do 22 września. Ktoś, kto urodził się, powiedzmy, 25 sierpnia, kalendarzowo (astrologicznie) jest więc Panną, ale Słońce w dniu jego urodzin było w znaku Lwa. Nawet przyjmując, że dzień urodzin ma jakiekolwiek znaczenie, przeważająca większość z tych, którzy czytają horoskopy, czyta nie ten, który powinna.

Wężownik wyleciał 

>>> Więcej naukowych informacji na FB.com/NaukaToLubie.

Dokładne granice między gwiazdozbiorami (nie tylko tymi z zodiaku) ustalono dopiero w 1928 r. w czasie kongresu generalnego Międzynarodowej Unii Astronomicznej. Teraz – można by pomyśleć – skończą się nieporozumienia. Przeciwnie. Dopiero od tego momentu widać, jak bardzo astrologia oddaliła się od astronomii. Astronomia idzie naprzód, a astrologia stoi w miejscu. Mimo znanych i ustalonych raz na zawsze granic astrolodzy nie zdecydowali się skorygować okresów, w jakich Słońce znajduje się na tle poszczególnych gwiazdozbiorów w zodiaku. Co więcej, w wyniku prac astronomów z Unii Astronomicznej do gwiazdozbiorów zodiakalnych powinna być zaliczona kolejna, 13. konstelacja Wężownika. Słońce wchodzi w jej „obszar” 30 listopada, a opuszcza go 17 grudnia. W astrologicznych znakach zodiaku po Wężowniku nie ma nawet śladu. A to dlatego, że starożytni, Wężownika nie widzieli. Gwiazdy z których „się składa” za słabo świecą. Ale jest jeszcze jeden powód bałaganu. Obrót Ziemi wokół własnej osi zajmuje jej dobę. Dlatego mamy dzień i noc. Na to nakłada się trwający rok bieg Ziemi wokół Słońca, którego skutkiem są pory roku. Ale Ziemia ma przynajmniej jeszcze jeden rodzaj ruchu regularnego, powtarzalnego. Oś Ziemi zatacza w przestrzeni koła, a pełny jej obrót zajmuje około 26 tys. lat i zwany jest rokiem platońskim. Wirującą Ziemię można porównać do wirującego zabawkowego bąka. I tak jak bąk nie wiruje w pozycji „pionowej”, tak samo oś obrotu Ziemi jest nachylona i zatacza w przestrzeni koła. Ten ruch to tzw. precesja. Ziemska precesja jest wynikiem przyciągania przez inne planety Układu Słonecznego, a także przez oddziaływanie grawitacyjne samego Słońca i Księżyca.

Zabawa dla naiwnych 

>>> Więcej naukowych informacji na FB.com/NaukaToLubie.

Ten dodatkowy ruch powoduje, że – co prawda powoli – zmienia się „widok” nocnego nieba. Nie są to zmiany duże, ale w ciągu setek lat… Gwiazdozbiory były znane przynajmniej 2–3 tys. lat przed Chrystusem. Od tamtego czasu naprawdę wiele się zmieniło. 2 tys. lat temu Słońce w dniu równonocy wiosennej wchodziło w gwiazdozbiór Barana (chodzi o wiosnę na półkuli północnej, ta na półkuli południowej jest przesunięta o pół roku). Dzisiaj jest w gwiazdozbiorze Ryb. Za około 600 lat w pierwszym dniu wiosny Słońce będzie w gwiazdozbiorze Wodnika. Co na to astrologia? Nic. Nie bierze w ogóle pod uwagę faktu precesji Ziemi. Tak jak gdyby nasza wiedza zatrzymała się kilka tysięcy lat temu. Równonoc wiosenna następuje z 20 na 21 marca. I właśnie wtedy według astrologów Słońce wchodzi w gwiazdozbiór Barana. W rzeczywistości znajdzie się w nim dopiero 29 dni później. W magiczną moc dnia urodzenia wierzy sporo osób. W telewizjach kablowych funkcjonują całe kanały, w których wróżki i wróżbici odczytują przyszłość ze szklanych kul, z kart czy z gwiazd. Horoskopy publikuje wiele gazet, a niektóre z nich z okazji Nowego Roku dołączają do swoich tytułów całe wkładki temu poświęcone. Gdy prowadzono badania nad sprawdzalnością horoskopów, okazywało się, że sprawdzają się one w takiej samej mierze zarówno wtedy, gdy czyta się horoskop swój, jak i wtedy, gdy zapoznaje się z przeznaczonym dla kogoś innego. Cała sztuka pisania horoskopów nie polega bowiem na tym, żeby cokolwiek przepowiedzieć, tylko na tym, by pasowało wszystkim i w każdej sytuacji. Gwiazdy, planety czy komety nie mają nic do tego.

A co z NASA? Cóż, agencja kosmiczna co jakiś przypomina, że astrologia to nie nauka cytując to, co napisałem powyżej. O niezauważonym gwiazdozbiorze, o precesji czy o nieregularnych granicach pomiędzy gwiazdozbiorami. Tylko tyle i aż tyle.

>>> Więcej naukowych informacji na FB.com/NaukaToLubie.

Brak komentarzy do NASA nie zmienia horoskopu!!!

„Ziemia” w sąsiedztwie

Jest skalista, jest bliziutko nas i ma wielkość podobną do wielkości Ziemi. Co jednak najważniejsze, znajduje się w tzw. strefie życia, czyli ani nie za blisko, ani nie za daleko od swojej gwiazdy. Właśnie odkryto nową planetę.

Jest skalista, jest bliziutko nas i ma wielkość podobną do wielkości Ziemi. Co jednak najważniejsze, znajduje się w tzw. strefie życia, czyli ani nie za blisko, ani nie za daleko od swojej gwiazdy. Właśnie odkryto nową planetę.

>>> Więcej naukowych informacji na FB.com/NaukaToLubie.

Planeta krąży wokół czerwonego karła Proxima Centauri, czyli gwiazdy, która jest naszą najbliższą gwiazdową sąsiadką. Na odkrytej planecie woda może być w stanie ciekłym. Proxima b została złapana dzięki obserwacjom prowadzonym w Chile. Krąży wokół swojej gwiazdy macierzystej nieco ponad 11 ziemskich dni. Tak jak wspomniałem Proxima Centauri jest naszą najbliższą sąsiadką, a to oznacza, że planeta, która wokół niej krąży jest najbliższą nam planetą pozasłoneczną. Czy jest na niej życie? Tego nie wiadomo i trudno nawet powiedzieć w jaki sposób moglibyśmy się tego dowiedzieć. Bardzo dokładne obserwacje mogą nam udzielić inf. o składzie atmosfery albo nawet związków na powierzchni planety, ale na przelot na Proxima b będzie trzeba jeszcze poczekać. Gwiazda i planeta oddalone sa od nas o około 4 lata świetlne, czyli około 38 bilionów kilometrów.

>>> Więcej naukowych informacji na FB.com/NaukaToLubie.

Dla tych, którzy gwiazdę i planetę będą próbowali wypatrzyć na nocnym niebie, także nienajlepsza wiadomość. Obserwacja pozasłonecznych planet jest ekstremalnie trudna nawet przez profesjonalne teleskopy nie mówiąc już o amatorskich. Gołym okiem wcale nie da się ich zobaczyć. Niestety gołym okiem nie widać nawet gwiazdy Proxima Centauri. Jest czerwonym karłem, który świeci za słabym światłem. – Po raz pierwszy zaczęliśmy podejrzewać, że wokół tej [Proxima Centauri] gwiazdy krąży planeta już w 2013 roku. Od tamtego czasu obserwowaliśmy gwiazdę kilkoma różnymi teleskopami – powiedział Guillem Anglada-Escude, szef zespołu astronomów zaangażowanych w projekt badawczy Pale Red Dot.

Masa odkrytej planety to 1,3 masy Ziemi. Planeta krąży wokół swojego słońca w odległości 7 mln kilometrów, a to wielokrotnie mniej niż odległość Ziemia – Słońce. To znacznie mniej niż odległość Słońce – Merkury. Proxima Centauri jest jednak inną gwiazdą niż ta nasza. Świeci słabym światłem i dlatego mimo małej odległości gwiazda – planeta, na powierzchni tej drugiej może znajdować się woda w stanie ciekłym.

>>> Więcej naukowych informacji na FB.com/NaukaToLubie.

Teraz, te Proxima b będzie głównym celem obserwacji tych astronomów, którzy będą poszukiwali życia na obcych planetach. Jeżeli kiedykolwiek (a to na pewno nastąpi) zorganizujemy międzygwiezdną misję, na pewno pierwszym jej celem będzie właśnie nowo odkryta planeta.

Tomasz Rożek

Brak komentarzy do „Ziemia” w sąsiedztwie

O wycince Puszczy słów kilka

Ten spór trwa od kilku miesięcy. Dużo w nim emocji, znacznie mniej faktów. Ekolodzy, opierając się na opinii naukowców, biją na alarm, a rząd (ministerstwo środowiska) właśnie zezwoliło na zwiększenie limitów wycinki drzew w Puszczy Białowieskiej. Komu wierzyć? O co w tym chodzi?

Ten spór trwa od kilku miesięcy. Dużo w nim emocji, znacznie mniej faktów. Ekolodzy, opierając się na opinii naukowców, biją na alarm, a rząd (ministerstwo środowiska) właśnie zezwolił na zwiększenie limitów wycinki drzew w Puszczy Białowieskiej. Komu wierzyć? O co w tym chodzi? 

>>> Więcej naukowych informacji na FB.com/NaukaToLubie.

O polityce tutaj nie piszę. Ale co zrobić jak czasami polityki nie da się ominąć? Spór o najstarszy w Europie fragment lasu pierwotnego musi wzbudzać emocje. Te są tym większe, że na różnicę zdań pomiędzy Zielonymi i Ministerstwem Środowiska nakłada się spór czysto polityczny. Emocjom nie ma się jednak co dziwić, w końcu puszcza to ogromna wartość przyrodnicza i kawał polskiej historii. Są w niej miejsca, które nigdy nie zostały poddane – pośrednio ani bezpośrednio – modyfikacjom ze strony człowieka. Reszta puszczy to niemal w całości las naturalny, czyli obszar, w którym człowiek gospodaruje, ale w sposób mocno ograniczony.

Puszcza polskich królów 

To w sumie bardzo niewielki teren. Po polskiej stronie granicy znajduje się 42 proc. obszaru puszczy (około 50 km z południa na północ, 55 km ze wschodu na zachód), reszta leży na Białorusi. Choć w puszczy znajdują się miejsca, w których las ma charakter pierwotny, i takie, gdzie ma charakter naturalny, w części wpływ gospodarki leśnej jest widoczny. Ta ingerencja w las to nie tylko wynalazek współczesności, ale wynik nasadzeń drzew przed I wojną światową, w okresie międzywojennym i w latach powojennych.

To wtedy puszcza została „wzbogacona” o gatunki drzew, które naturalnie w niej występowały dużo rzadziej, głównie świerki. Dzisiaj sadzone są inne gatunki, co ma przywrócić puszczy jej naturalny charakter. Miejsce drzew „obcych” zajmują dęby, lipy, klony i wiązy. Po raz pierwszy o Puszczy Białowieskiej można przeczytać w opisie polowania, na które w 1409 roku wybrał się Władysław Jagiełło, by zdobyć żywność dla rycerzy wyruszających na wojnę przeciwko zakonowi krzyżackiemu. Solone mięso w beczkach spławiano do Płocka.

>>> Więcej naukowych informacji na FB.com/NaukaToLubie.

Z niepotwierdzonych źródeł wynika także, że w czasie tego polowania wyłapywano dzikie konie (tarpany), które następnie służyły jako konie bojowe. Puszcza Białowieska (choć oczywiście w zupełnie innym niż dzisiaj kształcie) podlega ochronie co najmniej od 600 lat. Była terenem myśliwskim do wyłącznego użytku królów polskich i książąt litewskich. Każda czynność (łowienie ryb, zakładanie barci, koszenie łąk), z wchodzeniem do puszczy włącznie, była regulowana nadawanymi przez króla (konkretnym osobom, ewentualnie osadom) pozwoleniami. Nawet najznamienitsi polscy dostojnicy nie mogli liczyć na stałe zezwolenie na polowanie w puszczy, od czasu do czasu dostawali jednorazowy „przydział”. Za zabicie zwierzęcia bez pozwolenia groziła kara śmierci.

Równie restrykcyjnie podchodzono do wyrębu drzew. W całym XVI wieku wydano tylko dwa pozwolenia: w 1521 roku król Zygmunt I Stary pozwolił Cerkwi w Szereszewie na wyrąb drzew na potrzeby własne, a w 1537 roku królowa Bona pozwoliła na to Kościołowi w tej samej miejscowości. Przez następnych kilkaset lat nowe pozwolenia na wyrąb były nadawane sporadycznie. Paradoksalnie puszczę bardziej cenił rosyjski carat niż polscy komuniści. Zaborcy traktowali ją jako miejsce rozmnażania się zwierząt i teren myśliwski. Dzięki dokarmianiu, zwierzyny w puszczy było za dużo, czego efektem było drastyczne zahamowanie wzrostu drzew liściastych.

721px-Canis_lupus_laying

Wilk

Zwierzęta zjadały młode pędy. Przed I wojną światową po raz pierwszy na masową skalę zalesiano puszczę świerkami. Stopniowa poprawa ochrony puszczy zaczyna się dopiero po 1989 roku. Projekt utworzenia Parku Narodowego Puszczy Białowieskiej pojawia się w 1994 roku, choć już 15 lat wcześniej została ona wpisana przez UNESCO na Światową Listę Rezerwatów Biosfery. Dzisiaj z 860 km kw. puszczy około 300 km kw. to lasy naturalne i zbliżone do naturalnych. A w nich drzewa, których nigdzie indziej w Europie nie znajdziemy. To kwestia nie tylko estetyki, ani tym bardziej potencjału gospodarczego (150-letnie drzewo kiepsko nadaje się na deski).

Stare drzewo znajdujące się w lesie pierwotnym jest nośnikiem genów, które są oryginalne i charakterystyczne dla tego regionu świata i są wynikiem naturalnej selekcji. A to ogromnie istotne. Posadzenie drzewa tego samego gatunku nie zastąpi tego skarbu. Liście obydwu drzew będą pewnie miały ten sam kształt, ale pula genowa będzie inna. W puszczy od dziesięcioleci prowadzone są badania i obserwacje, których wartość jest bezcenna.

Leśnicy leczą puszczę 

Najstarszy nienaruszony las, gatunki zwierząt i roślin występujące tylko w tym miejscu, w końcu oryginalne geny. O co w takim razie jest awantura? O przyszłość. Leśnicy chcieli zwiększyć ilość ścinanych w puszczy drzew. Ekolodzy twierdzili (i dalej twierdzą), że to zaledwie wstęp do masowej wycinki w najstarszym lesie w Europie. Wycinki, która spowoduje straty przyrodnicze nie do odrobienia. Z kolei leśnicy przekonują, że zwiększona wycinka to konieczność, po to, by… puszcza przetrwała. Ekologom i leśnikom – przynajmniej w deklaracjach – chodzi o to samo, o zachowanie bezcennego dziedzictwa przyrodniczego.

>>> Więcej naukowych informacji na FB.com/NaukaToLubie.

Problem polega jednak na tym, że obie grupy uważają, iż aby osiągnąć ten cel, trzeba podjąć dokładnie odwrotne kroki. Jedni postulują: „Ręce precz od puszczy”, drudzy przekonują, że bez pomocy człowieka puszcza, a przynajmniej jej część, zostanie bezpowrotnie zniszczona. Dlaczego? Bo zmiany klimatu, a konkretnie rosnące temperatury średnioroczne, oraz odwodnienie powodują osłabienie niektórych gatunków drzew. Najbardziej podatne na niekorzystne zmiany są świerki.

596px-Europäische_Sumpfschildkröte_Emys_orbicularis

Żółw błotny jest bardzo rzadkim elementem fauny Puszczy By Böhringer Friedrich

Osłabione stają się łatwym celem dla leśnych owadów, np. korników. Biorąc pod uwagę nadreprezentację świerków w niektórych częściach puszczy (wynikającą ze sztucznego nasadzania), na niektórych obszarach ilość chorych drzew jest spora. Leśnicy chcą chronić zdrowe drzewa, wycinając chore. Nadleśnictwa (Białowieża, Hajnówka i Browsk) mają dziesięcioletni przydział (plan) na wycinkę drzew. Ten plan określa Ministerstwo Środowiska i jest w nim ustalona łączna masa drewna, jaka może być wycięta w ciągu 10 lat. Zwykle każdego roku wycina się 10 proc. dziesięcioletniego przydziału. Taki podział nie jest jednak obligatoryjny. Nadleśnictwo może podjąć decyzję, że w którymś roku ilość wyciętych drzew będzie większa, ale za to w kolejnych latach trzeba będzie wycinać mniej. Dzisiaj obowiązujące przydziały zostały określone na lata 2012–2021. Decyzją nadleśnictwa w trzech pierwszych latach obowiązywania planu (2012–2015) wycięto jednak prawie 90 proc. drzew przewidzianych do wycięcia przez 10 lat. Skąd to przyspieszenie? W opublikowanym na stronie internetowej Lasów Państwowych dokumencie pt. „Puszcza Białowieska potrzebuje ratunku”, sygnowanym przez Regionalną Dyrekcję Lasów Państwowych w Białymstoku, znalazło się stwierdzenie, że nadleśnictwo prowadziło „cięcia sanitarne mające na celu opanowanie gradacji kornika drukarza”.

Leśnicy uważają, że w puszczy panuje klęska kornika, która zagraża dalszemu istnieniu drzewostanów świerkowych, stanowiących na terenie Nadleśnictwa Białowieża ponad 30 proc. powierzchni leśnej (w całej puszczy ok. 10 proc). „Jedyną znaną naukom leśnym i skuteczną metodą walki z kornikiem i ograniczania jego gradacji jest usuwanie drzew zasiedlonych, by ograniczyć rozprzestrzenianie się szkodników” – piszą autorzy dokumentu.

Naukowcy bronią drzew

To, że korniki „siedzą” w puszczy, nie jest przedmiotem sporu. Tyle tylko, że nie wszyscy – tak jak leśnicy – uważają, że drzewa zjadane przez korniki trzeba usuwać. 17 naukowców napisało list zatytułowany „Dlaczego martwe świerki są potrzebne w Puszczy Białowieskiej”. Tego głosu nie można zlekceważyć, gdyż autorzy dokumentu to eksperci z takich dziedzin jak leśnictwo, biologia, agroekologia, entomologia i zoologia, przedstawiciele 14 polskich uczelni i instytucji badawczych.

>>> Więcej naukowych informacji na FB.com/NaukaToLubie.

Naukowcy w sposób jednoznaczny i przystępny tłumaczą, dlaczego usuwanie chorych drzew jest błędem. „Opanowane przez korniki świerki zamierają, ustępując miejsca drzewom liściastym, wymagającym dużej ilości światła i lepiej dostosowanym do aktualnych warunków środowiska. Naturalny proces zmiany struktury gatunkowej lasu jest długotrwały, jednak na żadnym z jego etapów nie ma zagrożenia dla trwałości leśnego ekosystemu” – uważają. Nie ukrywają też, że tam, gdzie świerków jest dużo, masowe ich wymieranie może sprawiać wrażenie klęski. Powołują się na przykład Beskidów, które wiele lat temu w sposób sztuczny zostały zalesione świerkami i sosnami. Badacze przestrzegają jednak przed chodzeniem drogą na skróty, szczególnie w Puszczy Białowieskiej (czyli przed wycięciem drzew, zaoraniem terenu i posadzeniem sadzonek drzew liściastych).

By Konrad KurzaczPimkee-mail: konrad.kurzacz@gmail.com - Praca własna, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=2065137

Mozaikowy układ zbiorowisk leśnych w Białowieskim Parku Narodowym. Na pierwszym planie widoczny ols z udziałem świerka. By Konrad KurzaczPimke

Argumentują bowiem (powołując się na badania), że „dynamika gradacji kornika niewiele się różni na terenach, gdzie wszelkimi dostępnymi środkami prowadzono walkę z kornikiem, i na terenach, gdzie takich działań nie prowadzono. Usuwanie zaatakowanych przez kornika lub zamarłych z innych przyczyn drzew nie stanowi skutecznej metody zatrzymania gradacji kornika i zamierania świerków, lecz może przynieść skutek przeciwny”. Dlaczego usuwanie chorych drzew zamiast sytuację poprawić, może ją pogorszyć? Badacze piszą, że w przypadku Puszczy Białowieskiej nie da się wyciąć wszystkich zaatakowanych drzew. Tymczasem umierające albo martwe drzewo „przyciąga” chrząszcze, które żywią się kornikami (chrząszcza wabi feromon, zapach wytwarzany przez samce korników w chwili opanowywania drzewa). Zdaniem autorów listu najskuteczniejszą metodą walki z kornikami jest pozostawienie lasu w spokoju.

„Duża koncentracja zamierających świerków opanowanych przez korniki staje się miejscem intensywnego namnażania się drapieżnych chrząszczy, a także innych drapieżnych i pasożytniczych owadów, które z takich miejsc rozprzestrzeniają się na kolejne obszary w poszukiwaniu swoich ofiar” – piszą autorzy tekstu. Choć przejściowo, ze względów estetycznych, niektóre fragmenty puszczy będą wyglądały nieatrakcyjnie, natura poradzi sobie ze szkodnikami.

Będzie awantura

Od wielu miesięcy na niezliczonych forach i stronach internetowych trwa awantura. Uzasadniona! Ministerstwo Środowiska nie przedstawia przekonywujących dowodów na to, że ma rację, z kolei leśnicy posługują się półprawdami. Ekolodzy – wręcz przeciwnie. Pokazują badania, cytują autorytety. I co? I nic, bo minister środowiska Jan Szyszko właśnie zatwierdził zwiększenie wycinku drzew w Puszczy. Zwiększone limity zakładają pozyskanie ponad 180 tysięcy metrów sześciennych drewna w ciągu najbliższych 10 lat. To prawie 5 razy więcej niż zakładał dotychczasowy plan.

>>> Więcej naukowych informacji na FB.com/NaukaToLubie.

Czy minister Szyszko nie zna badań, które mówią o tym, że wycinka nie polepsza, a wręcz może pogorszyć sytuację? Pomijam fakt, że grozi nam międzynarodowy skandal. Szkoda mi ostatniego w Europie, a może na całej północnej półkuli nizinnego lasu strefy umiarkowanej z całym jego bogactwem. Puszcza to nie tylko wysokie drzewa i duże zwierzęta (np. żubry), to bogactwo przyrody porównywalne do Wielkiej Rafy Koralowej!

Epipogium_aphyllum_plants

Krytycznie zagrożony wyginięciem w Polsce storzan bezlistny By BerndH

Organizacje ekologiczne biją na alarm, a leśnicy – nie negując tego, o czym piszą naukowcy – przypominają, że ich obowiązują przepisy i procedury zobowiązujące do przeciwdziałania takim zjawiskom jak plaga korników, że ich nadrzędnym celem jest troska o zachowanie trwałości lasów. Z tym ostatnim można by dyskutować, Lasy Państwowe to „firma” przynosząca ogromne zyski. Te pieniądze nie są inwestowane w ochronę lasów, tylko przelewane do budżetu państwa.

Leśnicy przypominają przy okazji, że na obszarach, na których świerków jest dużo, bez interwencji człowieka las z powodu umierania tych drzew będzie martwy. To prawda, ale… świerki, o których mowa, są w puszczy elementem sztucznym. Podatność Puszczy Białowieskiej na korniki jest skutkiem działalności człowieka przed dziesiątkami lat. Wycinanie tych drzew wcale nie spowoduje, że problem zniknie. To popełnianie tego samego błędu, czyli ingerencja w las.

Profesorze Janie Szyszko, nie idź tą drogą!

 

 

24 komentarze do O wycince Puszczy słów kilka

Świat między 44 zerami

W 2013 roku, na maturze z języka polskiego, uczniowie analizowali wstęp do mojej książki „Nauka po prostu. Wywiady z wybitnymi”. Rozwiązałem test maturalny stworzony do mojego tekstu i zdobyłem… około 70 proc. punktów. Dlaczego nie 100 proc? Części pytań nie zrozumiałem, część moich odpowiedzi nie trafiła w klucz. W skrócie z tekstu który sam zrozumiałem rozumiem ok. 70 proc. Nie świadczy to chyba o mnie najlepiej. Dzisiaj – nie tylko maturzystom – ten tekst przypominam.

W 2013 roku, na maturze z języka polskiego, uczniowie analizowali wstęp do mojej książki  „Nauka po prostu. Wywiady z wybitnymi”. Rozwiązałem test maturalny stworzony do mojego tekstu i zdobyłem… około 70 proc. punktów. Dlaczego nie 100 proc? Części pytań nie zrozumiałem, część moich odpowiedzi nie trafiła w klucz. W skrócie z tekstu który sam zrozumiałem rozumiem ok. 70 proc. Nie świadczy to chyba o mnie najlepiej. Dzisiaj – nie tylko maturzystom – ten tekst przypominam.

**************

Świat między 44 zerami

Widzialny Wszechświat ma rozmiar kilkunastu miliardów lat świetlnych. To około 1026 (1 z 26 zerami) metra. Z kolei najmniejsze struktury, których istnienia jesteśmy pewni, to budujące między innymi protony i neutrony kwarki. Mają rozmiar kilku attometrów, czyli 10-18 metra. Najmniejsze i największe obserwowane przez człowieka obiekty dzielą od siebie aż 44 rzędy wielkości! Kwarki są o 100 000 000 000 000 000 000 000 000 000 000 000 000 000 000 razy mniejsze od największego obiektu dociekań naukowców. Nasz świat mieści się w tych 44 zerach. Są w nim cząstki elementarne, żywe organizmy i ich DNA, Ziemia i inne planety. Są gwiazdy, galaktyki i gromady galaktyk. A gdzieś w środku jest człowiek. Jedyna znana istota, która chce wiedzieć i chce to wszystko zrozumieć.

Świat, ten zamknięty „między 44 zerami”, jest skonstruowany według uniwersalnych reguł. Człowiek ich nie tworzy, najwyżej odkrywa i nazywa. Na razie znamy je wycinkowo, choć chcielibyśmy oczywiście ogarniać w całości. Marzy nam się też, by w pełni je wykorzystywać. Nanotechnolodzy chcieliby tworzyć komputery oparte na węglu i projektować cząsteczki leków atom po atomie. Na razie jednak nie wiedzą jak. Biotechnolodzy chcą nadawać żywym organizmom dowolne cechy, chcą hodować tkanki, a może nawet całe organy, z jednej tylko komórki. Inni chcą poznać tajemnice mózgu (by skuteczniej się z nim komunikować), początków materii (by znaleźć źródło niewyczerpywalnej energii) czy klimatu (by zapobiegać ekstremalnym zjawiskom pogodowym).

Odkrywamy coraz więcej i nieustannie jesteśmy zaskakiwani złożonością świata, w którym żyjemy. Odkrywamy coraz więcej, a ciągle tyle pozostaje do poznania i zrozumienia. Horyzont poznania wcale się nie przybliża, gorzej … można odnieść wrażenie, że się oddala.  Nie przeszkadza nam to jednak marzyć.

Świat przyszłości, świat czasów, w których jeżeli wszystkie reguły zostaną poznane (czy to w ogóle kiedykolwiek nastąpi?), będzie światem dostosowanym przez człowieka do człowieka – tylko czy w ostatecznym rachunku dla człowieka. To wizja bardzo odległa, ale przecież zmierzamy ku niej od zawsze. Zaglądamy za horyzont zdarzeń w poszukiwaniu mechanizmów, które za tym wszystkim stoją, bo chcemy je wykorzystywać po swojemu, albo inaczej, na swój użytek. Coraz częściej zresztą nam się to udaje. Tymi mechanizmami, trybami i zębatkami są naukowe prawa przyrody. Nauczyliśmy się kontrolować reakcje jądrowe i dlatego potrafimy korzystać z energii atomowej. Wybudowaliśmy urządzenia, które odczytują niektóre intencje mózgu i dlatego możemy pomagać osobom niepełnosprawnym. W końcu dzięki poznaniu właściwości materii w skali mikro budujemy komputery, a zrozumienie sposobu zapisu informacji w naszym DNA już niedługo zaowocuje terapiami genowymi. To wszystko, te niewątpliwe osiągnięcia ludzkiego intelektu, nie zmieniają jednak faktu, że do poznania wszystkich reguł rządzących przyrodą (a może jest tylko jedna reguła uniwersalna, która stosuje się do wszystkiego?) sporo nam jeszcze brakuje. Czy w związku z tym warto zaprzątać sobie głowę refleksją nad przyszłością? Nad kierunkiem i tempem rozwoju nauki? Może lepiej upajać się wizją świata ułożonego, oswojonego, dostosowanego? Wizją świata przyszłości. Powód jest – jak sądzę – jeden. Uczymy się przez eksperyment. Rozwój sam się nie dzieje, a bez prób i bez błędów nie ma postępu. No właśnie – błędów. O te najłatwiej w pośpiechu. Świat rozwija się dzisiaj szybciej niż kiedykolwiek wcześniej, szybciej niż refleksja nad nim. Nie ma tygodnia bez spektakularnego odkrycia, bez przesunięcia granicy poznania. Wszystko dzieje się tak szybko, że słowo drukowane już dawno przestało nadążać. Wypiera je słowo wyświetlane na ekranie. Już nawet nie komputera stojącego na biurku, ale coraz częściej telefonu komórkowego, albo czegoś co telefonem jest tylko przy okazji.

Nasz świat jest pędzącym pociągiem, w którym siedzimy i patrzymy za okno. Wszystko jest zamazane. Nie widać szczegółów, nie ma czasu na analizę detali. Pędzimy do przodu. To wspaniałe… ale trzeba uważać. W przeszłości na przykład w czasie wojen i rewolucji zdarzało się, że gdy historia przyspieszała brakowało czasu na refleksję. Rzeczy działy się tak szybko, że konsekwencje czynów i decyzji czasami uświadamiano sobie zbyt późno. Wchodząc więc w erę „nano” czy „cyber” warto byłoby zdawać sobie sprawę ze wszystkich ewentualnych konsekwencji. Dopiero ta wiedza pozwala na w pełni świadome funkcjonowanie w dzisiejszym świecie. Skąd ją czerpać? Najlepiej u źródła.

Na początku XXI wieku żyjemy w świecie nieustannie kształtowanym, wręcz kreowanym przez naukę i technologię. W każdej epoce życie jednostki w jakimś stopniu zależało od postępu cywilizacji, ale nigdy nie zależało aż tak bardzo jak obecnie. Miasto bez prądu czy komunikacja bez Internetu nie istnieją. Nie potrafimy żyć bez prądu, Internetu, telefonu komórkowego i komputera. I nie chodzi o naszą wygodę czy przyzwyczajenia, ale o przetrwanie. Bez sieci komputerowej i komórkowej nie działają systemy sterujące pracą elektrowni, oczyszczalni ścieków, uzdatniania wody czy komunikacji (metro, tramwaje, koleje). Niedługo nie będzie istniała elektronika bez nanotechnologii i medycyna bez biotechnologii, a może nawet cybernetyki. Coraz częściej osobom chorym i niepełnosprawnym pomaga się wszczepiając zaawansowane technologiczne implanty i protezy. Niektórym to ratuje życie, innym ułatwia i czyni znośniejszym. Ale wszystkich w pewnym sensie uzależnia od technologii.

Być może z powodu wspomnianego uzależnienia naszego świata od osiągnięć naukowych, może dosłownego rozumienia słowa „demokracja”, a może z powodu asekuranckiej postawy polityków, coraz częściej od nie-specjalistów wymaga się zajmowania stanowiska w sprawach bezpośrednio związanych z nauką. Nigdy wcześniej tak nie było. W niektórych krajach to w referendach ważą się losy biotechnologii i energetyki. W innych pyta się obywateli o status ludzkiego embriona albo o moment, w którym można przerwać ludzkie życie. Tam gdzie formalnie plebiscytu nie ma, rządzący i tak przed podjęciem jakiejkolwiek decyzji przyglądają się słupkom sondaży. Zdanie naukowców, specjalistów zdaje się mieć mniejszą wartość niż opinie elektoratu, często manipulowanego przez sprawnych lobbystów.

W interesie wszystkich jest, by każdy obywatel, a nie tylko osoba z wykształceniem kierunkowym, mógł zabrać świadomy głos w toczących się dzisiaj na wielu frontach debatach z naukowym tłem. Gdy w każdych kolejnych wyborach frekwencja jest coraz niższa, mówi się o zagrożeniu demokracji. Zagrożeniem jest także to, że tak niewiele osób zdaje sobie sprawę z kierunków naszego rozwoju, z szans jakie przed nami stoją i z zagrożeń z nimi związanych. Jeden z moich rozmówców stwierdził, że naukowcy powinni uprawiać naukę, politycy powinni na nią dawać pieniądze, a społeczeństwo powinno kontrolować i jednych i drugich.  Gdy rządzący przed wieloma laty Niemcami kanclerz Gerhard Schroeder poszukiwał oszczędności i chciał obciąć nakłady na naukę, został powszechnie skrytykowany. W mediach pojawiały się nawet sondaże społeczne, z których wynikało, że Niemcy nie chcą w ten sposób oszczędzać. Nasi sąsiedzi zdają sobie po prostu sprawę z tego, że inwestowanie w naukę oznacza rozwój. Społeczeństwo może pośrednio – przez wybieranych polityków – wpływać na kierunek rozwoju nauki. O ile ma wiedzę, która umożliwia podjęcie świadomej decyzji. U nas nakłady na naukę czy nowe technologie nigdy nie były tematem debaty publicznej. Ani w czasie kampanii wyborczych, ani poza nimi. Dlaczego tak się dzieje? W powszechnym odczuciu polski naukowiec to ktoś zamknięty w hermetycznym laboratorium. Ktoś całkowicie oderwany od dnia codziennego. Przyjęło się u nas myśleć, że nauka ma swego rodzaju autonomię, jest niezależna od rzeczywistości. Niestety niebezpieczną konsekwencją takiej opinii jest przekonanie, że uprawianie nauki to sztuka dla sztuki. Trudno sobie wyobrazić większy absurd. Życie nie biegnie innym torem niż najnowsze osiągnięcia i technologie. Przeciwnie. Te obydwie dziedziny są ze sobą ściśle związane. Ale – i znowu wracamy do tego samego – skąd mamy o tym wiedzieć? Jak mamy wpływać na szybkość i kierunek zmian, skoro nie mamy o nich większego pojęcia? Warto wiedzieć więcej. I warto zajrzeć do źródeł.

Tomasz Rożek

 

Brak komentarzy do Świat między 44 zerami

Dzieciątko kręci pogodą

Wyobraź sobie wiatry, które od tysięcy, może setek tysięcy lat wieją tysiące kilometrów stąd. Wyobraź sobie dzień, w którym przestają wiać i w efekcie tego… zakwitają kwiaty w Dolinie Śmierci. Bzdury? Nie, szczera prawda.

Wyobraź sobie wiatry, które od tysięcy, może setek tysięcy lat wieją tysiące kilometrów stąd. Wyobraź sobie dzień, w którym przestają wiać i w efekcie tego… zakwitają kwiaty w Dolinie Śmierci. Bzdury? Nie, szczera prawda. 

>>> Więcej naukowych informacji na FB.com/NaukaToLubie. 

Te wiatry to passaty wiejące na południowym Pacyfiku. Wieją ze wschodu, czyli od południowych wybrzeży Ameryki Południowej, na zachód, czyli w kierunku Australii, Filipin i Indonezji. Czasami jednak zdarza się, że passaty milkną albo wieją znacznie słabiej. Dzieje się to pod koniec roku, w okolicach świąt Bożego Narodzenia. To zjawisko (osłabienie passatów) zostało nazwane El Niño, czyli po hiszpańsku „dzieciątko, chłopczyk”.

Nie tylko pogoda 

Passaty wiejące w kierunku zachodnim są tak silne, że poziom morza u wybrzeży Indonezji jest o kilkadziesiąt centymetrów wyższy niż u wybrzeży Ameryki Południowej. To jednak nie wyższy poziom wody wpływa na pogodę, tylko fakt, że wiatry powodują przepływ ogromnych mas ciepłej wody. W ich miejsce pojawia się lodowata woda z dna oceanu. Póki wieją passaty, woda u zachodnich wybrzeży Ameryki Południowej jest zimna, ale u wybrzeży Australii i Indonezji – ciepła. To uruchamia całą kaskadę zjawisk pogodowych. Na przykład deszczy, które padają tam, gdzie woda jest ciepła. Z kolei tam, gdzie jest ona zimna, panuje suchy klimat. Gdy jednak pojawia się zjawisko El Niño, i wiatry słabną, masy ciepłej wody nie zostają zepchnięte na zachód. W efekcie u wybrzeży Ameryki Południowej jest za ciepło, a u wybrzeży Indonezji – za zimno. W Ameryce zaczynają padać deszcze (choć miało być sucho), a w Azji Południowo-Wschodniej i północnej Australii pojawiają się susze, choć miało padać. Te zmiany spowodowały, że w ostatnich dniach, jak alpejska łąka, zakwitła amerykańska Dolina Śmierci.  Najsuchsze, najgorętsze i najbardziej zasolone miejsce w całej Ameryce Północnej. Dolina zakwitła, bo w czasie ostatnich miesięcy przeszły nad nią silne deszcze. Swoją drogą, czy to nie inspirujące, że nasiona z których w każdej chwili wyrasta życie są powszechne nawet w tak nieprzyjaznych miejscach jak Dolina Śmierci?

>>> Więcej naukowych informacji na FB.com/NaukaToLubie.

Osobnym wątkiem związanym z anomalią El Niño jest ten dotyczący przyrody. Naturalny prąd oceaniczny niesie wody chłodne, które są bogate w składniki odżywcze. Rozwija się morskie życie, a wraz z nim populacja ptaków u wybrzeży Ameryki. Z kolei odchody ptaków użyźniają pola. Bez tego użyźniania, na polach niewiele wyrośnie. Zjawisko El Niño, gdyby trwało kilka miesięcy, jest w stanie wykończyć – i tak biedne – gospodarki takich krajów jak Peru czy Chile.

Wróćmy jednak do pogody. Ziemia to system naczyń połączonych. Wody oceanów mieszają się ze sobą, ogromne masy powietrza nie znają granic państw czy kontynentów. Anomalia, szczególnie tak duża jak El Niño, musi mieć konsekwencje na całym globie. Jakie one są? Cóż, nie mamy ich pełnej świadomości, ale wiemy o tych najważniejszych.

Nie mamy pojęcia 

Osłabienie czy wstrzymanie passatów powoduje pojawienie się czasami katastrofalnych deszczy w Ameryce Południowej. W poprzednich latach, gdy pojawiało się Dzieciątko w takich krajach jak Ekwador czy Peru, ilość opadów była aż 10-krotnie wyższa niż wtedy, gdy El Niño nie było. Wyższe opady (teraz śnieżyce) pojawiają się także w Ameryce Północnej. Susze w Azji Południowo-Wschodniej i północnej Australii są przyczyną pożarów, które nawiedzają tamtejsze lasy od kilku miesięcy. Ogromne ilości dymu dostają się do atmosfery, a to ma wpływ na zdrowie ludzi. Znacznie silniejsze i częstsze są huragany na Pacyfiku, ale za to spokojniej jest na Atlantyku. Zwiększone opady pojawiają się w Afryce Północno-Wschodniej i w krajach Półwyspu Arabskiego. Z kolei susze panują na południu Afryki. A co z Europą? Nie ma jednoznacznych dowodów, ale przypuszcza się, że efektem długo trwającego El Niño są ciepłe zimy przerywane krótkimi i gwałtownymi okresami siarczystych mrozów. Tak było na przełomie lat 1982 i 1983 oraz 1997 i 1998. Wówczas także występowało zjawisko Dzieciątka. Tegoroczne El Niño jest jednak rekordowe. Tak silne i długotrwałe nie było od początku pomiarów, a więc od 1950 roku. Za kilka tygodni minie rok, odkąd passaty zwolniły. Zwykle działo się to najwyżej na kilka tygodni w okresie Bożego Narodzenia. Zazwyczaj El Niño występowało mniej więcej co dekadę. W ostatnich latach jest częstsze, dłuższe i gwałtowniejsze. – Zjawisko to wkracza na nowe obszary. Nasza planeta zmieniła się drastycznie ze względu na generalną tendencję ocieplania wód oceanicznych, utratę lodu arktycznego, a także ponad miliona kilometrów kwadratowych letniej pokrywy lodowej na półkuli północnej – powiedział sekretarz generalny Światowej Organizacji Meteorologicznej (WMO) Michel Jarraud. – Choć właśnie padły rekordy, El Niño zamierza jeszcze bardziej podkręcić temperaturę – dodał. Pozostaje odpowiedzieć na ostatnie pytanie. Co jest źródłem tego zjawiska meteorologicznego? Dlaczego w ostatnich latach obserwujemy je częściej? Na obydwa te pytania istnieje tylko jedna uczciwa odpowiedź. Nie mamy bladego pojęcia!

>>> Więcej naukowych informacji na FB.com/NaukaToLubie.

3 komentarze do Dzieciątko kręci pogodą

Nie wyrzucaj baterii!

Każdy powinien wiedzieć, że zużytych baterii czy akumulatorów nie wolno wyrzucać do śmieci komunalnych, tylko trzeba zanosić do specjalnie przygotowanych pojemników. Ale czy wiemy dlaczego należy tak postępować?

Każdy powinien wiedzieć, że zużytych baterii czy akumulatorów nie wolno wyrzucać do śmieci komunalnych, tylko trzeba zanosić do specjalnie przygotowanych pojemników. Ale czy wiemy dlaczego należy tak postępować?

Rocznie zużywamy prawie 300 milionów baterii. 90 proc. z nich to baterie jednorazowe. Zwykle gdy przestają działać, po prostu je wyrzucamy. W ten sposób do środowiska naturalnego trafiają tak trujące związki i pierwiastki jak ołów, kadm, nikiel, rtęć, lit i mangan. To czynniki silnie trujące. Wpływają negatywnie nie tylko na człowieka, ale na całe środowisko.

>>> Więcej naukowych informacji na FB.com/NaukaToLubie

Z wielu szkodliwych substancji czy pierwiastków z których zbudowane są wyrzucane baterie, najgorszy wpływ na zdrowie i życie człowieka mają ołów, kadm i rtęć.

Ołów – jest pierwiastkiem trującym. Związki ołowiu mają negatywny wpływ na praktycznie wszystkie komórki i narządy. Jest szczególnie niebezpieczny dla dzieci i młodzieży.

Kadm – jest jeszcze bardziej toksyczny niż ołów. Niezależnie od tego w jaki sposób dostanie się do organizmu, jest magazynowany w wątrobie, nerkach, trzustce i płucach. Jest źródłem anemii.

Rtęć – związki tego pierwiastka są silnie trujące i mają dewastujący wpływ na ośrodkowy układ nerwowy. Szalony Kapelusznik, to jedna z postaci występującej w Alicji z Krainy Czarów. Kapelusznicy często cierpieli na choroby psychiczne, bo w procesie uzyskiwania filcu były używane związki rtęci.

Jedynym sposobem na zneutralizowanie zagrożenia jest utylizacja zużytych baterii w wyspecjalizowanych zakładach przeróbki odpadów niebezpiecznych. Tam stosowana jest albo metoda mechaniczna, czyli w skrócie mówiąc rozdrabnianie baterii i oddzielanie od siebie poszczególnych ich części, albo metoda termiczna, która polega na wytapianiu szkodliwych metali w temperaturze około 1400 st C. Trzecia jest metoda hydrometalurgiczna, która polega na chemicznym przetworzeniu baterii. Traktując je kwasami lub zasadami, wytapia się metale czy związki, które są szkodliwe.  Proces recyklingu odbywa się w warunkach kontrolowanych, a odpowiednie zabezpieczenia nie pozwalają by niebezpieczne związki trafiły do środowiska naturalnego.

>>> Więcej naukowych informacji na FB.com/NaukaToLubie

Niezależnie od stosowanej metody, takie metale jak kadm, ołów, rtęć, nikiel czy lit, mogą być ponownie użyte.

PS. Zdaję sobie sprawę z tego, że tym wpisem absolutnie nie wyczerpuję tematu recyclingu baterii. Kiedyś napiszę o tym więcej. Po prostu dzisiaj wymieniałem dzieciom baterie w aparacie fotograficznym i zdałem sobie sprawę z tego jak dużo baterii zużywamy. Swoją drogą, coraz częściej myślę, że osoba (firma), która wymyśli sposób na wydajne i „zdrowe” dla środowiska magazynowanie energii elektrycznej, będzie autorem jednego z największych wynalazków wszech czasów.

9 komentarzy do Nie wyrzucaj baterii!

Burza w sercu

Zakochanie to biochemia, genetyka i cała masa czynników które moglibyśmy nazwać „naukowymi”. Zakochane mózgu bada się najbardziej zaawansowanymi technikami jakie zna medycyna.

Połowa lutego to czas w którym o miłości i zakochaniu mówi się szczególnie często. Oczywiście za sprawą dnia świętego Walentego (czyli Walentynek), który w pop-kulturze jest szczególnie czczony przez zakochanych. Nieczęsto wspomina się o tym, że święty Walenty jest także patronem psychicznie chorych (epilepsję do niedawna nazywano chorobą Św. Walentego), a szkoda. Z naukowego punktu widzenia to co dzieje się w chwili zakochania ma sporo wspólnego z czystym szaleństwem. I rzeczywiście, u osób zakochanych obserwuje się mocne ukrwienie tej części mózgu, która jest odpowiedzialna za zachowania obsesyjne.

Kurierzy w mózgu

To nie tak, że o zakochaniu wiemy wszystko, to nie tak, że to co dzieje się w sercu, mózgu czy brzuchu zakochanego, potrafimy wyrazić równaniami fizycznymi czy reakcjami biochemicznymi. Wciąż sporo w tym tajemnicy. Dlaczego zakochujemy się w tej, a nie w innej osobie? Dlaczego czasami zauroczenie zamienia się w trwające dziesiątki lat głęboki i szczere uczucie, a czasami mija jak śnieg wiosną? Tego nie wiemy. Pozostaje operowanie danymi statystycznymi, uśrednieniami i szacunkami.

>>> Więcej naukowych informacji na FB.com/NaukaToLubie

Z biochemicznego punktu widzenia za stan zakochania, który czasami porównuje się do stanu odurzenia jakimiś środkami, odpowiedzialne są przynajmniej trzy neurotransmitery (neuroprzekaźniki). To związki chemiczne, których cząsteczki działają trochę jak kurierzy w firmie, czyli przenoszą informacje z miejsca na miejsce. I tak jak w dużym wieżowcu kurierzy kursują pomiędzy biurkami, pokojami, korytarzami, piętrami czy nawet budynkami, tak w mózgu, linia startowa dla cząsteczki neuroprzekaźnika to dendryt, a meta to akson. Dendryty i aksony to „wypustki” komórek nerwowych. Impulsy elektryczne są przenoszone po zewnętrznej powierzchni komórki nerwowej, ale to neurotransmitery przenoszą informacje pomiędzy sąsiadującymi komórkami. W praktyce, impuls elektryczny (sygnał fizyczny) na zakończeniu każdej wypustki jest „tłumaczony” na sygnał chemiczny przenoszony przez neurotransmitery do kolejnej wypustki. Tam z powrotem chemia „zamienia się” w fizykę i w kolejnej komórce impuls elektryczny wędruje dalej. Neurotransmiterów jest bardzo dużo, ale w procesie zakochania uaktywniają się głównie trzy. Dopamina, serotonina i oksytocyna. Ta pierwsza pobudza te same części mózgu, które są pobudzane przez niektóre narkotyki. Powoduje, że świat wydaje się być bezproblemowy i piękny. Dopamina zmusza do aktywności, do działania. W skrócie… zakochany nie jest w stanie usiedzieć na miejscu. Potrzebuje swojego bodźca. Głosu, obrazu, zapachu osoby w której się zakochał. Ten bodziec uwalnia w mózgu nową porcję dopaminy. To dlatego zakochani zerkają na siebie ukradkiem.

Podczas gdy dopamina nas pobudza, drugi neuroprzekaźnik, serotonina, nas uspokaja. W końcu jest też oksytocyna. Ona pomaga nam nawiązywać relacje z drugą osobą. I dotyczy to nie tylko zakochanych. Oksytocyna jest uwalniana u matki np. podczas ssania piersi przez jej dziecko. Oksytocyna czyni nas bardziej uległymi, bardziej skorymi do współpracy i współodczuwania oraz ufnymi. Ale także bardziej szczodrymi (prezenty!) i zazdrosnymi.

Wieczna tajemnica?

Trzy wspomniane wyżej neuroprzekaźniki powodują, że świat wydaje się być różowy, bezproblemowy a osoba w którą jesteśmy zapatrzeni wydaje się nie mieć wad. Tym bardziej, że przytłumiona jest ta racjonalna część mózgu. Oczywiście nie u wszystkich działa to w ten sam sposób. Generalnie jednak, to mężczyźni szybciej się zakochują i szybciej odkochują. Kobiety są bardziej zrównoważone w tym względzie. Z czego to wynika? Teorii jest kilka, ale jedna z nich (tzw. teoria inwestycji rodzicielskiej) mówi, że skoro panie ponoszą większy biologiczny ciężar wydania na świat potomstwa, zostały obdarzone cechami, które proces zakochania się jakoś racjonalizują. To jak gdyby mieć w mózgu dodatkowe hamulce. Zgodnie z tą teorią, mężczyźni nie muszą mieć tych hamulców, bo… w sumie nie ponoszą odpowiedzialności biologicznej za przelotne romanse.

>>> Więcej naukowych informacji na FB.com/NaukaToLubie

Na koniec jeszcze garść wyników badań statystycznych. Nie jest prawdą, że w miłości przeciwieństwa się przyciągają. Prawdą za to jest, że mężczyźni znacznie większą wagę przywiązują do wyglądu kobiety niż kobiety do wyglądu mężczyzny. Z jednym wyjątkiem, zarówno płeć piękna, jak i brzydka za bardziej atrakcyjne uważa osoby z dużymi oczami. Może dlatego panie optycznie powiększają sobie oczy makijażem? A może osoby zakochane wydaję się być atrakcyjniejsze, bo w okresie zauroczenia mają rozszerzone źrenice?

Zakochanie to biochemia, genetyka i cała masa czynników które moglibyśmy nazwać „naukowymi”. Zakochane mózgu bada się najbardziej zaawansowanymi technikami jakie zna medycyna. Dzięki rezonansowi magnetycznemu jesteśmy w stanie odróżnić zakochanie od pożądania. To kwestia dokładnej obserwacji tzw. pola brzusznego nakrywki, które wchodzi w skład tzw. układu nagrody. Rumieniące się policzki (uczucie gorąca włącza system chłodzenia), pocące się dłonie, drżący głos… ale to wciąż za mało, by zrozumieć to co dzieje się w głowie zakochanego. Czy kiedykolwiek zrozumiemy? Mam nadzieję że nie. Mam nadzieję, że miłość i zakochanie pozostaną przynajmniej trochę tajemnicze.

>>> Więcej naukowych informacji na FB.com/NaukaToLubie

Tekst ukazał się w tygodniku Gość Niedzielny

Brak komentarzy do Burza w sercu

(wszech)Świat się marszczy !!!

Lada dzień gruchnie wiadomość na którą czekamy od kilku dziesięcioleci. Wszechświat, przestrzeń marszczy się. W LIGO podobno odkryto fale grawitacyjne.

Kosmiczny detektor, kosmiczne zagadnienie. W świecie fizyków i kosmologów od kilku dni nie mówi się o niczym innym niż fale grawitacyjne, które miał podobno wykryć LIGO. O co chodzi?

>>> Więcej naukowych informacji na FB.com/NaukaToLubie

waves-101-1222750-1600x1200

Fale grawitacyjne to kompletny odlot. Człowiekiem który sprawę rozumiał, ba, który ją wymyślił, a w zasadzie wyliczył był nie kto inny tylko Albert Einstein (swoją drogą powinien dostać nagrodę za odkrycie najbardziej nieintuicyjnych zjawisk we wszechświecie). Z napisanej przez niego 100 lat temu Ogólnej Teorii Względności wynika, że ruch obiektów obdarzonych masą,  jest źródłem rozchodzących się w przestrzeni fal grawitacyjnych (lub inaczej – choć nie mniej abstrakcyjnie – zaburzeń czasoprzestrzennych). Jak to sobie wyobrazić? No właśnie tu jest problem. Bardzo niedoskonała analogia to powstające na powierzchni wody kręgi, gdy wrzuci się do niej kamień. W przypadku fal grawitacyjnych zamiast wody jest przestrzeń, a zamiast kamienia poruszające się obiekty. Czym większa masa i czym szybszy ruch, tym łatwiej zmarszczki przestrzeni powinny być zauważalne. Rejestrując największe fale grawitacyjne, tak jak gdybyśmy bezpośrednio obserwowali największe kosmiczne kataklizmy: zderzenia gwiazd neutronowych, czarnych dziur czy wybuchy supernowych. Trzeba przyznać, że perspektywa kusząca gdyby nie to… że fale grawitacyjne to niezwykle subtelne zjawiska. Nawet te największe, bardziej będą przypominały lekkie muśnięcia piórkiem niż trzęsienie ziemi. W książce „Zmarszczki na kosmicznym morzu” (Ripples on a Cosmic Sea: The Search for Gravitational Waves) australijski fizyk, prof. David Blair, poszukiwanie fal grawitacyjnych porównuje do nasłuchiwania wibracji wywołanych przez pukanie do drzwi z odległości dziesięciu tysięcy kilometrów. Detektory zdolne wykryć fale grawitacyjne powinny być zdolne zarejestrować wstrząsy sejsmiczne wywołane przez upadek szpilki po drugiej stronie naszej planety. Czy to w ogóle jest możliwe? Tak! Od 2002 roku działa w USA Laser Interferometer Gravitational Wave Observatory w skrócie LIGO czyli Laserowe Obserwatorium Interferometryczne Fal Grawitacyjnych. Zanim budowa ruszyła, pierwszy szef laboratorium prof. Barry Barrish na dorocznym posiedzeniu AAAS (American Association for the Advancement of Science) oświadczył, że pomimo wielu trudności nadszedł w końcu czas na zrobienie czegoś, co można nazwać prawdzią nauką (swoją drogą, odważne słowa na zjeździe najlepszych naukowców na świecie).

>>> Więcej naukowych informacji na FB.com/NaukaToLubie

This_visualization_shows_what_Einstein_envisioned

Symulacja łączenia się czarnych dziur – jedno ze zjawisk, które wytwarza najsilniejsze fale grawitacyjne

Z falami grawitacyjnymi jest jednak ten problem, że przez dziesięciolecia, mimo prób, nikomu nie udało się ich znaleźć. Gdyby komuś zaświtała w głowie myśl, że być może w ogóle ich nie ma, spieszę donieść, że gdyby tak było naprawdę, runąłby fundament współczesnej fizyki – Ogólna Teoria Względności, a kosmologię trzeba byłoby przepisać od początku. Dzisiaj głośno mówi się, że fale grawitacyjne zostały przez LIGO zarejestrowane. Panuje raczej atmosfera lekkiego podniecenia i oczekiwania na to, co stanie się za chwilę. Potwierdzenie istnienia fal grawitacyjnych nie będzie kolejnym odkryciem, które ktoś odfajkuje na długiej liście spraw do załatwienia.  Zobaczymy otaczający nas wszechświat z całkowicie innej perspektywy.

Jako pierwszy falowe zmiany pola grawitacyjnego, w latach 60 XX wieku próbował zarejestrować amerykański fizyk Jaseph Weber. Budowane przez niego aluminiowe cylindry obłożone detektorami nie zostały jednak wprawione w drgania. Co prawda Weber twierdził, że złapał zmarszczki wszechświata, ale tego wyniku nie udało się potwierdzić. Dalsze poszukiwania trwały bez powodzenia, aż do 1974 roku, gdy dwóch radioastronomów z Uniwersytetu w Princeton (Joseph Taylor i Russel Hulse) obserwując krążące wokół siebie gwiazdy (PSR1913+16) stwierdziło, że układ powoli traci swoją energię, tak jak gdyby wysyłał … fale grawitacyjne. Mimo, że samych fal nie zaobserwowano, za pośrednie potwierdzenie ich istnienia autorzy dostali w 1993 roku Nagrodę Nobla. Uzasadnienie Komitetu Noblowskiego brzmiało: „za odkrycie nowego typu pulsara, odkrycie, które otwiera nowe możliwości badania grawitacji”.

>>> Więcej naukowych informacji na FB.com/NaukaToLubie

virgoviewInstalacja, która z lotu ptaka wygląda jak wielka litera L, to dwie rury o długości 4 km każda, stykające się końcami pod kątem prostym. Choć całość przypomina przepompownię czy oczyszczalnię ścieków jest jednym z najbardziej skomplikowanych urządzeń kiedykolwiek wybudowanych przez człowieka. Każde z ramion tworzy betonowa rura o średnicy 2 metrów. W jej wnętrzu – jak w bunkrze – znajduje się druga ze stali nierdzewnej, która jest granicą pomiędzy światem zewnętrznym a bardzo wysoką próżnią. Z miejsca w którym rury się stykają, „na skrzyżowaniu”, dokładnie w tym samym momencie wysyłane są wiązki lasera. Ich celem są zwierciadła umieszczone na końcu każdej z rur. 2000px-Ligo.svgOdbijane przez zwierciadła tam i z powrotem około 100 razy promienie, wpadają z powrotem do centralnego laboratorium i tam zostają do siebie porównane. Dzięki zjawisku interferencji możliwe jest wyliczenie z wielką dokładnością różnicy przebytych przez obydwie wiązki światła dróg. A drogi te powinny być identyczne, no chyba że… chyba że w czasie pomiaru przez Ziemie – podobnie jak fala na powierzchni wody – przejdzie fala grawitacyjna. Wtedy jedno z ramion będzie nieco dłuższe, a efekt natychmiast zostanie wychwycony w czasie porównania dwóch wiązek. Tyle tylko, że nawet największe zaburzenia zmienią długość ramion o mniej niż jedną tysięczną część średnicy protonu (!). To mniej więcej tak, jak gdyby mierzyć zmiany średnicy Drogi Mlecznej (którą ocenia się na ok. 100 tys. lat świetlnych) z dokładnością do jednego metra. Czy jesteśmy w stanie tak subtelne efekty w ogóle zarejestrować ? Lustra na końcach każdego z korytarzy (tuneli) mogą zadrgać (chociażby dlatego, że przeleciał nad nimi samolot, albo w okolicy przejechał ciężki samochód). By tego typu efekty nie miały wpływu na pomiar zdecydowano się na budowę nie jednej, ale dwóch instalacji, w Handford w stanie Waszyngton i w Livingston w stanie Luizjana. Są identyczne, choć oddalone od siebie o ponad 3 tys. kilometrów. Ich ramiona maja takie same wymiary i maja takie same układy optyczne. Nawet gdy w jednym LIGO zwierciadło nieoczekiwanie zadrga, niemożliwe by to samo w tej samej chwili stało się ze zwierciadłem bliźniaczej instalacji. Zupełnie jednak inaczej będzie gdy przez Ziemię przejdzie z prędkością światła fala grawitacyjna. Zmiany jakie wywoła zajdą w dokładnie tej samej chwili w obydwu ośrodkach.

>>> Więcej naukowych informacji na FB.com/NaukaToLubie

A kończąc, pozwólcie na ton nieco nostalgiczny. Wszechświat jest areną niezliczonych kataklizmów a dramatyczne katastrofy, to naturalny cykl jego życia. To nic, że od tysięcy lat na naszym niebie królują te same gwiazdozbiory. W skali kosmicznej taki okres czasu to nic nieznacząca chwila, a nawet w czasie jej trwania widoczne były wybuchy gwiazd. Z bodaj największego kataklizmu – Wielkiego Wybuchu – „wykluło” się to co dzisiaj nazywamy kosmosem. Obserwatoria grawitacyjne (np. takie jak LIGO) otworzą oczy na inne wielkie katastrofy, i to nie tylko te które będą, ale także te które były. Już prawie słychać zgrzyt przekręcanego klucza w drzwiach. Już za chwilę się otworzą. Najpierw przez wąską szparę, a później coraz wyraźniej i coraz śmielej będziemy obserwowali wszechświat przez nieznane dotychczas okulary. Ocenia się, że to co widzą „zwykłe” teleskopy (tzw. materia świecąca) to mniej niż 10% całej masy Wszechświata. A gdzie pozostałe 90% ? Na to pytanie nie znaleziono dotychczas odpowiedzi. Tzw. ciemna materia powinna być wszędzie, a nie widać jej nigdzie. Przypisuje się jej niezwykłe właściwości, łączy się ją z nie mniej tajemniczą ciemną energią. Czy LIGO, pomoże w rozwiązaniu tej intrygującej zagadki? Czy będzie pierwszym teleskopem, przez który będzie widać ciemną materię? Jeżeli obserwatoria grawitacyjne będą w stanie „zobaczyć” obiekty, które można obserwować także w świetle widzialnym (np. wybuch supernowej), a nie będą widziały ani grama ciemnej materii, to zagadka staje się jeszcze bardziej tajemnicza. Bo albo ta materia nie podlega prawom grawitacji, albo nie ma żadnej ciemnej materii. Konsekwencje obydwu tych scenariuszy są trudne do przewidzenia. Czy teraz rozumiecie dlaczego odkrycie fal grawitacyjnych jest tak ważne? 

10 komentarzy do (wszech)Świat się marszczy !!!

Śpiewające piaski

„Powszechnie wiadomym jest, że pustynię zamieszkują złe duchy, prowadząc podróżników do zguby przez najbardziej złośliwe sztuczki” – pisał w 1295 roku Marco Polo. Dzisiaj wiadomo, że to nie duchy straszą na pustyni tylko dźwięki produkowane przez wydmy.

„Powszechnie wiadomym jest, że pustynię zamieszkują złe duchy, prowadząc podróżników do zguby przez najbardziej złośliwe sztuczki”

– pisał w dzienniku ze swoich podróży Marco Polo. Był rok  w 1295 roku i o mechanice materiałów sypkich wiedziano wtedy niewiele (a i dzisiaj nie wszystko jest jasne i oczywiste). Dzisiaj wiadomo, że to nie duchy straszą na pustyni podróżników, tylko śpiewające wydmy. O co chodzi? O lawiny piasku.

>>> Więcej naukowych informacji na FB.com/NaukaToLubie.

Samochód jadący po tzw. kocich łbach hałasuje, bo koła raz wjeżdżają na kamień, raz z niego zjeżdżają. I tak w kółko, wjeżdżają i zjeżdżają, wjeżdżają… A teraz wyobraźcie sobie ziarenka piasku, które zsuwają się w dół wydmy. Nie ześlizgują się przecież po gładkiej powierzchni, tylko po innych ziarenkach piasku, leżących głębiej. I tak jak samochód na „kocich łbach”, tak drobinki piasku, raz wtaczają się na ziarenka leżące głębiej, raz z nich staczają. Zsynchronizowany ruch ziarenek „góra-dół” powoduje, że wydma zachowuje się jak ogromna drgająca membrana. Te drgania, tak jak w głośniku, „produkują” dźwięki.

Zrzut ekranu 2016-01-22 o 13_Fotor

Gdy nachylenie zbocza wydmy przekroczy wartość graniczną (około 35 st), warstwy piasku zsuwają się (a). Ziarenka piasku nie poruszają się jednak po płaskiej nawierzchni. Najpierw same muszą się wtoczyć (b) i przetoczyć (c i d) po warstwie piasku która pozostaje nieruchoma. W efekcie ziarenka piasku nie tylko poruszają się ku podstawie zbocza. Ponieważ zjeżdżają po innych ziarenkach piasku, dosyć szybko drgają poruszając się góra – dół. Źródło grafiki: Laurie Grace, ŚWIAT NAUKI 11.97

Membrana w głośniku jest jednak dużo mniejsza niż powierzchnia zsuwającej się piaskowej lawiny. Dźwięki „wygrywane” przez śpiewające wydmy mogą być tak donośne, że słychać je z odległości nawet 10 kilometrów. Dokładne pomiary wykazały, że odgłosy powstające na pustyni mogą mieć głośność nawet do 105 decybeli, podczas gdy granica bólu u człowieka wynosi 120 decybeli.

Nie każda wydma śpiewa. Ziarenka piasku muszą być małe, ich średnica nie może przekraczać 0,5 mm. Czym piasek jest czystszy, tym bardziej prawdopodobne, że będzie śpiewał. Gdy w piasku są zanieczyszczenia (muł, resztki roślin czy szczątki zwierząt, np. małe kawałki muszelek), o śpiewaniu można zapomnieć. Śpiewające wydmy występują tylko tam, gdzie jest wysoka temperatura i niska wilgotność. Wydmy nigdy nie śpiewają wcześnie rano czy późno wieczorem, bo wtedy nawet na pustyni w powietrzu (i piasku) jest trochę wilgoci. Cząsteczki wody, sklejają ziarenka piasku, a to wstrzymuje piaskowe lawiny.

Moment w którym z wydmy zsunie się lawina jest nie do przewidzenia. Gdy stromizna wydmy osiągnie wartość graniczną (wynoszącą na Ziemi dla suchego piasku około 35 stopnie), potrzebne jest tylko jedno jedyne ziarenko, które spowoduje przekroczenie wartości krytycznej i niekontrolowana już niczym lawina zsuwa się w dół zbocza. To zachwianie równowagi może być spowodowane także hukiem, albo jakimś wstrząsem. Przeróżne dźwięki powstają więc na pustynie nagle. Czasami jeden dźwięk wywołuje następny, czasami – mówią podróżnicy – jak gdyby grała cała orkiestra. Słychać dzwony, trąbki, harfy, organy i flety. Czasami słychać wystrzały armatnie, syreny okrętowe, odgłosy samolotów, głośny gwar czy płacz. Marco Polo opisywał dźwięki przypominające nawoływania, odgłosy marszu czy klaskania. Bywa, że zaskoczony i przerażony podróżnik znajduje się w samym ich środku.

>>> Więcej naukowych informacji na FB.com/NaukaToLubie

W Polsce nie ma śpiewających wydm. Jest za to tzw. „piszczący” piasek. Spacerując po plaży, stopami ugniatamy piasek. Pod wpływem naszego ciężaru, jego ziarenka są pomiędzy siebie wciskane, a to powoduje ich drgania i powstawanie dźwięków. Piszczących. Czy śpiewające wydmy występują na innych globach? Nie wiadomo. Powierzchnia Marsa składa się prawie wyłącznie z pustyń. Inny rodzaj piasku, inna grawitacja, wilgotność, ciśnienie i temperatura. Oj, fizycy będą mieli pełne ręce roboty.

okładka - piasekArtykuł pochodzi z książki „Nauka. To lubię. Od ziarnka piasku do gwiazd”. Tomasz Rożek, WAB 2012

Brak komentarzy do Śpiewające piaski

Mróz i ekstremalne doświadczenie

Nieczęsto robię doświadczenia naukowe na samym sobie. Ale… czasami mi się zdarza. Ten eksperyment, który opiszę był chyba jednym z najbardziej ekstremalnych.

Ta historia ma swój początek na Syberii. Jakiś czas temu (była już zima) zbierałem tam materiały do kilku tekstów (m.in. o jeziorze Bajkał). Trochę podróżowałem po okolicy (na Syberii okolica to co innego niż u nas 😉 ), ale przez kilka dni stacjonowałem w Irkucku.

>>> Więcej naukowych informacji na FB.com/NaukaToLubie

Któregoś dnia mojej wyprawy byłem świadkiem dość zaskakującej sytuacji. Widziałem dwóch dosyć rosłych facetów, którzy rozebrawszy się do kompletnego rosołu wskoczyli do wody. Bajkał w grudniu nie zamarza, więc nie musieli robić przerębla. Temperatura powietrza wynosiła wtedy około minus 30 st C. Panowie się wykąpali, po czym – tak jak Pan Bóg ich stworzył – weszli do samochodu i odjechali. Nie wyglądali na umęczonych, przeciwnie, ta szybka kąpiel chyba im się podobała. Już wtedy pomyślałem, że fajnie byłoby spróbować samemu wykąpać się w jeziorze, środku zimy.

Jak to jest, że ci, którzy morsują nie czują zimna (ja nie czułem)? Jak to jest, że tak dobrze czujemy się w saunie, gdzie temperatura może dochodzić nawet do plus 120 st C (!!!) ? No i co dzieje się z naszym ciałem gdy szybko zmieniamy temperaturę otoczenia?

sauna-1417238-639x739Pomijając osoby chore na serce i małe dzieci, szybka zmiana temperatury jest dla nas korzystna. O ile  dobrze się do niej przygotujemy. Eksperyment rozpocząłem od sauny. Wejście do sauny to jak zderzenie się z gorącą ścianą. W takim otoczeniu ciało bardzo szybko może się przegrzać. Dlatego mózg włącza tryb awaryjny. Coraz szybciej oddychamy i coraz szybciej bije nasze serce, a wszystko po to, by jak najwięcej krwi przepompować z wnętrza ciała do warstwy podskórnej. To dlatego gdy jest nam gorąco, jesteśmy czerwoni na twarzy. Krew krąży bardzo blisko powierzchni skóry bo wtedy najlepiej działa system chłodzenia. Pocimy się, a woda, po to by wyparować, potrzebuje energii. Tą energię odbiera powierzchni skóry, ochładzając ją. W saunie jest ekstremalnie ciepło, więc w odpowiedzi, ekstremalnie mocno się pocimy. I tutaj mała uwaga. Siedząc w saunie, nie wycierajcie spływającego hektolitrami po skórze potu. To  jest bez sensu. Pozbawiacie się wtedy systemu chłodzenia, a to może doprowadzić do przegrzania organizmu.

>>> Więcej naukowych informacji na FB.com/NaukaToLubie

Prosto z sauny wskoczyłem do basenu z zimną wodą. Miałem wrażenie, że serce staje mi w miejscu. Tymczasem ono zaczęło szybciej bić, po to by przepompować krew z zewnętrznych warstw mojego ciała do środka. Ale to jeszcze nic. Z basenu (po dokładnym osuszeniu), w krótkich spodenkach, czapce, rękawiczkach i butach, wszedłem do kriokomory. Temperatura w środku wynosiła minus 120 st C (!!!). W takiej atmosferze człowiek może przetrwać tylko kilka minut. Pomijam fakt, że palec przymarzł mi do klamki (moja wina, ściągnąłem rękawiczki), mimo ekstremalnych warunków, nic mi się nie stało. Miałem jednak wrażenie, że serce wyskoczy mi z klatki piersiowej. W niskiej temperaturze czym mniej krwi w warstwach podskórnych tym lepiej. To dlatego gdy jest nam zimno, robimy się bladzi na twarzy. Krew szybko usuwana jest z powierzchni ciała i pompowana do środka. W ten sposób tracimy mniej energii. W czasie tego przepompowywania pracuje nie tylko serce, ale w zasadzie wszystkie mięśnie.

Zrzut ekranu 2016-01-05 o 00_Fotor

Mój sprint do wody. Biegłem szybko… żeby nie zmarznąć 😉 Temperatura powietrza wynosiła wtedy około minus 7 st. C

Przepompowywanie krwi wte i wewte to doskonały trening dla ciała. Postanowiłem więc zrobić ostateczny test. Przerębel. Temperatura minus 7 st C, piaszczysta plaża i woda. Zimna woda! Najpierw koniecznie trzeba rozgrzać mięśnie, a w czasie tej rozgrzewki sukcesywnie się rozbierać. Pozostają buty do nurkowania (by nie rozciąć sobie nogi na kawałku lodu i by nie odmrozić sobie palców), czapka, rękawiczki no i kąpielówki. I tu ogromne zaskoczenie. Wszedłem do wody i nie czułem zimna. Serio, serio. Po kilkudziesięciu sekundach czułem mrowienie w mięśniach. To znak, że trzeba wyjść z wody i ponownie się rozgrzać. W czasie rozgrzewki krew (z tlenem) pompowana jest do mięśni. W lodowatej wodzie, przeciwnie, krew usuwana jest z mięśni (to mrowienie to znak, że mięśniom brakuje tlenu). Każde kolejne wejście może trwać dłużej (później pojawia się uczucie mrowienia), pomiędzy kolejnymi wejściami, zawsze trzeba się jednak rozgrzać. Nie ciepłym ubraniem, broń Boże alkoholem, tylko ćwiczeniami. Ja biegałem, robiłem przysiady i pompki.

>>> Więcej naukowych informacji na FB.com/NaukaToLubie

Moje wrażenia? Polecam każdemu. Przed wskoczeniem do przerębla, czytałem, że w czasie morsowania mięśnie pracują intensywniej niż na siłowni. Nie wierzyłem, ale uwierzyłem. Kolejnego dnia, po moim eksperymencie, bylem tak obolały, że nie potrafiłem wstać z łóżka. Co polecam każdemu 😉 

 

4 komentarze do Mróz i ekstremalne doświadczenie

Wszystko jest matematyką – rozmowa z X. prof. Michałem Hellerem

O kosmosie, ciekawości, przypadku i matematyce z księdzem profesorem Michałem Hellerem, teologiem, kosmologiem, matematykiem i filozofem rozmawia Tomasz Rożek

Z księdzem profesorem Michałem Hellerem, teologiem, kosmologiem, matematykiem i filozofem rozmawia Tomasz Rożek. Poniższy wywiad jest uzupełnieniem dwóch rozmów, które opublikowałem na kanale YouTube.com/Nauka To Lubie. Pierwsza z tych rozmów dotyczyła wszechświata, a druga człowieka. U dołu wywiadu znajdują się bezpośrednie odnośniki do obydwu rozmów.

>>> Więcej naukowych ciekawostek na FB.com/NaukaToLubie

Co się stało się prawie 14 miliardów lat temu? Możemy w ogóle udzielić jakiejkolwiek odpowiedzi?

Historię wszechświata rekonstruujemy poruszając się wstecz. Do 3 minut po wielkim wybuchu mamy wiedzę bardzo solidną, a potem grzęźniemy w hipotezach. Im bliżej początku, tym bardziej hipotetyczna jest nasza wiedza. Ta wiedza opiera się na teorii, ale teoria jest dobrze sprawdzona chociażby w takich miejscach jak laboratorium fizyki cząstek CERN, gdzie zderza się ze sobą np. protony.

Wiemy w takim razie co stało się po Wielkim Wybuchu, ale co było w punkcie zero?

Pytanie, czy taki punkt zero w ogóle był. Według klasycznej kosmologii, według teorii Einsteina, rzeczywiście punkt zero istniał i był tzw. osobliwością, czyli obszarem, w którym załamuje się pojęcie czasoprzestrzeni. Pojęcia czasu i przestrzeni tracą tam sens. Tam urywa się nasza wiedza, znane nam prawa natury przestają działać.

Skoro nie prawa przyrody, to co się tam dzieje?

To jest pytanie, na które nie znam odpowiedzi. Mamy dwie wielkie teorie: fizyka kwantowa i fizyka grawitacji. Fizyka kwantowa rządzi światem cząstek elementarnych, mikroświatem. Fizyka grawitacji rządzi kosmosem w wielkiej skali. Zaraz po Wielkim Wybuchu te dwie teorie nakładały się na siebie. Po to by wyjaśnić co dzieje się w osobliwości, trzeba połączyć te dwie teorie w jedną. Jest to niezmiernie trudne wyzwanie, bo te dwie siły mają zupełnie inną naturę. Moim zdaniem, to jest w tej chwili problem numer jeden fizyki teoretycznej. Mamy kilka, może nawet kilkanaście pomysłów jak grawitację i teorię kwantów ze sobą połączyć, ale żaden z nich nie jest potwierdzony doświadczalnie. Wszystko to są hipotetyczne rzeczy, posługują się bardzo ładną i zaawansowaną matematyką, ale nie mamy empirycznego rozstrzygnięcia, która jest prawdziwa i pewnie długo nie będziemy mieć.

Czy to jest przypadek, że człowiek został obdarzony umysłem, żeby dociekać tak skomplikowanych i abstrakcyjnych rzeczy?

Tego też nie wiemy. W każdym razie jest to rzecz niesamowita, że mamy taką władzę poznawania wszechświata. Bo pomyślmy nad tym. Jeżeli umysł ludzki powstał ewolucyjnie przez oddziaływanie z otoczeniem, to jak mówią biologowie, utrwalały się te cechy, które są potrzebne do przeżycia.

Wiedza o czarnej dziurze nie jest potrzebna?

Wiedza o czarnej dziurze jest absolutnie niepotrzebna do przeżycia.

Od biedy dałoby się połączyć wiedzę z sukcesem reprodukcyjnym. W końcu wolimy się otaczać ludźmi mądrzejszymi. Może intelekt czy wiedza to coś w rodzaju pożądanego przez przyszłego partnera gadżetu?

Myślę, że chyba wystarczyłby taki gadżet, który służyłby do uchylania głowy jak maczuga leci. Niemniej jednak jest to niesamowite, że człowiek ma tak rozwinięty umysł. Jeśli popatrzymy na historię, to tak naprawdę fizyka zaczęła się gdzieś w XVII wieku. Jesteśmy dopiero na samym początku. Co to jest kilkaset lat wobec 14 miliardów? I to jest rzeczywiście coś absolutnie niesamowitego. Można by to pytanie, które pan zadał, postawić w innej formie: czy złożoność ludzkiego mózgu wystarczy, ażeby zbadać złożoność wszechświata? Innymi słowy, czy złożoność wszechświata jest przykrojona na miarę naszego mózgu? Niezależnie od tego, czy jesteśmy sami we wszechświecie jako istoty rozumne, czy też są jacyś nasi bracia w rozumie, specjaliści mówią, że złożoność mózgu jest większa, niż złożoność całego wszechświata.

Ilość potencjalnych połączeń między komórkami w mózgu jednego człowieka jest większa niż ilość gwiazd we wszechświecie.

No właśnie. I to nas stawia w dość wyróżnionej pozycji. Natomiast czy dzięki tej złożoności możemy pojąć wszystko? Tu jest pewien logiczny paradoks. Jeśli chcielibyśmy pojąć wszystko, to musielibyśmy zrozumieć także mózg. Czy mózg może poznać sam siebie?

>>> Więcej naukowych ciekawostek na FB.com/NaukaToLubie

Mówiliśmy trochę o ewolucji, a z nią bardzo często wiąże się słowo „przypadek”. 

Arystoteles miał przyczynową koncepcję nauki, która w jakimś sensie jest aktualna do dzisiaj. Wyjaśniamy wszechświat według Arystotelesa przez ciągi przyczyn i skutków, takie łańcuchy przyczynowe. Natomiast on przypadek określił jako coś, co przerywa taki ciąg. Interweniuje przypadkowo w ten ciąg i zaburza go. I dlatego według niego nie może być wiedzy naukowej o przypadku. I ludzie uwierzyli, że przypadek jest jakimś takim obcym ciałem w nauce. Tymczasem okazuje się, że tak nie jest. Najbardziej dramatycznym czy widocznym przykładem próby oswajania przypadku jest ludzka chciwość. Jak ktoś gra hazardowo, to chce wygrać. Ludzie szukali więc jakiejś strategii, żeby zapewnić sobie zwycięstwo w totolotku, ruletce, czy w pokerze.

No i takiego sposobu nie znaleźli. Wygrana czy przegrana to kwestia przypadku.

Czy na pewno? Statystyka i rachunek prawdopodobieństwa mówią co innego. Gdyby było tak jak pan mówi, nie mogłyby działać np. banki czy towarzystwa ubezpieczeniowe, które liczą prawdopodobieństwo w związku z ubezpieczeniami na życie. Bez prawdopodobieństwa i statystyki nie byłoby dzisiejszej wiedzy. Ani fizyki, ani medycyny.

Bo statystyka daje odpowiedzi dotyczące ogółu a pojedynczy przypadek dalej jest dziełem… przypadku.

Też nie całkiem. W „Summa contra gentiles” św. Tomasz pisze, że boża opatrzność rządzi zdarzeniami ex casu del fortuna – dziejącymi się z przypadku lub losowo. Dwoje ludzi pobiera się, bo spotkali się, gdy spóźnił się pociąg. Czy to przypadek? Wszystko tu ma przyczynę. Pociąg się spóźnił, bo popsuła się lokomotywa. Młodzi ludzie byli w tym samym miejscu o tym samym czasie, bo każde z nich jechało w konkretne miejsce. W fizyce tak jest na każdym kroku. Dobrym przykładem jest zwykły rzut kamieniem. On jest opisany prostymi równaniami ruchu Newtona i wszystko jest – wydawałoby się – zdeterminowane, ale ja mogę przypadkiem tym kamieniem zamiast trafić w tarczę, to komuś w głowę. W nauce jest bardzo dużo miejsca na przypadki, a one same nie są zaprzeczeniem zasad przyrody. W siatce praw przyrody są pewne luzy na przypadki. Bez tych przypadków prawa przyrody by nie mogły działać.

A ten plan, te reguły, które tym wszystkim rządzą, te luzy, o których ksiądz profesor mówi, czy one jakoś powstały, czy one były zawsze? Jak to rozumieć?

No to jest problem genezy praw przyrody. I ja nie wiem jaka ona jest. To na pewno nie jest zagadnienie z dziedziny fizyki, bo fizyka zakłada prawa przyrody. Nie wyjaśnia ich. W każdym modelu fizycznym prawa fizyki są założone. Takie, a nie inne i koniec. Natomiast wyjaśnienie, skąd się biorą prawa przyrody, to już raczej należy do filozofii czy na przykład do teologii. Można powiedzieć, że to po prostu Pan Bóg stworzył.

>>> Więcej naukowych ciekawostek na FB.com/NaukaToLubie

To jest bardzo wygodne podejście. Pan Bóg stworzył, kropka. A może by się nad tym zastanowić ?

Często fizycy nie nazywają tego Panem Bogiem, ale skądś się one musiały wziąć. Einstein nie uznawał Boga w formie chrześcijańskiej. Raczej był bliżej panteizmu, ale używał hasła „Zamysł Boga” – the Mind of God. Może używał to jako metaforę, ale uważał, że zestaw praw przyrody to jest właśnie the Mind of God. I mówił: nie chciałbym nic więcej wiedzieć, tylko znać the Mind of God.

Znać boży zamysł… czyli to jedno równanie, które opisuje wszystko?

No tak. I tu są te granice fizyki, o których mówimy. Na to wszystko nakłada się matematyka, która jest uniwersalnym językiem opisu wszechświata. Tylko trzeba pamiętać, że matematyka nie oznacza wcale determinizmu.

2 + 2 zawsze równa się 4. Cała matematyka szkolna jest deterministyczna.

No bo w szkole się uczy najprostszych rzeczy: dodawania, odejmowania i pierwiastkowania. Niewiele więcej. W prawdopodobieństwie nic nie jest pewne, choć wszystko prawdopodobne. A to dopiero początek. Mechanika kwantowa posługuje się matematyką, która jest indeterministyczna. Wcześniej rozmawialiśmy o przypadkach. Ja rozróżniam dwa ich rodzaje. Jeden to przypadek wynikający z niewiedzy albo ignorancji. Np. mogę się z kimś założyć, czy z zza rogu wyjedzie tramwaj numer 8 czy 4. Ja nie wiem który i traktuję to w kategoriach przypadku, ale jeżeli te tramwaje są w drodze, to proces jest zdeterminowany. Natomiast czy są przypadki, zdarzenia, które rzeczywiście nie są zdeterminowane? Mechanika kwantowa jest świadectwem, że tak, są. I takie przypadki pojawiają się u podstaw całej naszej rzeczywistości.

Czy wszechświat ma jakieś granice geometryczne? Pytam zarówno o to, czy możemy dowolnie długo dzielić cząstki elementarne na coraz mniejsze kawałki, jak i o to, czy kosmos gdzieś się kończy?

Może być tak, że świat jest skończony, ale nie ma granicy. I wtedy idąc cały czas w jedną stronę, w końcu trafimy do punktu wyjścia. Modele otwarte mówią, że można zmierzać w jednym kierunku w nieskończoność. Nie ma żadnych naukowych powodów, by wszechświat miał granice. Natomiast czy można dzielić cząstki w nieskończoność? Nie wiem.

Co zapaliło małego Michała Hellera do tego by zajął się nauką? A co zapala już dorosłego księdza profesora by zajmował się nią dalej? 

Dorastałem w domu, gdzie rozmawiało się o nauce, o świecie. Ojciec był inżynierem, opublikował nawet kilka prac matematycznych. Od dziecka, jak tylko miałem jakąś książkę popularnonaukową, to się w niej zaczytywałem. I trudno tak ciekawymi rzeczami się nie zajmować. A dzisiaj? Chyba ta sama ciekawość co u małego Michała. Ciekawość jest motorem działania. Ale trzeba uważać, bo ona musi być pod kontrolą. Inaczej do niczego się nie dojdzie, niczego nie uda się wystarczająco dobrze zbadać. Na świecie żyje wielu geniuszy, którzy nie potrafili się ograniczyć. Wiedzą prawie wszystko o prawie wszystkim i zarazem niewiele. Wszystko ich za bardzo ciekawi. I w moim przypadku to zawsze było dość trudne i bywa trudne do dzisiaj. Interesuje mnie za dużo, a trzeba się ograniczyć do jednego.

>>> Więcej naukowych ciekawostek na FB.com/NaukaToLubie

Ksiądz Profesor Michał Heller jest teologiem, filozofem i kosmologiem. W 2008 roku jako jedyny dotychczas Polak został laureatem międzynarodowej Nagrody Templetona, przyznawanej za pokonywanie barier między nauką a religią. Jest autorem kilkudziesięciu książek. 

Opublikowany powyżej wywiad jest fragmentem rozmowy jaką przeprowadziłem z X. prof. Michałem Hellerem dla tygodnika Gość Niedzielny.
3 komentarze do Wszystko jest matematyką – rozmowa z X. prof. Michałem Hellerem

Jak działa alkohol?

Alkohol szkodzi zdrowiu. To hasło zna prawie każdy. Co dzieje się z alkoholem w organizmie człowieka? I co dzieje się z organizmem po spożyciu alkoholu.

Przełykany alkohol zaczyna być wchłaniany już jamie ustnej i przełyku. Najwięcej etanolu dostaje się jednak do krwi przez ścianki żołądka i jelita cienkiego. W tym drugim zaburza on zwykłe wchłanianie substancji odżywczych, a w żołądku może wywoływać stany zapalne. Mowa oczywiście o nadmiarze alkoholu oraz częstym i regularnym jego spożywaniu. Za wyjątkiem sytuacji chorobowych, niewielkie ilości alkoholu, np. lampka wina do kolacji czy kufel piwa wypity w czasie grilla – nikomu nie zaszkodzą. Przeciwnie mogą pomóc, alkohol jest antyoksydantem, czyli „likwiduje” wolne rodniki, które wpływają na starzenie się komórek. Mowa oczywiście o niewielkich ilościach alkoholu, a nie o jego nadużywaniu.

>>> Więcej naukowych ciekawostek na FB.com/NaukaToLubie

Potrzeba energii

A co dzieje się z alkoholem już wchłoniętym do krwi? Jest rozprowadzany po całym organizmie. Po to by rozłożyć cząsteczkę etanolu, potrzeba energii. Spada więc stężenie cukru we krwi. To może prowadzić do zawrotów głowy i drżenia rąk. Dokładnie tak samo organizm zacznie reagować na niski poziom cukrów gdy… przestaniemy jeść. Przy okazji obniżania poziomu cukru we krwi, wzrasta jej ciśnienie. Na ten proces wpływa jeszcze jeden mechanizm. Krew regularnie jest przepompowywana przez nerki. Te działają jak filtr i pozbywają się tego, co dla organizmu jest niepotrzebne albo szkodliwe. Do filtrowania etanolu nerki potrzebują bardzo dużej ilości wody. To właśnie dlatego, po spożyciu alkoholu oddajemy znacznie więcej moczu niż po wypiciu takiej samej ilości np. wody. Wypicie 250 ml wina, oznacza, że w ciągu 2-3 godzin pozbędziemy się przynajmniej 500 ml wody. Niebezpieczne odwodnienie organizmu po spożyciu dużej ilości alkoholu jest realnym zagrożeniem. A wypicie nadmiernej jego ilości zawsze kończy się pragnieniem i nieprzyjemnym wrażeniem suchości w ustach. Pragnienie jest jednym z elementów tzw. kaca, czyli zespołu objawów poalkoholowych.

Najbardziej obciążona po spożywaniu alkoholu jest jednak wątroba. Tylko 2 proc. spożytego alkoholu jest usuwanego z organizmu w niezmienionej postaci. Reszta, czyli 98 proc. jest najpierw metabolizowana. Zajmuje się tym właśnie wątroba. To proces bardzo obciążający i długi. Dlatego właśnie efekty spożycia alkoholu utrzymują się tak długo. Alkohol krąży we krwi przez kilka, kilkanaście a w skrajnych wypadkach nawet kilkadziesiąt godzin. Na dodatek sposób metabolizmu alkoholu jest dla organizmu bardzo niebezpieczny. W wątrobie etanol jest utleniany do aldehydu octowego, który jest wielokrotnie bardziej trujący niż sam alkohol. I to aldehyd uszkadza wątrobę. W skrajnych wypadkach w wątrobie mogą się pojawić komórki rakowe, znacznie częściej dochodzi do marskości wątroby czyli do zniszczenia struktury tego narządu. Bardzo często nadmiar alkoholu może doprowadzić do niewydolności wątroby. Zresztą aldehyd octowy niekorzystnie wpływa nie tylko na wątrobę, ale także na mózg. Nudności, bóle głowy i wymioty (czyli pozostałe objawy kaca) to efekt wpływu aldehydu na ludzki organizm a nie alkoholu.

>>> Więcej naukowych ciekawostek na FB.com/NaukaToLubie

Pijany mózg

Mówiąc o wpływie alkoholu na organizm człowieka najczęściej mamy jednak na myśli nie obniżenie poziomu cukru we krwi czy rujnowanie wątroby, tylko trudności w utrzymaniu równowagi, niewyraźne widzenie i mówienie oraz zwolniony czas reakcji. Skąd biorą się te objawy? Alkohol reaguje z substancjami, które w mózgu są odpowiedzialne za aktywność komórek nerwowych. Neurony stają się bardziej „ociężałe” nawet po wypiciu niewielkiej ilości alkoholu. Zmiany stężenia takich substancji jak kwas gamma-aminomasłowy, glutaminian czy serotonina nie tylko spowalniają działanie neuronów, ale zaburzają pracę niektórych części mózgu. Głównie w korze mózgowej, w której „znajduje się” odpowiedzialne zachowanie i logiczne myślenie. Mniejsza ilość serotoniny w podwzgórzu i w przysadce mózgowej skutkuje wylewnością i ogólnym rozluźnieniem. To dlatego pod wpływem alkoholu łatwiej zdradza się sekrety, łatwiej zaprzyjaźnia się z innymi. Krótko mówiąc znikają bariery. Alkohol wzmaga też pociąg seksualny, ale nadmiar alkoholu wpływa na takie rozluźnienie mięśni, że może skutkować problemami ze wzwodem.

Najbardziej niebezpieczne dla otoczenia są jednak konsekwencje działania alkoholu na móżdżek, tą część mózgu, która jest odpowiedzialna za koordynację ruchów i utrzymanie równowagi. To dlatego osoba pijana nie jest w stanie prosto chodzić, ma problemy np. z trafieniem kluczem do dziurki w zamku albo z dotknięciem palcem czubka swojego nosa. Osoba pijana za kierownicą samochodu nie potrafi omijać przeszkód, nie potrafi skoordynować swoich ruchów, nie jest w stanie prawidłowo ocenić odległości i szybkości. W największym skrócie jest całkowicie nieprzewidywalnym uczestnikiem ruchu na drodze. Alkohol zaburza także działanie rdzenia przedłużonego. Efektem tego – przy dużych dawkach alkoholu – jest ogólne otępienie, senność i spowolnienie reakcji.

Ile można wypić?

Organizm potrzebuje dużej ilości energii do oczyszczenia się z alkoholu. To dlatego jego wysoki poziom we krwi wywołuje dosyć szybko uczucie głodu. I tak na prawdę tylko dostarczenie dużej ilości węglowodanów ma wpływ na szybkość trawienia alkoholu. Chcąc szybko wytrzeźwieć, trzeba dużo jeść. Wszystkie inne metody, medykamenty, picie dużej ilości innych płynów czy robienie ćwiczeń fizycznych nie mają na trzeźwość żadnego wpływu.

A ile alkoholu można wypić, by móc normalnie funkcjonować? A co to znaczy normalnie? Nawet niewielka ilość alkoholu ma wpływ na nasze zachowanie, ma wpływ na pracę mózgu. Kwestią sporną pozostaje czy wpływ np. lampki wina jest zauważalny. Czy stanowi już jakiekolwiek zagrożenie. Są kraje w których prawo określa akceptowalny poziom alkoholu u kierowców na zero. Innymi słowy, np. na Węgrzech, na Słowacji czy w Czechach nie wolno mieć ani grama alkoholu we krwi. W Polsce (ale także w Szwecji i Norwegii) można prowadzić samochód mając 0,2 promila alkoholu we krwi. To – w porównaniu z innymi krajami europejskimi – dosyć restrykcyjna norma. Ale od 0,3 promila alkoholu we krwi zauważa się wpływające na zachowanie rozproszenie uwagi. Od 0,8 promila zauważalne jest już upośledzenie koordynacji ruchowo – wzrokowej. W przeważającej większości krajów Europy limit wynosi 0,5 promila, choć np. w Luksemburgu, Irlandii, Wielkiej Brytanii i na Malcie prawo dopuszcza prowadzenie samochodu z 0,8 promilem alkoholu we krwi.

A wracając na polskie drogi. Pomijając dyskusję nad tym czy polskie uregulowania prawne mają sens czy nie, ile można wypić, by nie przekroczyć limitu 0,2 promila alkoholu we krwi? Trudno o jednoznaczną odpowiedź. Wpływ alkoholu na organizm jest zależny od wielu czynników. Od stresu, zmęczenia czy różnego rodzaju dolegliwości zdrowotnych. Ale także od zażywanych leków czy od używek takich jak papierosy czy kawa. Lepiej więc nie ryzykować wsiadając za kierownicę nawet po jednym małym piwie. Lepiej odczekać. Przyjmuje się, że organizm potrzebuje godziny na pozbycie się 10 gramów czystego alkoholu. Tego w dużym (pół litrowym) piwie jest około 25 gramów. Krótko mówiąc, wsiadając za kierownicę 3 godziny po wypiciu kufla piwa, możemy być pewni, że alkomat policyjny wskaże poziom zero. I jeszcze jedno. Prawie 80 proc nietrzeźwych złapanych przez policję to kierowcy którzy pili alkohol poprzedniego dnia. Po wypiciu dużej ilości mocnego alkoholu trzeba dać organizmowi przynajmniej dobę na to, by całkowicie usunął alkohol z krwi. Tego procesu nie przyspieszy ani sen, ani zimny prysznic ani reklamowane środki farmaceutyczne.

>>> Więcej naukowych ciekawostek na FB.com/NaukaToLubie

Tekst ukazał się w tygodniku Gość Niedzielny
8 komentarzy do Jak działa alkohol?

Type on the field below and hit Enter/Return to search

WP2Social Auto Publish Powered By : XYZScripts.com
Skip to content