Nauka To Lubię

Oficjalna strona Tomasza Rożka

Kategoria: Aktualności

Pociąg wagi państwowej

Styk nauki (historii), polityki i ogromnych pieniędzy zawsze wzbudza emocje. Nie mam bladego pojęcia, czy w okolicach Wałbrzycha jest wyładowany złotem niemiecki pociąg pancerny. Byłoby jednak lepiej, gdyby urzędnicy i politycy nad tym tematem zamilkli.

Styk nauki (historii), polityki i ogromnych pieniędzy zawsze wzbudza emocje. Nie mam bladego pojęcia, czy w okolicach Wałbrzycha jest wyładowany złotem niemiecki pociąg pancerny. Byłoby jednak lepiej, gdyby urzędnicy i politycy nad tym tematem zamilkli.

Sprawa wygląda w skrócie tak. Wrocław, a właściwie Breslau, był drugim największym, po Berlinie, miastem III Rzeszy. Miastem bogatym nie tylko w tradycje i idee, ale także pieniądze. To tutaj znajdował się sporej wielkości skarbiec Rzeszy, to tutaj były banki, a w nich depozyty. Gdy sytuacja na frontach II wojny światowej zaczęła rozwijać się dla Niemców niepomyślnie, władze miasta zaapelowały do obywateli, by ci zdeponowali swoje bogactwa. Wszystko zostało skrupulatnie policzone i skatalogowane (jak to w Niemczech). Zamknięte w metalowych skrzyniach i zabezpieczone. W maju 1945 roku nie można jednak było dłużej czekać. Rosjanie zbliżali się do Wrocławia. Wtedy postanowiono skarb wywieźć. Było go za dużo na samochody, zdecydowano się więc na pancerny pociąg. Ten wyjechał z Wrocławia i w okolicach Wałbrzycha… słuch o nim zaginął.

70 lat później, w sierpniu 2015 roku na konferencji prasowej Generalny Konserwator Zabytków (nie żaden specjalista, polityk z nadania PSLowskiego) mówi, że na 99 proc. tzw. „złoty pociąg” znajduje się w miejscu wskazanym przez anonimowych poszukiwaczy skarbów. Konserwator (w randze wiceministra) przyznał także, że widział zdjęcia georadarowe, a na nich wyraźnie rozpoznał nie tylko pociąg i jego wagony, ale także ich uzbrojenie. W tym miejscu kilka słów o georadarach. One nie służą do identyfikacji czegokolwiek. One służą do zobrazowania warstw podłoża. Gdy w badanym podłożu znajdują się jakiekolwiek artefakty, specjalista na „wydruku” zobaczy, że w ziemi „coś” się znajduje. Dopiero na podstawie danych georadarowych przeprowadza się kolejne, bardziej wnikliwe analizy. Mówienie, że na zdjęciach z georadaru Generalny Konserwator Zabytków widział elementy uzbrojenia, wydają się być mało prawdopodobne. Dzisiaj dość trudno te informacje zweryfikować, bo wspomniane zdjęcia zaginęły. Nie ma ich np. w dokumentacji jaką anonimowi znalazcy pociągu złożyli w Urzędzie Miasta Wałbrzycha.

Złoty pociąg zyskał międzynarodowy rozgłos właśnie po słowach Generalnego Konserwatora Zabytków. Do jeszcze nie odnalezionego pociągu prawo roszczą sobie Rosjanie. Do jego zawartości Światowy Kongres Żydów. Można się oburzać, ale… jeżeli tam jest złoto Wrocławia, w części jest to złoto zrabowane właśnie Żydom. Reszta to depozyty niemieckiej ludności miasta. Z kolei ustalenia kończące II Wojnę Światową mówią dość wyraźnie, że niemiecki sprzęt wojskowy z terenów wyzwalanych przez Armię Czerwoną, należy się Związkowi Radzieckiemu (a więc Rosji). Prawa majątkowe w takich sytuacjach przedawniają się dopiero po upływie 100 lat. W tej sytuacji nam nie należy się oczywiście nic. No, może za wyjątkiem satysfakcji z wydanych na badania i ewentualne wydobycie pociągu pieniędzy.

Nie mam bladego pojęcia, czy w okolicach Wałbrzycha znajduje się niemiecki pociąg pancerny. Nawet jeżeli tam rzeczywiście jest, nie wiem, czy to ten sam, który wywoził skarby Wrocławia, czy jakiś inny. 70 lat po wojnie mamy bardzo małą wiedzę na temat labiryntu korytarzy drążonych przez Niemców w Sudetach. Nigdy nie ogłoszono zakrojonego na szeroką skalę programu naukowego, którego celem byłoby zidentyfikowanie czy przebadanie tego co w Sudetach robili Niemcy. A szkoda. Skala niemieckich prac musiała być ogromna, skoro w okolice zamku Książ miał być przeniesiony cały ośrodek zajmujący się badaniem, udoskonalaniem i produkcją niemieckich rakiet V. Swoją drogą, po wojnie zarówno sprzęt, dokumentację jak i ludzi „przejęli” Amerykanie. Tylko dzięki temu amerykański program kosmiczny dzisiaj jest wiodącym. W skrócie mówiąc, to Naziści postawili człowieka na Księżycu. A wracając do „złotego pociągu”. Polskie władze, zarówno na poziomie samorządu, województwa jak i stolicy, zabrały się za sprawę totalnie nieprofesjonalnie. Urzędnik rządowy (Generalny Konserwator Zabytków) chlapie językiem na lewo i prawo, inny urzędnik (wojewoda dolnośląski) zaprzecza wszystkiemu, a kolejny (prezydent Wałbrzycha) coś niecoś sugeruje. Efekt jest taki, że o niejasnej sprawie piszą światowe media, a w lasach wokoło Wałbrzycha na każdym kroku jakiś poszukiwacz skarbów. Niektórzy z nich nie znają subtelnych metod badawczych. Kilka dni temu w jednym z „podejrzewanych” miejsc ktoś podpalił las. Zamieszanie absolutnie nie służy nie tylko sprawie samego pociągu, ale utrwala także negatywny i NIESPRAWIEDLIWY obraz Polski za granicą. Jeszcze trochę, a przeczytamy, że to Polacy zrabowali złoto i kosztowności Niemcom i Żydom, których następnie podstępnie z Wrocławia wypędzili. Pasuje jak ulał do polskich obozów śmierci.

Teren, na którym pociąg jest, albo być może jest, powinien zostać natychmiast zamknięty i dobrze pilnowany. Badania powinno robić wojsko i specjaliści archeolodzy, a nie domorośli poszukiwacze przygód. A jeżeli cokolwiek będzie tam znalezione, powinno zostać w tajemnicy przetransportowane w miejsce, gdzie na spokojnie będzie można to zbadać i skatalogować. Dopiero wtedy, bez pośpiechu, na poziomie rządu, powinna zapaść decyzja, czy cokolwiek światu komunikujemy, czy naszym jedynym komunikatem będzie „no comments”. I tak przez przynajmniej kolejnych 30 lat.

 

Tekst ukazał się na portalu gosc.pl, zdjęcie pochodzi ze strony Stowarzyszenia Pamięci Powstania Warszawskiego 1944 (www.sppw1944.org)

1 komentarz do Pociąg wagi państwowej

Czujnik w nas

W Szwajcarii stworzono czujnik, który wszczepiony pod skórę jest w stanie kontrolować kilka parametrów życiowych równocześnie. Kilka lat temu pisałem o takich czujnikach jak o dalekiej przyszłości.

W Szwajcarii stworzono czujnik, który wszczepiony pod skórę jest w stanie kontrolować kilka parametrów życiowych równocześnie. Kilka lat temu pisałem o takich czujnikach jak o dalekiej przyszłości.

Czujnik, a właściwie elektroniczny chip, powstał w laboratoriach politechniki w Lozannie EPFL (École polytechnique fédérale de Lausanne). Ma wielkość paznokcia w małym palcu i nie trzeba wymieniać mu baterii. Ładuje się go przez indukcję, przez skórę. Wszystko, co zbada i zmierzy, przesyła bezprzewodowo do smartfona. Jest to bodaj pierwsze urządzenie tego typu, które może być wykorzystywane komercyjnie u pacjentów. Poprzednie konstrukcje nie były co prawda większe, ale miały ogromną wadę – badały tylko jeden parametr, tylko jedną zmienną. Ten równocześnie rejestruje ich kilka.

Od czego się zaczęło?

Czujnik, o którym mowa, wpisuje się w rozwój dziedziny zwanej nanotechnologią. Co prawda urządzenia nano są znacznie, znacznie mniejsze, ale bardzo szybki wyścig do miniaturyzacji zawdzięczamy właśnie nanotechnologii. Za ojca tej dziedziny uważany jest genialny fizyk Richard Feynman. Uczestniczył w pracach nad budową pierwszej bomby atomowej (projekt Manhattan), a po wojnie pracował na najlepszych uniwersytetach amerykańskich. Zajmował się kwantową teorią pola i grawitacji, fizyką cząstek i nadprzewodnictwem. To on jako pierwszy podał koncepcję komputera kwantowego i – w 1960 roku – zapowiedział powstanie nowej dziedziny nauki – nanotechnologii. W 1965 r. otrzymał Nagrodę Nobla z fizyki. Feynman wielokrotnie zwracał uwagę na to, że przyszłość będzie nano, że zrozumienie tego, co dzieje się w nanoświecie, świecie na poziomie pojedynczych cząstek i atomów, będzie kluczowe dla naszego przyszłego rozwoju.

Trudno oczywiście dokładnie określić, kiedy nanotechnologia rzeczywiście powstała, ale nie ma wątpliwości, że wiele dziedzin przemysłu coraz chętniej zwraca głowę w kierunku ekstremalnej miniaturyzacji. Jedną z dziedzin, które robią to szczególnie często, jest medycyna. Nanomedycyna dzisiaj rozwija się w dwóch kierunkach. Jeden to próby (coraz częściej udane) stworzenia nanocząsteczek, które będą nośnikami leków, a nawet genów. Wnikając do organizmu, będą uwalniać przenoszony czynnik dokładnie w tym miejscu i dokładnie o tym czasie, jaki jest optymalny. Drugi kierunek to nanosensory. Te mogą być wykorzystywane nie tylko w medycynie, ale także na przykład w ochronie środowiska. Dobrym przykładem jest nanosensor służący do analizy krwi. Z zewnątrz wygląda jak siateczka z ogromną ilością otworów. W rzeczywistości to mikroskopijne kanaliki krzemowe, w których znajdują się przeciwciała wyłapujące komórki nowotworowe. Analiza przeciwciał pozwala stwierdzić, czy w krwi znajdują się komórki rakowe, a jeżeli tak, to ile i jakie. Taka informacja nie może być pozyskana w trakcie standardowej analizy, bo komórek nowotworowych w krwi jest bardzo mało. Co ciekawe, testowana metoda jest dużo tańsza niż dzisiaj stosowane, a do analizy wystarczy jedna, dosłownie, kropla krwi.

Myszy już mają

Nanomedycyna jednoznacznie kojarzy się jednak z budową nanorobotów, które wpuszczone do ludzkiego krwiobiegu będą nie tylko monitorowały funkcje życiowe, ale także reagowały na stany kryzysowe organizmu. Te skojarzenia – przynajmniej na razie – są całkowicie chybione. Co nie znaczy oczywiście, że prace nad miniaturyzacją robotów nie są prowadzone. Już dzisiaj tworzone są roboty, których rozmiary umożliwiają użycie ich w rzeczywistych warunkach szpitalnych. Na przykład kapsułka monitorująca wnętrze układu trawiennego skonstruowana przez japońską firmę Denso Research jest wielkości standardowej tabletki. Jest wyposażona we własne zasilanie i kamerę CCD wysokiej rozdzielczości oraz urządzenie do przesyłania informacji drogą radiową do urządzenia bazowego. Po połknięciu „kapsułka endoskopowa” przekazuje wysokiej jakości obraz w czasie rzeczywistym. Nie ma własnego napędu, porusza się pod wpływem… siły grawitacji i perystaltyki jelit. Ale na rynku są już urządzenia niewiele większe, które mogą poruszać się samodzielnie, choć na razie jeszcze nie w układzie krwionośnym. Kilka lat temu na jednej z konferencji nanotechnologicznych pokazano nanosilnik, który jest mniejszy od główki od szpilki. Jego koła napędowe były 100 razy cieńsze niż kartka papieru, a ich średnica mniejsza niż średnica ludzkiego włosa. Silnik obracał się z częstotliwością jednego obrotu na sekundę i teoretycznie mógłby być elementem systemu napędowego jakiegoś małego urządzenia pływającego. Zanim te powstaną, miną jeszcze lata. Wcześniej do medycyny wejdą inteligentne czujniki, które być może będą wszczepiane pod skórę na dłuższy czas osobom o podwyższonym ryzyku zdrowotnym. Takim czujnikiem jest wspomniany sensor stworzony w Lozannie. Ma wielkość poniżej centymetra i w czasie rzeczywistym monitoruje obecność oraz stężenie kilku molekuł. Może badać odczyn (pH), temperaturę, ale przede wszystkim cholesterol, glukozę, poziom tlenu oraz stężenie przynajmniej kilku leków. To ostatnie będzie szczególnie ważne dla osób, które z powodu swojej choroby muszą regularnie zażywać jakieś medykamenty. Ich przedawkowanie jest wtedy bardzo łatwe. Pełna kontrola nad poziomem substancji czynnej we krwi jest bardzo istotna. Sensor został przetestowany na myszach, a testy kliniczne na ludziach rozpoczną się za kilka lat.

Brak komentarzy do Czujnik w nas

Pluton jak Biedronka

Wczorajszy przelot sondy New Horizons w pobliżu Plutona natchnął mnie do pewnych przemyśleń. Po co badać coś tak odległego jak Pluton? Po co badać delfiny, motyle czy orangutany? Po co zajmować się gwiazdami, płytami tektonicznymi i DNA?

Wczorajszy przelot w pobliżu Plutona i związanych z nim sporo pytań natchnął mnie do pewnych przemyśleń. Niemal za każdym razem, gdy w nauce dochodzi do jakiegoś odkrycia, do wysłania sondy, do zbudowania nowego rodzaju mikroskopu czy znalezienia nowej cząstki elementarnej, pada pytanie, po co to wszystko? Po co wydawać miliony dolarów by dowiedzieć się co słychać np. na globie, który oddalony jest od nas o miliardy kilometrów. Dajmy na to na takim Plutonie. Wczoraj udało się sfotografować jego powierzchnię z odległości nieco ponad 12 tysięcy kilometrów. To 30 razy mniej niż odległość pomiędzy Ziemią i naszym Księżycem. Sonda która tego dokonała to New Horizons. Leciała w kierunku Plutona prawie 10 lat przebywając w tym czasie 5 miliardów kilometrów. No i po co to wszystko? Po co lecieć tak daleko, po co wydawać niemałe przecież pieniądze, po co zaangażowanie ogromnej grupy ludzi przez długi okres czasu?

Zacznijmy od pieniędzy. Całkowity koszt misji New Horizons, wszystkich urządzeń sondy, jej wystrzelenia, ale także analizy danych a nawet obsługi medialnej wydarzenia to około 700 milionów dolarów, czyli nieco ponad 2 miliardy i 600 milionów złotych. To dziesięć razy mniej (!!!) niż wynosi roczny przychód supermarketów Biedronka w Polsce. To mniej niż budowa 20 kilometrowego odcinka autostrady A1. W końcu to mniej niż zakup i 13 letnia obsługa 4 samolotów F16, które służą w polskiej armii (w sumie kupiliśmy ich 48). Tyle jeżeli chodzi o koszty. Tak, te są duże… dla przeciętnego obywatela. Niewielu byłoby stać na wybudowanie i wysłanie w kosmos sondy New Horizons (choć np. Jan Kulczyk, najbogatszy Polak, mógłby takich sond wysłać 7), ale w skali państwa, dla budżetu państwa rozwój nauki to grosze. Grosze zainwestowane najlepiej jak można sobie wyobrazić. Grosze, które w przyszłości przyniosą miliony poprzez rozwój technologii a w dalszej perspektywie rozwój przemysłu. Każda ekspansja to wyzwanie i konieczność znajdowania rozwiązań na problemy z których nie zdawaliśmy sobie sprawy. Przecież loty w kosmos mają bezpośrednie przełożenie na komunikację, elektronikę i materiałoznawstwo. Rozwój technik obrazowania (nieważne czy w astronomii czy w biologii) od razu jest wykorzystywany w medycynie. Nasze miasta byłyby skażonymi pustyniami gdyby nie powstawały zaawansowane technologicznie silniki i komputery, które tymi silnikami sterują.

A wracając do Plutona, delfinów, motyli i orangutanów. Po co je badać? Bo one są częścią nas, a my częścią świata którego różnorodność – przynajmniej mnie – powala na kolana. Wszystkie lekkie atomy, które nas budują powstały w czasie Wielkiego Wybuchu. Wszystkie ciężkie w czasie wybuchu gwiazdy. Warto rozwijać zarówno kosmologię, astrofizykę jak i fizykę cząstek. Nasze DNA to uniwersalny język całej przyrody, a gatunki (zarówno zwierzęce jak i roślinne), które zamieszkują Ziemię (a pewnie także inne globy) powstawały jedne z drugich. To dlatego nie można zaniedbywać biologii (w tym egzobiologii) i medycyny. Oddychamy powietrzem w którego skład wchodzą różne gazy. To dlatego warto rozwijać chemię i interesować się tym jak zmieniały się atmosfery na innych planetach. Ta wiedza może być bezcenna gdy zacznie zmieniać się nasza atmosfera. Bo to że wszystko jest wokoło nas zmienne – to oczywiste. Kontynenty są w ruchu (nie tylko zresztą na Ziemi) i dzięki temu mogło powstać życie. Ale to nie powstałoby, gdyby Ziemia nie miała swojego pola magnetycznego. A tego by nie było gdyby jądro planety nie było gorące i półpłynne. Ale nawet gdyby było, Ziemia byłaby martwa, gdyby nie było Księżyca, który stabilizuje ruch Niebieskiej Planety wokół Słońca. A Księżyc powstał w kosmicznej katastrofie w której w Ziemię uderzyła planetoida wielkości Marsa. Geologia, geografia, fizyka, astronomia, biofizyka i biochemia… Mam dalej wymieniać? Czy jest sens wymieniać? Czy jest sens pytać, po co badamy coś tak odległego jak Pluton? Po co badamy delfiny, motyle czy orangutany, a nawet biedronki (chodzi o owada, nie o sieć sklepów)? Moim zdaniem szkoda na to czasu. Lepiej go wykorzystać na zaspokajanie swojej ciekawości. Bo to ciekawość idzie przed odkryciami. Tak było zawsze i tak będzie zawsze.

3 komentarze do Pluton jak Biedronka

Ludowców gra grafenem

W jednym z najbardziej znanych na świecie polskich instytutów naukowych, w miejscu w którym produkuje się grafen, doszło dziwnych i niezrozumiałych kombinacji podczas wyboru dyrektora placówki. Sprawa wygląda na polityczną ustawkę, która może utopić polski grafen.

W jednym z najbardziej znanych na świecie polskich instytutów naukowych, w miejscu w którym produkuje się grafen, doszło dziwnych i niezrozumiałych kombinacji podczas wyboru dyrektora placówki. Sprawa wygląda na polityczną ustawkę, która może utopić polski grafen.

O sprawie pisałem już w Tygodniku Gość Niedzielny. Dotychczasowym szefem Instytutu Technologii Materiałów Elektronicznych (ITME) w Warszawie był doktor Zygmunt Łuczyński. Zasłużony fizyk i człowiek, który wiele lat temu zainicjował w tej jednostce badania nad nowymi postaciami węgla, czyli nad grafenem („wie pan, chodziłem za tym, jak jeszcze nikt nie wiedział czym jest grafen„). Dzisiaj ITME jest światowym liderem technologii. To w Warszawie powstają jedne z największych kawałków grafenu na świecie. Naukowcy pracujący w „grupie grafenowej” są zaangażowani w najbardziej prestiżowe projekty międzynarodowe, a sam instytut w rankingach jest plasowany na czołowych pozycjach. Dla przypomnienia, grafen to postać węgla, która ma niespotykane w innych materiałach właściwości. Jest bardzo wytrzymały, a równocześnie elastyczny. Lekki i przezroczysty, ale odporny na działanie sił zewnętrznych. Doskonale przewodzi prąd i ciepło. I choć trudno znaleźć dziedzinę w której grafen nie mógłby być wykorzystywany, największe nadzieje wiąże się z grafenem w elektronice. Panuje powszechne przekonanie, że w najbliższej przyszłości, to grafen, czy ogólnie węgiel, wyprze z elektroniki krzem, który dzisiaj jest jej fundamentem. W skrócie mówiąc, grafen, pod wieloma względami jest materiałem przyszłości.

Doktorowi Łuczyńskiemu kilka miesięcy temu kończyła się kadencja dyrektorska i starając się o kolejną, wystartował w ogłoszonym konkursie. Wraz z nim do konkursu stanęło jeszcze trzech innych kandydatów. Każdy z nich odpadł jednak na kolejnych etapach procedury konkursowej. Konkurs sprzed kilku miesięcy wygrał więc bezapelacyjnie dotychczasowy szef Instytutu, dr Zygmunt Łuczyński. Tą wygraną potwierdziła odpowiednią uchwałą Komisja Konkursowa, a Rada Naukowa Instytutu skierowała do Ministra Gospodarki pismo z rekomendacją i prośbą o powołanie nowego (starego) dyrektora na kolejną kadencję. Skany tych pism zamieszczam na dole wpisu.

Mimo tej wygranej, doktor Łuczyński dyrektorem jednak nie został, bo jego nominacji nie podpisał Minister Gospodarki, Janusz Piechociński z PSLu. Nie pomogło to, że do ministra zwróciła się z prośbą o podpisanie nominacji Rada Naukowa Instytutu oraz Rada Główna Instytutów Badawczych. Nie pomogło nawet to, że na biurku ministra znalazł się list podpisany przez 190 pracowników Instytutu popierających swojego poprzedniego dyrektora.  W liście do premiera Piechocińskiego, szef Rady Głównej Instytutów Badawczych pisał, że Rada wyraża pogląd, że konkurs na stanowisko dyrektora instytutu badawczego ITME został przeprowadzony zgodnie z obowiązującymi wymaganiami prawnymi.  A potem dodawał: „Rada Główna Instytutów Badawczych popiera stanowisko Rady Naukowej ITME. W imieniu Rady Głównej zwracam się do Pana Premiera o reasumpcję odmowy powodłania dr. Zygmunta Łuczyńskiego na stanowisko dyrektora ITME.” Premier Piechociński zdania jednak nie zmienił.

Dlaczego? Otóż ministerstwo twierdzi, że zostały złamane procedury, bo nie wszyscy kandydaci przeszli pełną ścieżkę konkursową. To prawda, ale to nie jest niezgodne z prawem. Nie wszyscy kandydaci dotrwali do końca procedury konkursowej, bo odpadli wcześniej. Pomijając nazwiska (choć te są w dokumentach zamieszczonych poniżej), jeden z panów odpadł na egzaminie z angielskiego. Jego wiadomości były zdaniem komisji konkursowej dużo poniżej tych, które deklarował w dokumentach. Drugi kandydat zrezygnował, gdy trzeba było podzielić się z komisją swoją wizją na temat rozwoju i przyszłości instytutu. Trzeci nie dopełnił formalności przy zgłoszeniu swojej kandydatury i dlatego komisja w ogóle nie rozpatrywała jego podania.

Napisałem do Ministerstwa Gospodarki maila z pytaniem o dziwne praktyki konkursowe. Po kilku dniach otrzymałem odpowiedź, że konkurs trzeba było powtórzyć z powodu złamania procedur. Jak to możliwe, skoro szefem Komisji Konkursowej był przedstawiciel ministerstwa, który na piśmie oświadczył, że wszystkie procedury były zachowane? Zerknijcie proszę w dokumenty poniżej. Gdy do rzeczniczki ministra Piechocińskiego napisałem kolejnego maila z prośbą o wyjaśnienie tej niezgodności (ministerstwo twierdzi, że prawo zostało złamane, przedstawiciel ministerstwa zaświadcza, że wszystko odbyło się zgodnie z przepisami), nie otrzymałem żadnej odpowiedzi. Mimo, że już dawno minął ustawowy termin na odpowiedź jaki prawo narzuca urzędnikom.

Ministerstwo Gospodarki postawiło na swoim i po unieważnieniu konkursu, rozpisało nowy. Dotychczasowy dyrektor – doktor Łuczyński – przepadł, szefem Instytutu Technologii Materiałów Elektronicznych został były prezes Grupy Azoty (Kędzierzyn Koźle) Ireneusz Marciniak. – O tej osobie mówiło się jak o kandydacie forsowanym przez ministerstwo gospodarki – powiedział mi dr Zygmunt Łuczyński. Ireneusz Marciniak był związany z różnymi spółkami skarbu państwa od kilkunastu lat.

Trzy miesiące temu dr Łuczyński udzielił pismu Elektronik wywiadu pod znamiennym tytułem „Kto jest zainteresowany przejęciem ITME?„, w którym tłumaczył naciski i motywy stojące za próbą przejęcia sterów w jednym z najbardziej znanych na świecie polskich ośrodków naukowych. – Z moich informacji wynika, że istnieje porozumienie pomiędzy Ministerstwem Gospodarki a Politechniką Warszawską, na mocy którego niedługo ma nastąpić konsolidacja Politechniki i ITME – mówił Łuczyński. Zapytany o to porozumienie rzecznik Politechniki Warszawskiej, zaprzeczył istnieniu jakiejkolwiek umowy. Doktor Łuczyński, we wspomnianym wywiadzie opowiada także, że ośrodek którym kierował znajduje się w wielu rankingach instytucji naukowych na czołowych pozycjach. Prowadzi bardzo ważne naukowo i biznesowo projekty (w tym bardzo prestiżowe, międzynarodowe), znajduje dofinansowanie i ma świetny sprzęt. – Nietrudno zatem dojść do wniosku, że ITME jest łakomym kąskiem do przejęcia – powiedział mi doktor Łuczyński. I dodawał, że przejęcie ITME to „bilet do wielu prestiżowych programów o charakterze międzynarodowym”. Tyle tylko, że dyrektor Łuczyński nie godził się na zmiany organizacyjne w instytucie. – Uczestnictwo w światowym wyścigu technologicznym, czego grafen jest doskonałym przykładem, wymaga 100-procentowej i maksymalnej koncentracji oraz podporządkowania się temu celowi – mówił Łuczyński w Elektroniku. A potem dodawał, że laboratoria Instytutu pracują na trzy zmiany, bo w tak zaciętym wyścigu technologicznym z jakim mamy do czynienia, liczy się każda godzina. – To moim zdaniem jest wystarczający powód, aby nie zmieniać konia w czasie gonitwy – mówił. I dodawał, że jakiekolwiek zmiany personalne w kierownictwie czy organizacyjne nie dają gwarancji utrzymania kadry, co jest kluczowe dla rozwoju prac. – Nie jest tajemnicą, że większość ze specjalistów pracujących nad grafenem ma liczne propozycje i możliwość natychmiastowego przejścia do innych (zagranicznych) ośrodków badawczych. Każda niestabilność związana z działalnością placówki jest tutaj realnym zagrożeniem, a w konsekwencji grozi utratą pozycji Polski w tej dziedzinie – mówił doktor Łuczyński. No właśnie. Pozycja Polski. Wydaje się, że w tym wszystkim najmniej chodzi o pozycję Polski i polskich badań.

 

DOKUMENTY015_Strona_2

Uchwała Komisji Konkursowej stwierdzająca zwycięstwo w konkursie dr. Zygmunta Łuczyńskiego

 

DOKUMENTY015_Strona_1

List Komisji Konkursowej rekomendujący dr. Łuczyńskiego na stanowisko dyrektora ITME

 

DOKUMENTY015_Strona_3-kolorowy

Uchwała Rady Naukowej Instytutu, w które potwierdzona zostaje prawidłowość procedury konkursowej, w której wygrał dr Zygmunt Łuczyński

 

List RGJB do Piechocińskiego-podkreślenia

List Przewodniczącego Rady Głównej Instytutów Badawczych do Premiera Piechocińskiego z prośbą o zmianę decyzji wsp. niepowoływania dr. Łuczyńskiego na stanowisko dyrektora ITME.

 

Wniosek  Rady Nauk do Ministra_Strona_1

Wniosek Rady Naukowej ITME o reasumpcję odmowy powołania dr. Zygmunta Łuczyńskiego na stanowisko dyrektora ITME

 

Wniosek  Rady Nauk do Ministra_Strona_2

Uzasadnienie wniosku o reasumpcję odmowy powołania dr. Zygmunta Łuczyńskiego na stanowisko dyrektora ITME strona 1

Wniosek  Rady Nauk do Ministra_Strona_3

Uzasadnienie wniosku o reasumpcję odmowy powołania dr. Zygmunta Łuczyńskiego na stanowisko dyrektora ITME strona 2

Wniosek  Rady Nauk do Ministra_Strona_4

Uzasadnienie wniosku o reasumpcję odmowy powołania dr. Zygmunta Łuczyńskiego na stanowisko dyrektora ITME strona 3

Wniosek  Rady Nauk do Ministra_Strona_5

Uzasadnienie wniosku o reasumpcję odmowy powołania dr. Zygmunta Łuczyńskiego na stanowisko dyrektora ITME strona 4

 

36 komentarzy do Ludowców gra grafenem

Muzyka to drgania

Dla niektórych muzyków informacja o tym, że całe swoje życie poświęcają produkcji drgań może być niemiłym zaskoczeniem. Setki, tysiące godzin prób, ból, łzy i emocje, a wszystko po to, by cząsteczki powietrza wyprowadzić z położenia równowagi.

Dla niektórych muzyków informacja o tym, że całe swoje życie poświęcają produkcji drgań może być niemiłym zaskoczeniem. To samo dotyczy także tych, którzy śpiewają. Setki, tysiące godzin prób, ból, łzy i emocje, a wszystko po to, by cząsteczki powietrza wyprowadzić z położenia równowagi.

Co to znaczy z położenia równowagi? To w przypadku cząsteczek powietrza, niezbyt fortunne stwierdzenie. Tlen, azot, wodór – atomy tych i wielu innych pierwiastków wchodzących w skład powietrza i tak nigdy nie są w spoczynku. Poruszają się chociażby pod wpływem różnicy temperatur czy ciśnienia (jedno z drugim jest zresztą powiązane). Jeżeli ktoś nie wierzy, niech spojrzy za okno, a najlepiej nich wyjdzie na świeże powietrze. Wiatr to właśnie ruch cząsteczek powietrza. Zimą wbijający się w ubranie jak szpilki, latem zwykle przyjemnie schładzający naszą skórę. Co ten ruch ma wspólnego z dźwiękami? Nic. Gdy wieje wiatr, cząsteczki powietrza przemieszczają się z miejsca na miejsce, jak samochody jadące szeroką autostradą. Z dźwiękami jest inaczej. Tutaj ruch bardziej przypomina zakorkowane miasto, gdzie na ulicach samochody stoją zderzak w zderzak. Albo nie, przypomina klik-klaka. Kulka z brzegu zostaje odchylona i uderza w swoją sąsiadkę, a ta w kolejną itd. Ale środkowe kulki zmieniają położenie tak nieznacznie, że nawet tego nie widać. Co nie przeszkadza im przekazywać energię. To przekazywanie energii od jednej kulki, do kolejnej dojdzie w końcu do ostatniej, która energicznie odskakuje. Podobnie jest z dźwiękiem. Cząsteczki powietrza przekazują sobie energię dźwięku tak jak kuleczki klik – laka. Z tą różnicą, że kuleczek w popularnej zabawce jest najwyżej kilka, a cząsteczek powietrza pomiędzy źródłem dźwięku a naszym uchem mogą być setki milionów.

Gęściej znaczy szybciej

Dźwięk rozchodzi się oczywiście nie tylko w powietrzu, nie tylko w gazach, ale także w cieczach i ciałach stałych. Czym gęstszy jest ośrodek, tym dźwięk szybciej się w nim rozchodzi. Na pozór to nielogiczne, ale gdyby się dłużej zastanowić… Skoro cząsteczki przekazują energię dźwięku nie jak posłańcy poruszający się na dużych odległościach, tylko raczej jak ludzie czekający w kolejce, czym bliżej siebie będą cząsteczki, tym szybciej dźwięk będzie przekazywany. Tym więcej energii zostanie przekazanej dalej. W powietrzu dźwięk porusza się z prędkością około 1200 km/h. W wodzie prędkość dźwięku jest prawie 5 razy większa i wynosi około 5400 km/h, a w stali wibracje poruszają się z prędkością bliską 18 000 km/h. Z drugiej strony, gdy cząsteczek nie ma wcale, albo gdy są bardzo daleko od siebie, dźwięk nie jest przekazywany w ogóle. W próżni panuje idealna cisza.

Dźwięki można wytwarzać na wiele różnych sposobów. Wytworzenie, to zwykle jednak za mało. Żeby były słyszalne, trzeba je wzmocnić. I mowa tutaj nie o mikrofonach i głośnikach, tylko o wzmacnianiu dźwięków przez same instrumenty. Człowiek wydaje dźwięki bo powietrze wychodzące z płuc, wprawia w drgania cienkie błony zwane strunami głosowymi. Dźwięki wydawane przez człowieka wzmacniane są w klatce piersiowej. W wielu instrumentach dźwięk wzmacnia pudło rezonansowe. W innych, są za to odpowiedzialne tzw. fale stojące. Sporo w tym fizyki, ale ciekawsze od tego jest to, co dzieje się z dźwiękiem po „opuszczeniu” instrumentu.

To oczywiste że drgania mogą być mocniejsze, albo słabsze. Wtedy dźwięk jest głośniejszy, albo cichszy. Ale to nie jedyna cecha drgań. W końcu ten sam dźwięk grany na skrzypcach i na pianinie różnią się od siebie. Falę wyobrażamy sobie jako sinusoidę (góry i doliny). To wyobrażenie jest jak najbardziej prawidłowe, tyle tylko, że trochę wyidealizowane. W rzeczywistości „górki” i „doliny” nie są gładziutkie, tylko składają się z wielu mniejszych „góreczek”. To w tych nieregularnościach zawarta jest informacja o dźwiękach. Nie o ich głośności, ale o ich brzmieniu. Jak to rozumieć, że w czymś zawarta jest informacja o brzmieniu?

Kostki na całe życie

W końcu fala akustyczna (czyli drganie od cząsteczki do cząsteczki) dojdzie do ucha, a konkretnie do błony bębenkowej. Od środka jest ona połączona z trzema kosteczkami – młoteczkiem, kowadełkiem i strzemiączkiem. To najmniejsze kości w całym ciele człowieka. I co ciekawe, od urodzenia do śmierci nie zmieniają one swoich rozmiarów. Nie rosną – jak wszystkie inne kości naszego organizmu. Trzy wspomniane kosteczki przenoszą drgania błony bębenkowej w głąb ucha, ale to nie jedyna ich funkcja. Są tak ze sobą połączone (na zasadzie dźwigni), że znacząco te drgania wzmacniają. Aż o 20 razy!

Kosteczki słuchowe przenoszą drgania do ślimaka. To zakręcony kanał, który jest wypełniony płynem. We wnętrzu kanału znajdują się czułe na drgania cieczy komórki. Wibracje powietrza na zewnątrz ucha, przez zmyślny system zamieniane są na wibracje płynu wypełniającego ślimak. A tam, drgania płynu zamieniane są na impulsy nerwowe. I w zasadzie dopiero od tego momentu można mówić o „słyszeniu”. Ucho nie słyszy, tylko zamienia drgania cząsteczek powietrza na impulsy elektryczne. To mózg tym impulsom nadaje znaczenie i interpretacja. To dopiero w zakamarkach mózgu odpowiedniej sekwencji impulsów elektrycznych przypisywane są dźwięki skrzypiec czy trąbki. To mózg, a nie ucho rozróżnia i potrafi nazwać te same dźwięki grane przez różne instrumenty.

Słuch jest pierwszym zmysłem człowieka. Już w pierwszych tygodniach życia płodowego, wykształcają się organy słuchowe. Długo przed porodem, dziecko słyszy. Słuch jest jedynym zmysłem, który tak wcześnie pozwala poznać dziecku świat zewnętrzny. Zaraz po porodzie dziecko prawie nie widzi. Słyszy doskonale i odczuwa zapachy. Od kilku lat wiadomo, że dziecko uczy się naśladować dźwięki, jakie słyszało jeszcze przed urodzeniem. W czasopiśmie Current Biology grupa francuskich i niemieckich uczonych opublikowała raport z którego wynika, że zaraz po urodzeniu dzieci płaczą zgodnie z melodią języka biologicznej matki. Francuskie noworodki na przykład płakały z intonacją wznoszącą się, a niemieckie z intonacją opadającą. To odzwierciedla melodię charakterystyczną dla tych języków. Dziecko rozwijając się w łonie matki, choć nie rozumie znaczenia słów, uczy się naśladować melodykę języka. Po co? Inne badania wskazują, że gdy płacz dziecka ma podobną „strukturę” jak język matki, noworodkowi łatwiej jest przyciągnąć uwagę swojej rodzicielki.

Muzyka to drgania cząsteczek powietrza. Brzmi wręcz banalnie prosto. Ale z prostotą ma niewiele wspólnego. Te drgania, ich wydobywanie, przenoszenie, rejestrowanie i interpretacja, to jedno z najciekawszych zagadnień w przyrodzie.

Brak komentarzy do Muzyka to drgania

Złapali kwant !!!

Dwójce młodych fizyków, doktorantów Uniwersytetu Warszawskiego, jako pierwszym na świecie udało się sfotografować kwanty, cząstki światła, w bardzo szczególnym momencie – chwili, w której się parują.

Dwójce młodych fizyków, doktorantów Uniwersytetu Warszawskiego, jako pierwszym na świecie udało się sfotografować kwanty, cząstki światła, w bardzo szczególnym momencie – chwili, w której się parują.

Tak, światło składa się z cząstek. A właściwie sprawa jest bardziej złożona. Światło ma cechy fali (podobnej do tej na wodzie), ale wykazuje też cechy korpuskularne. W skrócie mówiąc, jest i falą, i cząstką. Trudno to odnieść do naszej rzeczywistości, bo w makroświecie cechy fali i cząstki wykluczają się. W świecie kwantów nic się nie wyklucza.

Quantum paparazzi spying identical photon pairs

„Łapacze fotonów”, młodzi fizycy z UW, na tym zdjęciu zachowują się jak fotony. Są w dwóch miejscach równocześnie. Obok układu pomiarowego Radosław Chrapkiewicz (po prawej) oraz Michał Jachura (stojący za nim) .

W zasadzie proste 

Cząstki światła nazywają się kwantami. Nie mają masy spoczynkowej, nie da się ich zatrzymać i przyjrzeć im się „na spokojnie”. Przeciwnie, pędzą z prędkościami, które trudno sobie nawet wyobrazić. 300 tys. kilometrów na sekundę! Ile to jest? Odległość między Zakopanem i Trójmiastem (prawie 700 km) światło pokonuje w tysięczne części sekundy. Jak złapać, jak sfotografować coś, co porusza się z taką prędkością? – Układ, który zastosowaliśmy do naszych pomiarów, jest dość złożony, ale sama idea nie jest skomplikowana – powiedział mi Michał Jachura z Uniwersytetu Warszawskiego. – Źródłem fotonów jest fioletowy laser. Padają one na urządzenie, w którym z jednego fotonu powstaje jeden elektron. Następnym elementem jest wzmacniacz powielający ten jeden elektron. Tak powstaje kilka milionów elektronów, które następnie padają na płytkę z fosforu, gdzie powodują błysk światła. Ten błysk rejestrujemy specjalną kamerą – mówi drugi z młodych badaczy, Radosław Chrapkiewicz. – I to w zasadzie wszystko – dodaje. Niektóre elementy układu, w którym udało się złapać fotony, np. wzmacniacz obrazu, to urządzenia wykorzystujące technologię wojskową. Samo sfotografowanie pojedynczej cząstki światła to jednak nie było topowe osiągnięcie Michała i Radka. Im udało się zobaczyć moment, w którym fotony się parowały. Ale zanim o tym, warto powiedzieć trochę o samych fotonach.

Światło wprost ze światłowodu

Światło wprost ze światłowodu. Obiektyw aparatu Radka Chrapkiewicza był skierowany dokładnie w kierunku światłowodu (wyjścia) z lasera femtosekundowego. Ten laser emituje bardzo krótkie błyski światła, których długość nie przekracza 100 fs (femtosekund). Femtosekunda to jedna bilionowa część sekundy. W czasie jednej femtosekundy światło pokonuje drogę sto razy krótszą niż grubość ludzkiego włosa!

Jaki kształt? Jaki kolor?

Fotografia kojarzy nam się z odwzorowywaniem rzeczywistości. Skoro foton dał się sfotografować, można chyba zapytać, jak on wygląda. Zacznijmy od kształtu. Da się go określić? – W jednym pomiarze nie, ale robiąc wiele pomiarów, wiele zdjęć, udaje się to zrobić, choć od razu trzeba powiedzieć, że kształt fotonu nie jest stały. Może się różnić w zależności od tego w jakim otoczeniu się znajduje – tłumaczy Michał. – W naszej aparaturze obserwowaliśmy np. fotony o wydłużonych kształtach, takich trochę jak ołówek, ale udawało nam się także obserwować fotony rozseparowane, czyli takie, w których jeden foton był rozdzielony na dwie części. I to części, które znajdują się od siebie w odległości nawet centymetra – dodaje Radek. A kolor? Tutaj sprawa zaczyna się komplikować jeszcze bardziej. – Foton ma trzy cechy, które nazywamy stopniami swobody – opowiada Michał Jachura.

– Pierwszy to struktura w przestrzeni, czyli w pewnym sensie kształt. Drugi stopień swobody – spektralny – to innymi słowy kolor. Fotony mogą być czerwone, niebieskie, ale możemy mieć fotony w tak zwanej superpozycji, np. fotony białe, składające się z wielu barw dla których określony kolor ustala się dopiero w momencie pomiaru. Ten sam foton mierzony wielokrotnie może mieć różne kolory. Ostatni stopień swobody to polaryzacja, tzn. kierunek, w jakim foton drga. Jeżeli dwa fotony mają identyczne trzy stopnie swobody, nie ma żadnej możliwości, by odróżnić je od siebie – kończy Michał Jachura. Zatem wróćmy do osiągnięcia dwóch doktorantów. Fotografowali oni fotony, które dobierały się w pary. W czasie tego procesu zauważyli, że dwa różne fotony skazane są na samotność. Nawet gdy znajdą się obok siebie, „nie widzą” się i zwykle nie dobierają się w pary. Sytuacja wygląda zupełnie inaczej, gdy fotony są identyczne, to znaczy, gdy wszystkie trzy stopnie swobody dwóch cząstek są takie same. Wtedy powstają pary, które na dodatek są wyjątkowo jednomyślne. Jeden foton „idzie” zawsze tam, gdzie ten drugi. Chociaż trudno powiedzieć, który jest pierwszy, a który drugi, skoro obydwa są identyczne. Łączenie fotonów nazywa się efektem Hong-Ou-Mandela i na Wydziale Fizyki Uniwersytetu Warszawskiego po raz pierwszy na świecie udało się go sfilmować.

Quantum memory - glowing green

Układ pamięci nowej generacji do komputerów kwantowych. Zielona tuba to pamięć. Za pomocą lasera (czerwona wiązka) w atomach rubidu „zapisywana” jest informacja, która następnie może być odczytywana. Ta pamięć to także dzieło doktorantów z UW.

Nauka podstawowa

Pozostaje tylko znaleźć odpowiedź na pytanie, po co tego typu badania się robi. – Być może kiedyś uda się wyniki naszych eksperymentów wykorzystać w rozwijanych technologiach kwantowych, na razie myślimy jednak o naszych eksperymentach w kategoriach badań podstawowych – mówi Michał Jachura. – Nas bardziej niż kształt samego fotonu interesuje to, jaki kształt będzie miała para fotonów, które zaczną ze sobą interferować, zaczną się na siebie nakładać. To można wykorzystać do zupełnie nowego rodzaju mikroskopii o bardzo wysokiej rozdzielczości. – uzupełnia Radosław Chrapkiewicz.

17 komentarzy do Złapali kwant !!!

Oczywista… oczywistość

Mogło by się wydawać, że naukowcy czasami wyważają dawno otwarte drzwi. Po długich testach dochodzą do wniosków, które… dla każdego są logiczne. Sztuka dla sztuki ? Nie, w nauce wszystko musi zostać sprawdzone i przetestowane. Inaczej jest tylko hipotezą.

Wszystko zaczęło się od robienia porządku w komputerze. A w zasadzie chęci zrobienia porządku. Skończyło się jak zawsze, znalazłem artykuł, który odłożyłem sobie do przeczytania na później. Artykuł był sprzed… siedmiu lat! No i postanowiłem coś napisać.

Tekst pochodził z anglojęzycznego serwis popularno-naukowego POPSCI.COM i był w zasadzie listą najbardziej oczywistych badań jakie prowadzono w 2007 roku. Obok informacji o tym co było obiektem badań i jaki ośrodek naukowy je przeprowadzał, podano także wnioski jakie z nich wynikają. Niektóre naprawdę zaskakujące.

– Fajtłapy nie są lubiane w szkole. Do takich wniosków doszła Janice Causgrove Dunn z Uniwersytetu Alberta w Kanadzie. Przebadała 100 chłopców i 110 dziewcząt w wieku szkolnym. Jej praca ukazała się w Journal of Sport Behavior. Autorka badań twierdzi, że eksperymentalne odkrycie znanej przecież prawdy jest ważne, bo dopiero teraz można ilościowo analizować a w konsekwencji zrozumieć związek pomiędzy kondycją fizyczną, rozwojem fizycznym a samotnością czy – bardziej ogólnie – szczęściem.

– Nieletni piją alkohol dla zabawy. Badania były przeprowadzone przez naukowców z Uniwersytetu Penn State w USA. Rozmawiano z prawie dwoma tysiącami młodych ludzi, pytając o powody dla których sięgnęli po alkohol, mimo młodego wieku. Naukowcy wyodrębnili trzy kategorie motywów. Eksperyment, chęć zrelaksowania się i poszukiwanie przygody. Okazało się jednak że bardzo duża grupa pytanych nie mieściła się w żadnej z tych szufladek. Po dogłębniejszych studiach okazało się, że te osoby sięgają po alkohol, bo… są przekonane że picie to świetna zabawa. Badania, choć mogłyby się wydawać naiwne są niezwykle ważne. To dzięki takim studiom specjaliści, którzy zajmują się prewencją i przeciwdziałaniem problemom alkoholowym mogą tworzyć programy profilaktyczne i terapeutyczne dla młodych alkoholików.

– Sen i kofeina zwalczają senność. Logiczne ? Tak, ale… Francuscy badacze zrobili następujący test. Grupie kilkunastu 20latków i kilkunastu 40latków pozwolili na 30 minutową drzemkę w samochodzie. W tym samym czasie analogiczne grupy 20 i 40latków piły kawę. Następnie wszyscy byli proszeni o przejechanie dystansu około 250 kilometrów samochodem. Okazało się, że tak jak kawa pomagała zachować trzeźwość umysłu niezależnie od wieku, tak drzemka działała ożywczo tylko na młodszych. Starszym w ogóle nie pomagała.

– Wakacje bez komórki są bardziej udane. Do takich wniosków doszli uczeni z Uniwersytetu w Tel Avivie w Izraelu. Ci, którzy biorą służbowy telefon komórkowy czy jakiekolwiek inne urządzenie związane z pracą na urlop nie są w stanie wypocząć psychicznie. Często zdarza, że szaf wymaga od swojego pracownika, by ten był w pełnym kontakcie ze swoją firmą nawet w czasie urlopu. To z kolei powoduje, że pracownik po urlopie wcale nie jest bardziej wypoczęty niż przed. A ten stan jest większą stratą dla firmy niż potencjalny zysk z racji ciągłego kontaktu. Z zacytowanych badań pracodawcy powinni wyciągnąć jasne wnioski. Jak pozwalasz pracownikowi jechać na urlop, odbierz mu służbowy telefon.

– Samotność jest szkodliwa. Badacze z Uniwersytetu Chicago przebadali wpływ jaki ma na fizyczne i psychiczne samopoczucie życie w samotności. Sprawdzili to dla ludzi młodych, tych w wieku średnim oraz takich, którzy przekroczyli 60 rok życia. Czego można się było spodziewać, samotność najgorzej wpływa na najstarszych. Samotni mają wyższe ciśnienie a także zaburzone niektóre parametry krwi. Poza tym – jak wskazują statystyki – są bardziej narażeni m.in. na choroby serca. W USA 25 proc społeczeństwa nie potrafi wskazać osoby sobie bliskiej. Bogate społeczeństwa stają się coraz bardziej samotne. Ta sytuacja zmusza badaczy do badania wpływu takiego trybu życia na ogólną kondycję obywateli.

Pewien polityk mawiał, że coś jest oczywistą oczywistością. Nie wiem jak w polityce, ale w nauce niewiele rzeczy jest oczywistych i lepiej wszystko dokładnie sprawdzić. Czyż oczywiste – na pierwszy rzut oka nie jest to, że to Słońce krąży wokół Ziemi, a nasz glob jest płaski?

Brak komentarzy do Oczywista… oczywistość

Zabawa w określanie wieku

Internetowa zabawa która polega na odgadywaniu wieku osób na fotografiach służy temu, by informatyczny gigant nauczył się czegoś, na czym w przyszłości będzie zarabiał krocie. A jeżeli chodzi o zdjęcia… cóż. Niby są twoje. Niby.

Internetowa zabawa która polega na odgadywaniu wieku sfotografowanych osób służy temu, by informatyczny gigant nauczył się czegoś, na czym w przyszłości będzie zarabiał krocie. A jeżeli chodzi o zdjęcia… cóż. Niby są twoje. Niby.

Po pierwsze nieprawdą jest, że to pierwsza tego typu aplikacja (a takie informacje pojawiły się w wielu miejscach). Odgadywać wiek, płeć i nastrój na podstawie zdjęcia czy sekwencji zdjęć (video) wiele firm próbuje od dawna. Aplikacja Microsoftu jest zabawą tylko dla użytkowników, dla firmy jest cenną nauką.

Po co komu takie programy? Pierwszy, kto nauczy się rozpoznawać emocje innych osób będzie miał w ręku ogromną władzę i ogromne pieniądze. Wiele lat temu, w USA, testowano system, który z tłumu ludzi wyławiał konkretne jednostki. Złapana w kadrze kamery twarz jest przez odpowiedni algorytm analizowana i porównywana ze zdjęciami zamieszczonymi w bazie danych. W ten sposób można z tłumy wyławiać np. przestępców, którzy uciekli z więzienia, podejrzanych, którzy się ukrywają, czy ludzi, których służby bezpieczeństwa z jakiś powodów inwigilują. Już kilka lat temu profesjonalne systemy osiągały zdolność analizowania do miliona twarzy na sekundę! Do komputera głównego systemu można dodatkowo wprowadzić algorytm, który np. pozwoli po sposobie chodzenia wyławiać z tłumu tych, którzy pod płaszczem czy kurtką niosą coś ciężkiego. Albo tych, którzy mają odpowiedni nastrój. Co to znaczy odpowiedni? Zależy od tego kto płaci. Jeżeli służby bezpieczeństwa, wyławiane z tłumu na lotnisku mogą być np. osoby zestresowane. Jeżeli system ma pracować dla kogoś kto sprzedaje dobra luksusowe będzie wyszukiwał raczej ludzi zadowolonych z siebie. Podekscytowani faceci być może będą bardziej skłonni kupować gadżety elektroniczne, a osoby zamyślone czy rozmarzone książki. Psycholodzy, socjolodzy  wiedzą lepiej jak połączyć emocje z zachowaniami konsumenckimi. Mają w tym zresztą dość sporą praktykę. Niektóre produkty kupujemy chętniej gdy muzyka w sklepie jest spokojna, inne, gdy jest rytmiczna. W wielu rozpylane są zapachy, których świadomie nie czujemy. Nie tylko sklepach, ale także biurach, fabrykach czy miejscach publicznych. Dużą praktykę mają w tym Japończycy. Wszystko po to, by projektować nasze zachowania. Na prawdę myślisz, że jesteś panem samego siebie i że świadomie podejmujesz decyzje? Jeżeli tak myślisz, mylisz się bardzo.

W pismach dla facetów reklamuje się inne produkty, niż w gazetach dla młodych matek. To logiczne. Wraz z rozwojem systemów rozpoznających emocje i intencje, targetowanie przekazu reklamowego wejdzie na zupełnie nowy poziom. Pozostaje do rozwiązania jeszcze jedna kwestia. Jak komunikować się z potencjalnym klientem? Można sobie wyobrazić tradycyjne nośniki reklamowe, które będą wyświetlały reklamy w zależności od tego kto na nie patrzy. Możliwe, ale chyba mało skuteczne. Dużo bardziej prawdopodobne jest to, że ktoś zrobi użytek z kamerek zamontowanych w komputerach, tabletach, telefonach komórkowych. Oczywiście za zgodą właścicieli. Zgodzimy się na wszystko, już tyle razy sprzedaliśmy się dla zwykłej wygody, że i na to przymkniemy oko. Już dzisiaj w wyszukiwarkach internetowych działają algorytmy, które podpowiadają treści (nie tylko reklamowe) w zależności od naszej aktywności w internecie. W przyszłości algorytmy wyszukiwania i proponowania zostaną wzbogacone o płeć, wiek i nastrój osoby, która w danym momencie korzysta z urządzenia elektronicznego.

A wracając do aplikacji służącej do „odgadywania” wieku na podstawie zdjęcia. Nie da się jednoznacznie określić wieku czy emocji na podstawie konkretnych, fizycznych cech twarzy. Łatwiej jest z określaniem płci. Po to by tego typu programy dobrze działały, muszą się tego nauczyć. Do nauki potrzebna jest jednak odpowiednia liczba przykładów. Osób, które dobrowolnie prześlą swoje zdjęcie a wynikami pochwalą się w mediach społecznościowych. Wiedza, którą zyska algorytm stojący za aplikacją warta będzie miliardy. Witajcie w klatce – króliczki doświadczalne 🙂

I jeszcze jedno. Co dzieje się ze zdjęciami, które wrzucamy do serwisu? Microsoft twierdzi, że ich nie przetrzymuje („We don’t keep the photo”) ale gdy wklikać się głębiej (w Terms of Use), wśród wielu akapitów można znaleźć stwierdzenia, które temu przeczą.

Microsoft does not claim ownership of any materials you provide to Microsoft (…). However, by posting, uploading, inputting, (…) your Submission, you are granting Microsoft, its affiliated companies, and necessary sublicensees permission to use your Submission in connection with the operation of their Internet businesses.

Co w wolnym tłumaczeniu znaczy:

Microsoft nie rości sobie praw własności jakichkolwiek materiałów (…). Jednak zamieszczając, przesyłając, wprowadzając (…) materiały, użytkownik przekazuje firmie Microsoft oraz jej spółkom zależnym i licencjobiorcom prawo do korzystania z tych materiałów w związku z działalnością tych firm.

Dalej przepisy precyzują, że firma ma prawo bez ograniczeń kopiować, rozpowszechniać, przekazywać, odtwarzać, publicznie wykonywać, powielać, edytować, tłumaczyć przekazane jej materiały. A jako, że firma nie rości sobie praw do materiałów, zrobi to podpisując nazwiskiem właściciela.

Podsumowując. Zabawa która polega na odgadywaniu wieku osób na zdjęciach służy temu, by gigant informatyczny nauczył się skutecznego radzenia sobie z tym, z czym matematyka (algorytmy informatyczne) radzą sobie kiepsko. Dzięki wrzucaniu prywatnych zdjęć dajemy firmie możliwość stworzenia unikalnej bazy z której w przyszłości, przy tworzeniu profesjonalnych narzędzi będzie mogła korzystać. I grubo na tym zarabiać. A jeżeli chodzi o zdjęcia… cóż. Niby są twoje. Niby.

1 komentarz do Zabawa w określanie wieku

Bajkał – zimne morze

Nad Bajkałem byłem w zimie. Śnieg mienił się jak diamenty, termometr wskazywał prawie minus 30 st C, a woda parowała tak, jak gdyby była gorąca.

Nad Bajkałem byłem w zimie. Śnieg mienił się jak diamenty, termometr wskazywał prawie minus 30 st C, a woda parowała tak, jak gdyby była gorąca.

W zasadzie była gorąca. Była o około 40 st. C cieplejsza niż otoczenie. Gorące lata na Syberii nagrzewają ogrom wody w Bajkale. Gdy przyjdzie zima, trzeba miesięcy, by jezioro tę energię oddało. Mimo kilkudziesięciostopniowego mrozu Bajkał zwykle zamarza dopiero na przełomie stycznia i lutego. Ale nawet gdy taflę pokryje czasami wielometrowa warstwa lodu, Bajkał nie przestaje czarować. Powolne zamarzanie wody powoduje, że zdążą z niej „uciec” wszystkie bąbelki powietrza. W efekcie lód staje się idealnie przezroczysty. W przeciwieństwie do lodu, który powstaje, gdy woda zamarza szybko. Ten ostatni jest matowy, jak gdyby mleczny. Wystarczy zobaczyć kostki lodu w zamrażalniku.

P1020173

 

 

 

 

 

 

Z pary odrywającej się od powierzchni wody, tworzą się nisko zawieszone chmury. Wznoszą się coraz wyżej, aż w końcu znikają gdzieś za horyzontem. Parująca woda osiada także na wszystkim co znajduje się w pobliżu brzegu jeziora.

Dziedzictwo przyrody

Nie ma przesady w stwierdzeniu, że Bajkał odkryli Polacy. Odkryli dla nauki. Mowa tutaj o polskich zesłańcach, głównie po powstaniu styczniowym. Oni jako pierwsi przeprowadzili profesjonalne i obiektywne badania samego jeziora i jego otoczenia, flory i fauny, a także pierwsze badania klimatyczne rejonu Bajkału. I tak, dzięki pracom Benedykta Dybowskiego, lekarza i przyrodnika, wiemy dzisiaj, że w jeziorze i jego najbliższym sąsiedztwie żyje 1500 gatunków zwierząt i około 1000 gatunków roślin. Prawie 80 procent z nich to endemity, czyli gatunki niewystępujące nigdzie indziej na świecie.

Tylko tutaj żyje nerpa, czyli słodkowodna foka, i omul – jedyna na świecie słodkowodna ryba z rodziny łososiowatych. Przykłady można długo mnożyć. Inny Polak, Aleksander Czekanowski, geolog i meteorolog, odkrył ogromne pokłady węgla i sporządził pierwsze profesjonalne archiwum danych pogodowych, z kolei Jan Czerski, geolog i paleontolog, jako pierwszy dokładnie opisał pasma górskie, znajdujące się wokół Bajkału. Ostatni z wielkich polskich badaczy, Wiktor Godlewski, jako pierwszy sporządził mapę dna jeziora. Do dzisiaj okazuje się, że zrobione 150 lat temu badania są potwierdzane pomiarami nowoczesnymi.

Bajkał zajmuje powierzchnię 31 500 kilometrów kwadratowych i wywiera ogromny wpływ na klimat dużego obszaru Syberii. Zimą podnosi temperaturę, latem ją obniża. Podnosi wilgotność atmosfery, a to ma ogromny wpływ na ilość opadów. To dzięki temu wokół jeziora występuje bardzo bogate i różnorodne życie. Samych roślin wodnych na brzegach jeziora żyje kilkaset gatunków. O bogactwie przyrody można pisać bez końca. Może wystarczy wspomnieć, że w 1996 roku Bajkał wraz z przyległymi obszarami został wpisany na listę światowego dziedzictwa przyrodniczego UNESCO.

Nieodrobiona lekcja

Ogromne bogactwo przyrody i krystalicznie czysta woda nie są oczywiście dane na zawsze. W 2013 roku zamknięto ogromny kombinat papierniczy, który regularnie wylewał do Bajkału ścieki. Nadal pracuje jednak wiele innych zakładów, także produkujących nawozy sztuczne. Do jeziora, pośrednio przez wpływające do niego rzeki, albo bezpośrednio, swoje ścieki wylewają miasta z dużego obszaru. Kilka lat temu istniało ogromne ryzyko wycieku do wód Bajkału ropy z rurociągu Syberia–Pacyfik. Ostatecznie jego trasę zmieniono, tak by rura przechodziła w pewnym oddaleniu od akwenu.

Zagrożeniem – bardziej dla terenów przybrzeżnych niż samego jeziora – jest turystyka. Bajkał każdego roku odwiedza kilkaset tysięcy ludzi. Widok ludzi myjących samochody w płytkich wodach jeziora, wycinających drzewa, po to, by założyć dziki kamping, czy urządzających sobie rajdy samochodowe po obszarach porośniętych zagrożonymi gatunkami roślin, nie jest niczym szczególnym. W oczy rzucają się także góry pozostawionych przez turystów śmieci. Ostatnio do tych zagrożeń doszło jeszcze jedno. Od wielu lat w Bajkale jest coraz mniej wody. Tegorocznej zimy jej poziom jest tak niski, że władze na Syberii ogłosiły stan wyjątkowy. W ciągu roku poziom wody spadł o 40 centymetrów. Ostatni raz taka okoliczność miała miejsce ponad 60 lat temu. Sytuacja jest dość trudna, ale wszyscy czekają do kwietnia. To wtedy powoli zaczynają topnieć śniegi w otaczających jezioro górach, a we wpływających do Bajkału rzekach przybywa wody. W kwietniu okaże się więc, czy niski poziom był tylko anomalią, czy jest trwałym trendem. Gdyby chodziło o ten drugi przypadek, trudno sobie wyobrazić zmiany – te krótkoterminowe i długoterminowe – jakie mogą czekać Syberię.

Nie do końca wiadomo, co jest powodem ubytku wody. Jak zawsze w takich sytuacjach czynników jest zapewne kilka. Ostatnie lato na Syberii było suche, ale tym nie da się wytłumaczyć aż tak dużego ubytku. Wiadomo też, że brzegi jeziora oddalają się od siebie, co w dłuższej perspektywie czasu musi mieć wpływ na poziom wody. Eksperci wskazują także na rabunkową gospodarkę wodną dużych zakładów przemysłowych i miast. Na rzekach, które doprowadzają wodę do jeziora, funkcjonują elektrownie wodne, a po to, by nieprzerwanie działały, trzeba budować zbiorniki retencyjne. Te mają wpływ na ilość wody w jeziorze. Niski poziom wody w Bajkale przyczynia się nie tylko do rozchwiania równowagi ekologicznej dużego obszaru, ale także może mieć wpływ na dostawy ciepła i prądu do miast, które wybudowane są wzdłuż brzegów rzeki Angara, w tym do sześciusettysięcznego Irkucka. Choć porównanie Bajkału do występującego dzisiaj w szczątkowej formie Jeziora Aralskiego jest mocno przesadzone, może warto by wyciągnąć wnioski z tego, co zdarzyło się na terenach dzisiejszego Kazachstanu i Uzbekistanu. Działalność człowieka w zaledwie kilkadziesiąt lat spowodowała praktycznie zniknięcie olbrzymiego jeziora, a także dewastację, a właściwie zamianę w pustynię ogromnych obszarów lądu.

P1020180
O Bajkale słów kilka

Bajkał może być jednym z najstarszych zbiorników wodnych na naszej planecie. Powstał kilkadziesiąt milionów lat temu w wyniku trzęsienia ziemi. To wtedy pomiędzy płytą amurską i płytą euroazjatycką powstało ogromne zagłębienie (ryft bajkalski), które zaczęło wypełniać się wodą. I nadal się wypełnia. Ten proces nie jest zauważalny gołym okiem, no chyba że… Pod koniec XIX wieku w rejonie Bajkału wystąpiło silne trzęsienie ziemi. W jego wyniku jezioro w jednej chwili powiększyło się. Powstała głęboka na 11 metrów zatoka Prował. Takie sytuacje to jednak rzadkość. Brzegi jeziora oddalają się od siebie, tak jak gdyby ciężar wody je rozsuwał. Płyty amurska i euroazjatycka odsuwają się. Każdego roku jezioro jest szersze o kilka centymetrów. Dzisiaj Bajkał ma objętość 23 400 kilometrów sześciennych (23,4 biliona metrów sześciennych wody). Powierzchnia jeziora stanowi 10 proc. powierzchni całej Polski, a jego długość (636 km) jest zbliżona do odległości pomiędzy Trójmiastem a Bieszczadami w linii prostej. Bajkał jest najgłębszym jeziorem świata, miejscami dno znajduje się około 1700 metrów poniżej tafli wody. Dla porównania, Bałtyk w najgłębszym miejscu ma 459 metrów. W Bajkale znajduje się około 20 proc. słodkiej wody całej planety.

Brak komentarzy do Bajkał – zimne morze

Po co zmieniamy czas?

Zmiana czasu na którą godzimy się dwa razy w roku nie ma żadnego sensu. Miała sens może dwieście lat temu. Dzisiaj powoduje straty, zamieszanie i uszczerbek na zdrowiu.

Podobno na zmianę czasu z zimowego na letni wpadł autor konstytucji USA Benjamin Franklin. Gdy była ambasadorem w Paryżu zauważył, że z powodu niedostosowanej do pory dnia godziny, ludzie śpią choć słońce było wysoko, wieczorem zaś pracują oświetlając pomieszczenia świecami. Franklin był nie tylko politykiem i dyplomatą, ale także naukowcem i wynalazcą. Choć nie do końca wiadomo jak, obliczył, że gdyby przesuwać czas na wiosnę „do przodu” a jesienią „do tyłu” można by w samym tylko Paryżu zaoszczędzić 30 mln kilogramów wosku rocznie. Wosku z którego robiono świecie. Pomysł Franklina był jak najbardziej – na tamte czasy – logiczny. Ludzie używali świec, bo funkcjonowali, pracowali, bawili się czy uczyli po zachodzie słońca. Gdyby więc przesunąć godziny wstawania, a co się z tym wiąże także zasypiania, świece nie byłyby w takich ilościach potrzebne.

Raz jest, a raz go nie ma

Pomysł Franklina nie od razu został podchwycony. Pierwsi którzy go zrealizowali byli Niemcy. To były trudne czasy, I Wojna Światowa, kryzys i braki w energii, która była potrzebna do produkcji broni i amunicji. W 1916 roku po raz pierwszy w Niemczech przesunięto czas. Obywatele ogarniętego wojną kraju mieli wcześniej chodzić spać, po to by nie oświetlać swoich mieszkań po zmroku. Chwile później zmianę czasu wprowadziły inne kraje europejskie. Argumenty o oszczędnościach nie przekonały wszystkich. Mówiono o zamieszaniu w rozkładach jazdy i o tym, że jest całkiem spora grupa zawodów które wykonywać trzeba niezależnie od umownie ustalonej godziny. Tarcia pomiędzy przeciwnikami i zwolennikami zmiany czasu były tak duże, ze w wielu krajach czasowo rezygnowano z regulacji zegarków, po to by po kilku latach do pomysłu wrócić. Tak było także w Polsce. U nas po raz pierwszy przestawiono czas w okresie międzywojennym. Później ze sprawy zrezygnowano. Czas zimowy i czas letni przywrócono pod koniec lat 40tych, a później znowu z niego zrezygnowano (na prawie 10 lat). W 1957 roku zmianę czasu wprowadzono, ale w 1965 roku znowu zarzucono. Na stałe Polska jest krajem „dwuczasowym” od 1976 roku.

Danych o oszczędnościach jakie mają wynikać ze zmiany czasu, praktycznie nie ma. Są niepewne oszacowania, które na dodatek nie są wcale jednoznaczne. Oszczędność energii da się policzyć (choć nie jest to takie proste, bo w zimie i w lecie są przecież inne warunki i nie da się tych dwóch okresów bezkrytycznie przyrównać), ale jak oszacować zamieszanie związane z przestawianiem wskazówek? Pomińmy na razie to ostatnie. A pozostańmy na samych oszczędnościach energii. Jeden z nielicznych raportów na ten temat wydał ponad 30 lat temu Amerykański Departament Energii (ADE). Z jego obliczeń wynika, że zmiana czasu rzeczywiście oznacza mniejszą konsumpcję prądu. O cały 1 proc i to na dodatek tylko przez dwa miesiące, marzec i kwiecień. Później dzień jest tak długi, że dodatkowa godzina nie wpływa na mniejsze zużycie prądu. Wyniki raportu ADE podważały poważne instytucje naukowe. Uważały, ze rachunki były błędne, a o żadnych oszczędnościach nie ma mowy. Argumentowano, że każdego roku rośnie zapotrzebowanie na energię elektryczną, a tego ADE nie wziął pod uwagę w obliczeniach. To był rok 1976. Jeżeli już wtedy wyniki analiz nie były jednoznaczne, co dopiero teraz.

Oszczędności brak

Od czasów Franklina, od czasów I Wojny Światowej, ba nawet od czasów kiedy opublikowano raport Amerykańskiego Departamentu Energii, bardzo dużo się zmieniło. I tutaj dochodzimy do sedna problemu. Zmiany godziny mogą wpłynąć na oszczędność energii, ale tylko tej którą zużywa się na oświetlenie pomieszczeń. I to pomieszczeń prywatnych. Toster, czajnik bezprzewodowy czy bojler, niezależnie od godziny zużywają przecież tyle samo energii. A żelazka, pralki, komputery? Można kręcić wskazówkami do oporu, a ilość zużywanej przez te sprzęty energii i tak nie ulegnie zmianie. To samo dotyczy zresztą oświetlenia ulic (a to pobiera znacznie więcej prądu niż oświetlenie mieszkań prywatnych), które działa od zmierzchu do świtu, niezależnie od tego o której godzinie zaczyna się świt. Dzisiaj oświetlenie pomieszczeń „pożera” mniej niż 1 proc prądu który produkują elektrownie. Co więcej, choć prądu w ogóle zużywamy coraz więcej, na oświetlenie mieszkań i domów potrzebujemy go coraz mniej. Głównie dlatego, że coraz częściej korzystamy z energooszczędnych źródeł światła. A wiec co konsumuje coraz więcej? Podnosimy swój standard życia. Coraz częściej kupujemy klimatyzatory, większe lodówki, elektryczne systemu grzewcze czy sprzęty kuchenne. Nowoczesne telewizory (wielkości okna) konsumują więcej energii niż starsze ich typy. To wszystko zużywa znacznie więcej energii niż oświetlenie, a równocześnie korzystamy z tego niezależnie od wskazywanej przez zegarki godziny. Najwięcej prądu potrzebują fabryki (przemysł), transport czy kopalnie. Przestawianie wskazówek nic tutaj nie zmieni.

Rolnicy liczą straty

Jedną z najdłużej opierających się zmianie czasu grup zawodowych byli rolnicy. Dla nich ważny jest jasny poranek a nie długi wieczór. Zwierzęta nie przestawiają przecież zegarków. W USA, gdzie rząd w Waszyngtonie nie ingeruje zbyt mocno w życie obywateli, w stanach rolniczych (m.in. Arizona i Indiana) wciąż są hrabstwa, które czasu nie przestawiają. Choć powoduje to gigantyczne zamieszanie, wola obywateli jest tam świętością. W 2006 roku kilka hrabstw w Indianie zdecydowało się jednak dostosować. Dla naukowców to była idealna okazja by sprawdzić jak to z tymi oszczędnościami energii elektrycznej jest. Obszar na którym zdecydowano się po raz pierwszy zmienić czas na letni nie był duży, więc badacze z Uniwersytetu Kalifornijskiego mogli sobie pozwolić na prześledzenie rachunków za energię elektryczną każdego domostwa. I co się okazało? Nie było żadnego zysku, tylko gigantyczna strata. W sumie na stosunkowo niewielkim terenie rachunki za prąd wzrosły o prawie 9 mln dolarów. Skonsumowano do 4 proc więcej energii niż przed zmianą czasu. To nielogiczne ! Skąd się wzięły te procenty? Naukowcy zauważyli, że istotnie nieco spadła ilość energii używanej do oświetlenia domów. Równocześnie znacznie zwiększyła się ilość energii zużywanej przez klimatyzatory i ogrzewanie. To ostanie włączano, bo wcześniejszym rankiem niektórym w mieszkaniach było za zimno. Gdy wieczorem trzeba było się wcześniej kłaść spać, okazywało się, że niektóre mieszkania są zbyt nagrzane po ciepłym dniu i do komfortowego snu, trzeba je nieco schłodzić.

Dzisiaj jedynym bezdyskusyjnym zyskiem z przesuwania czasu jest bezpieczeństwo na drogach. Dzięki temu, że po południu, w czasie powrotów z pracy jest wciąż jasno, zdarza się mniej wypadków. Szczególnie tych z udziałem pieszych. Zresztą ten argument (a nie oszczędność prądu) przekonał brytyjskich parlamentarzystów na początku XX wieku do zgody na zmianę czasu. Bezpieczniej na drogach jest jednak nie przez cały okres obowiązywania czasu letniego, ale tylko w pierwszych jego miesiącach.

Policzyć da się wszystko. Ciekawe, że na razie nikt nie zrobił jednak rachunku zysków i strat związanych ze zmianą czasu. I nie chodzi tylko o pobór energii elektrycznej, ale także bezpieczeństwo na drogach, zamieszanie w transporcie lotniczym czy kolejowym oraz niedogodności zdrowotne. Z czasem coraz więcej prądu zużywać będą urządzenia ułatwiające (umilające) nam życie. Z czasem oszczędności na oświetleniu (o ile jakiekolwiek są), będą więc wraz ze zmianą czasu coraz mniejsze. A o tym, ze bez zmiany czasu da się żyć mogą zaświadczyć najliczniejsze narody Azji. W Chinach, Japonii i Indiach nikt przestawianiem zegarka nie zaprząta sobie głowy.

W Unii Europejskiej (dyrektywa UE 2000/84/EC) czas zmienia się z zimowego na letni w ostatnią niedzielę marca, a letniego na zimowy w ostatnią niedzielę października. W marcu tracimy godzinę, a w październiku zyskujemy.

 

Tekst ukazał się w tygodniku Gość Niedzielny

Brak komentarzy do Po co zmieniamy czas?

Jak obserwować Słońce?

Taka sytuacja nie zdarza się zbyt często. 20 marca, w Polsce będzie częściowe zaćmienie Słońca. Tarcza Księżyca w około 70 procentach zakryje tarczę słoneczną. O ile niebo nie będzie bardzo zachmurzone, efekt zaćmienia będzie bardzo widoczny. Ale Słońce warto obserwować także bez zaćmienia. O ile spełnione są podstawowe warunki bezpieczeństwa.

Taka sytuacja nie zdarza się zbyt często. 20 marca, w Polsce będzie częściowe zaćmienie Słońca. Tarcza Księżyca w około 70 procentach zakryje tarczę słoneczną. O ile niebo nie będzie bardzo zachmurzone, efekt zaćmienia będzie bardzo widoczny. Ale Słońce warto obserwować także bez zaćmienia. O ile spełnione są podstawowe warunki bezpieczeństwa.

Maksimum zaćmienia nastąpi około godziny 10.50, ale już godzinę wcześniej tarcza Księżyca zacznie nasuwać się na tarczę Słońca. Słońce w tym czasie będzie się znajdowało niezbyt wysoko nad horyzontem, a więc jeżeli ktoś nastawia się na obserwacje, powinien zawczasu wybrać odsłonięty teren. Najlepiej całe zjawisko obserwować pomiędzy 10:30 a 11:30. Kilka minut przed południem spektakl zakończy się.

Kolejne spektakularne zaćmienie Słońca, w Polsce będzie miało miejsce dopiero w 2026 roku. 
Wcześniej nastąpi kilka mniejszych zaćmień.

Tegoroczne zaćmienie jest wyjątkowe. Choć Księżyc na tle tarczy Słonecznej przechodzi nawet dwa razy w roku, za każdym razem cień rzucany na powierzchnię Ziemi przez Srebrny Glob pada na inne miejsce planety. W efekcie zaćmienie Słońca w jednym miejscu występuje co kilkanaście lat. Zdarza się, że do zaćmienia dochodzi albo w chwili wschodu albo zachodu Słońca, a to utrudnia obserwację. Tak będzie w Polsce przy kolejnym zaćmieniu, które przypada na rok 2026.

Jak obserwować Słońce by coś zobaczyć i równocześnie sobie nie zaszkodzić? Słońce znajduje się 150 mln kilometrów od nas, ale ta duża odległość tylko pozornie zapewnić nam może bezpieczne obserwacje. Słońca nie wolno oglądać bezpośrednio gołym, niezabezpieczonym okiem. Tym bardziej nie wolno bez odpowiednich filtrów używać sprzętu optycznego, np. teleskopów czy lornetek. Skończyć się to może wypaleniem siatkówki i ślepotą. Filtry można kupić w internecie albo w sklepach astronomicznych. Są tanie. Folia Badeera (ND 5, która przepuszcza tylko 0.00001 część promieni słonecznych) kosztuje kilka złotych, okulary do obserwacji z taką folią niewiele więcej. Dzięki folii zjawisko zaćmienia Słońca, albo samo Słońce, to co dzieje się na jego powierzchni, można obserwować zarówno bezpośrednio, jak i przez urządzenia optyczne, o ile filtr z folii umieszczony będzie z przodu lornetki, kamery czy teleskopu a nie od strony okularu (czyli przy oku).

Jeżeli folii Badeera nie udało się kupić, odradzam domowe sposoby w rodzaju płyt CD, dyskietek czy okopconego szkła. Pod żadnym pozorem nie wolno obserwować Słońca przez nawet najciemniejsze okulary przeciwsłoneczne. Używając takich wynalazków nie macie pewności czy ilość promieni słonecznych zostanie wystarczająco mocno zredukowana zanim trafi do oka. Jest jednak jeden sposób domowy, który można wykorzystać. A mianowicie stare, zaczernione zdjęcie RTG.

Osobom, które posiadają teleskopy czy lornetki z mocowaniem, polecam tzw. metodę projekcji, czyli ustawienie ekranu za okularem teleskopu. Zastosowanie tej metody może znacznie podnieść temperaturę używanego sprzętu, więc przed obserwacją polecam sprawdzenie czy używane w nim soczewki nie są wykonane z tworzywa sztucznego.

Jak to w ogóle możliwe, że WIELOKROTNIE mniejszy Księżyc, może przysłonić całą tarczę Słońca? Księżyc jest rzeczywiście około 400 razy mniejszy od Słońca, ale jest też około 400 razy bliżej Ziemi niż Słońce. W podobny sposób ołówek w odległości kilkunastu centymetrów od oka, może przysłonić ogromne drzewo znajdujące się kilkaset metrów od obserwatora.

Wracając do zaćmienia. W mediach pojawiła się informacja o spodziewanych kłopotach europejskich elektrowni słonecznych. Coraz większa część energii elektrycznej, także w Europie, jest produkowana w ogniwach fotowoltaicznych, a zaćmienie Słońca spowoduje nagły spadek ich mocy. Organizacje zajmujące się analizą rynku energii szacują, że ten spadek na całym kontynencie może wynieść ponad 1/3. Moc europejskich elektrownie słonecznych wynosi około 90 GW, ale w wyniku zaćmienia spadnie ona do mniej niż 60 GW. Problemem nie jest spadek mocy, tylko to, że stanie się to w tym samym czasie na obszarze całej Europy. Duże zachmurzenie może niemal całkowicie zakryć Słońce, ale takie warunki nie obejmują dużych obszarów, a wtedy spadek mocy w jednym kraju (czy obszarze kraju) jest automatycznie rekompensowany przez produkcję energii w innym. Europejska sieć energetyczna jest „zautomatyzowana”. Co się jednak stanie, gdy moc ogniw słonecznych spadnie na obszarze całego kontynentu? Zobaczymy. Największe spadki mocy elektrowni dotyczą Niemców i Włochów, czyli państw, które fotowoltaikę mają rozwiniętą lepiej niż inne europejskie kraje.

A gdy zaćmienie się skończy, co można obserwować na powierzchni Słońca? Poruszające się i ewoluujące plamy Słoneczne, które często są dużo większe od naszej planety. Można obserwować tzw. granulację słońca czy protuberancje. Te ostatnie wyglądają jak płomienie wychodzące ze Słońca. Poniżej wklejam kilka linków, dzięki którym na bieżąco można śledzić pogodę słoneczną:

www.spaceweather.com – strona związana z NASA o naszym Słoneczku.

www.raben.com/maps/ – strona z mapami powierzchni Słońca.

http://eclipse.gsfc.nasa.gov/eclipse.html – Strona NASA poświęcona zaćmieniom Słońca i Księżyca.

http://www.sciencekids.co.nz/sciencefacts/space.html – Strona o Układzie Słonecznym dla dzieci.

http://theplanets.org/the-sun/ – Ciekawa strona z podstawowymi informacjami o Układzie Słonecznym.

http://sohowww.nascom.nasa.gov/ – strona domowa słonecznej misji (sondy) SOHO.

http://ulysses.jpl.nasa.gov/ – strona domowa misji Ulysses.

 

Brak komentarzy do Jak obserwować Słońce?

Papier czy plastik ?

Używanie której torby na zakupy ma mniejszy wpływ na środowisko – co byś odpowiedział? Pewnie, że papierowej. Ja bym taki całkiem pewny tego nie był.

Jedno jest pewne. Reklamówki czy ogólnie tworzywa sztuczne mogą być dla środowiska sporym wyzwaniem. Nie rozkładają się, w niektórych warunkach mogą być trujące. Np. wtedy gdy zostają spalone. Polska, na tle krajów europejskich, jest rekordzistą pod względem ilości zużywanych torebek foliowych. Tak jak średnia unijna wynosi niecałe 200 reklamówek na mieszkańca na rok, tak w Polsce zużywamy ich 466. Na drugim – niechlubnym miejscu – są Węgrzy z 425 torebkami na mieszkańca w ciągu roku. Ale np. nasi zachodni sąsiedzi, Niemcy, statystycznie zużywają tylko 71 foliówek. W takich krajach jak Dania czy Finlandia, jednorazówki praktycznie w ogóle nie są znane. Gdyby na sprawę spojrzeć w kontekście całej Unii, okazuje się, że Europejczycy rocznie wyrzucają około 8 miliardów torebek plastikowych. Samo wyrzucanie nie jest jednak problemem, o ile miejscem do którego reklamówki trafiają jest kosz na odpady z tworzyw sztucznych. Kłopot zaczyna się wtedy, gdy torby foliowe trafiają do lasu, pieca albo na wysypisko śmieci.

Polska na czele

Unia Europejska chce by do 2019 roku o 80 proc spadło zużycie torebek foliowych. Do 2017 r. zużycie reklamówek ma spaść o 50 proc. Chodzi o torebki jednorazowe, te z najcieńszego materiału. Łatwo powiedzieć, ale jak zrobić? No po brukselsku – chciałoby się rzec. Po prostu zakazać. Tyle tylko, że to nic nie da, a może nawet sytuację pogorszyć. Mowa bowiem cały czas o torebkach bardzo cienkich. Tych z grubszego tworzywa Unia nie chce zakazywać. Jeżeli w sklepie nie będzie jednorazówek, większość klientów zechce kupić torbę plastikową (teoretycznie) wielokrotnego użytku. Przy kolejnych zakupach torba zapewne zostanie jednak w domu, a przy kasie zostanie kupiona kolejna. Negatywny wpływ reklamówek z grubszego tworzywa na środowisko jest większy. I nawet gdyby za reklamówki wielokrotnego użytku trzeba było płacić… Czy kwota kilku czy kilkunastu groszy jest na tyle wysoka, by nauczyć klientów chodzenia na zakupy z własną torbą? To raczej mało prawdopodobne.

Alternatywą dla plastiku są torby materiałowe albo papierowe. Te pierwsze są bardzo trwałe. Nasze babcie i mamy często same robiły takie torby np. na szydełku, czy szyły je z niepotrzebnych już skrawków materiału. To było racjonalne zarówno ekologicznie jak i ekonomicznie. Tyle tylko, że dzisiaj tego nikt nie robi. Co z papierem? To mit, że torba papierowa jest dla środowiska neutralna. Prawdę mówiąc pod wieloma względami może być bardziej obciążająca niż plastikowa. Produkcja torby papierowej powoduje o 70 proc. większe zanieczyszczenie powietrza (1) oraz o 80 proc. większą emisję gazów cieplarnianych (2) niż produkcja torby plastikowej. Papier w trakcie produkcji o 50 proc. bardziej (3) zanieczyszcza wodę niż plastik. Produkcja torby papierowej pochłania cztery razy więcej energii (4) i trzy razy więcej wody (5) niż produkcja torby plastikowej. Proces recyklingu papieru zwykle kosztuje więcej energii niż produkcja nowej torby (6). Potrzeba ponad 90 proc. więcej energii (7) by przetworzyć kilogram papieru niż kilogram plastiku.

Babcie miały rację

Coś, co jest często wymieniane jako zaleta papierowych toreb czy opakowań, może być równocześnie ich wadą. Papier jest nietrwały. Innymi słowy, wytworzenie papierowej torby kosztuje energię i wodę, oznacza także korzystanie z wielu środków chemicznych. I to wszystko po to, by torba była wykorzystana tylko jeden raz! To prawda, że torby papierowe szybko się rozkładają. Ale ten rozkład w pewnym sensie oznacza marnotrawstwo. Pod tym względem dużo lepiej korzystać z toreb plastikowych. Jest tylko jeden warunek. Gdy taka torba ulegnie  zniszczeniu, powinna zostać przetworzona. W środowisku naturalnym będzie bowiem zalegać przez dziesiątki a nawet setki lat. To nie produkt jest problemem, tylko sposób w jaki z niego korzystamy.

Plastikowe śmieci stanowią około 20 proc. odpadów na wysypiskach śmieci. Torby foliowe około 1 proc. Są lekkie i dlatego są rozwiewane przez wiatr. Drażnią oko w lesie czy na drzewach. Drażnią nos, gdy są spalane. Ale ich użycie i wykorzystanie to nie ślepa uliczka konsumpcjonizmu. Opakowania plastikowe nie mają sobie równych! To dzięki nim produkty żywnościowe zachowują dłużej świeżość. Samochody zrobione z blachy i drewna byłyby drogie i niebezpieczne. W szpitalach bez tworzyw sztucznych nie dałoby się zachować sterylności. Są trwałe i to w pewnym sensie przysparza im wrogów. Bo w świecie w którym żyjemy to nie trwałość się liczy, tylko częsta zamiana. I tu pojawia się problem. Bo za chęcią zmiany nie idzie w parze świadomość segregowania śmieci. I świadomość tego, że tworzywa sztuczne są cennym surowcem wtórnym. Można je wykorzystać jako paliwo lub przerobić na granulat i używać do produkcji worków na śmieci, ubrań a nawet płyt chodnikowych. Wyrzucanie plastików na wysypiska czy do lasu jest nie tylko karygodne z ekologicznego punktu widzenia, ale przede wszystkim ekonomicznego. Tworzywa sztuczne, także te z których wykonane są woreczki foliowe, są magazynem energii i surowców. W końcu tworzy się je z węgla i ropy naftowej.

Podsumowując (8): Zakazywanie produkcji czy wydawania w sklepach plastikowych torebek nie ulży środowisku, a może pogorszyć jego stan. Bo choć cieniutkich torebek będzie mniej, ich miejsce zajmą torby papierowe albo plastikowe zrobione z grubej folii. A negatywny wpływ na środowisko naturalne tych ostatnich jest dużo większy niż foliówek (9). Jakie jest zatem wyjście? Edukacja i segregacja. No i powrót do czasów naszych babć, które na zakupy zawsze chodziły ze swoją siatką.

14 komentarzy do Papier czy plastik ?

Co powiedzieli na Księżycu?

Wreszcie wiadomo, co powiedział pierwszy człowiek, stawiając stopę na Księżycu. Przez cztery dziesięciolecia byliśmy w błędzie, choć złe tłumaczenie na polski wpadkę Armstronga tuszowało. A było tak.

Wreszcie wiadomo, co powiedział pierwszy człowiek, stawiając stopę na Księżycu. Przez cztery dziesięciolecia byliśmy w błędzie, choć złe tłumaczenie na polski wpadkę Armstronga tuszowało. A było tak.

Apollo 11 wystartował 16 lipca 1969 roku. Po 4 dniach, 4 godzinach i 20 minutach lądownik LM z Nailem Armstrongiem i Edwinem Aldrinem odłączył się od modułu dowodzenia, który przez następnych ponad 27 godzin orbitował wokół Srebrnego Globu. 20 lipca „Orzeł wylądował” w okolicach Morza Spokoju. Odpoczynek, posiłek, kontrola wszystkich systemów lądownika oraz ustawienie ich do pozycji startowej – w końcu po 6 godzinach i 40 minutach od wylądowania astronauci wyszli na zewnątrz, a świat usłyszał… I tutaj zaczynają się rozbieżności. Na Ziemi, w kwaterze NASA, wśród trzasków i gwizdów transmisji radiowej usłyszano: that’s one small step for man, one giant leap for mankind. Ale to zdanie nie ma sensu. Oznacza mniej więcej tyle co: to mały krok dla ludzkości, ale ogromny skok dla ludzkości. Czyżby Armstrong czegoś zapomniał? W jego wypowiedzi brakuje jednej litery. Litery „a”. Bo gdyby powiedział: „that’s one small step for a man, one giant leap for mankind”, oznaczałoby: „to mały krok dla człowieka, ale ogromy skok dla ludzkości”.

– Mam nadzieję, że historia wybaczy mi zgubienie jednej sylaby – mówił Armstrong. Równocześnie podkreślał, że wydaje mu się, że pechowe „a” powiedział, stawiając lewą nogę na Księżycu. I miał rację. Wymyślone przez sztab ludzi zdanie (choć Armstrong twierdzi, że sam na nie wpadł) zostało wypowiedziane prawidłowo, tylko usłyszane błędnie. Winę ponosi transmisja radiowa, której jakość w 1969 roku była co najmniej wątpliwa. Zgubioną literkę znalazł Peter Ford, informatyk z Australii i właściciel firmy Control Bionics. Jego praca polega na tworzeniu systemów, które osobom głuchoniemym umożliwiają porozumiewanie się ze światem. Według Forda, pierwsza część sławnego zdania trwała 3,5 sekundy, a to przy ówczesnej technologii komunikacji radiowej przynajmniej o 10 razy za szybko, żeby „a” na Ziemi zostało usłyszane. To że nie było słyszalne, nie oznacza jednak, że nie było „obecne” w ścieżce dźwiękowej. Po dwóch tygodniach poszukiwań, Ford znalazł ślad niesłyszalnego „a”. – Nie mieściło mi się w głowie, że osoba tak opanowana i precyzyjna jak Armstrong mogła nie zapamiętać poprawnie jednego zdania – powiedział pytany o powody rozpoczęcia analizy słów z Księżyca. Jedna litera może czasami bardzo dużo zmienić.

kamera

Choć od lądowania na Księżycu minęło już ponad 45 lat, do dzisiaj misje Apollo mogą być źródłem zaskoczenia. Kilkanaście dni temu dokonano odkrycia niemalże archeologicznego. Takie odkrycia zwykle kojarzą się z wykopaliskami czy przeszukiwaniem ruin, ale na pewno nie z porządkami w szafie. Tym razem było jednak inaczej. Wdowa po astronaucie Neilu Armstrongu, tym samym, który jako pierwszy człowiek stawiał nogę na Księżycu, znalazła w jego szafie kamerę, którą zarejestrowano pierwsze kroki ludzi na Srebrnym Globie. Kamera nie była elektroniczna jak te dzisiaj używane, a obraz rejestrowała na 16mm taśmie filmowej. Urządzenie i wiele innych pamiątek z lotu Apollo 11 kobieta znalazła na dnie szafy w płóciennej torbie. Zanim Armstrong wyszedł z lądownika, trzymaną w ręku kamerą rejestrował moment zbliżania się lądownika „Eagle” (Orzeł) do powierzchni Księżyca. – Ta kamera zarejestrowała jedne z najważniejszych zdjęć XX wieku – powiedział Allan Needell z National Air and Space Museum, instytucji, której wdowa po Armstrongu przekazała cenne znalezisko.

Neil Armstrong zmarł w 2012 r.

10 komentarzy do Co powiedzieli na Księżycu?

Żyć albo nie żyć

Na Marsie znajdowane są kolejne dowody na to, że nie tylko było tam sporo wody, ale występowało także życie. Niewykluczone, że wciąż tam się znajduje.

Na Marsie znajdowane są kolejne dowody na to, że nie tylko było tam sporo wody, ale występowało także życie. Niewykluczone, że wciąż tam się znajduje.

Badania kosmosu bardzo rzadko dają jednoznaczną odpowiedź na postawione pytanie. To raczej sztuka zbierania skrawków informacji, z których żadna nie jest rozstrzygająca, ale wszystkie razem dają obraz sytuacji.

Woda była czy nie?

Tak jest niemal ze wszystkim. Ale zatrzymajmy się na Marsie. Czy jest woda na Marsie? Tak, jest. Wiemy to dzisiaj, ale musiały minąć długie lata, by móc tak jednoznacznie na to pytanie odpowiedzieć. Bo czy dowodem jest to, że z orbity widać struktury, które wyglądają jak wyschnięte koryta rzek? Czy dowodem jest to, że gdzieniegdzie – na zdjęciach z orbity – widać pojawiające się jak gdyby strużki wody? Szczególnie na nasłonecznionych zboczach gór. Czy dowodem na istnienie zamarzniętej wody są czapy czegoś białego na marsjańskich biegunach albo po prostu teoria, która mówi, że woda na Marsie być powinna? Żaden z wyżej wymienionych faktów sam w sobie o niczym nie świadczy. Ale wszystkie one razem powodują, że dzisiaj fakt istnienia wody na Czerwonej Planecie nie jest podawany w wątpliwość. Do tego dochodzi jeszcze jeden eksperyment, a mianowicie wykrycie pary wodnej w bardzo rzadkiej marsjańskiej atmosferze. A co z życiem?

Tym dawnym i tym obecnym? Sytuacja wygląda bardzo podobnie. To, że w znalezionym na Ziemi meteorycie pochodzącym z Marsa są ślady funkcjonowania żywych organizmów, o niczym nie musi świadczyć. Bakterie mogły do niego wejść, gdy skała była już na Ziemi. Istnienie wody i warunków (temperatura, promieniowanie, ciśnienie), które umożliwiały istnienie życia, także nie jest żadnym dowodem. Podobnie jak to, że na Marsie znajdowane są skały niemal identyczne jak skały osadowe pochodzenia biologicznego na Ziemi. Na to nakłada się teoria, która mówi, że w części, a być może nawet w całości życie czy elementy składowe życia na Ziemię przyniosły komety. Ale czy z tego faktu wynika, że na Marsie było życie? Może rzeczywiście komety tam uderzały, ale nie da się sprawdzić, czy najprostsze komórki tam się rozwinęły. I podobnie jak z wodą: żaden z tych argumentów sam z siebie o niczym nie świadczy, ale wszystkie równocześnie… Badania kosmiczne są jak puzzle – żaden nie zdradzi, co kryje cały obraz, ale im więcej mamy ich w ręku, tym więcej wiemy o świecie, który opisują. Właśnie znaleziono kolejny klocek. Niezwykle ważny i pasujący do poprzednich. Tym klockiem jest metan.

Co z tym życiem?

Ściślej rzecz biorąc, nie tyle metan, ile szybkie zmiany jego stężenia. O tym, że w niezwykle rzadkiej marsjańskiej atmosferze znajdują się niewielkie ilości metanu, wiedziano od dawna. Problemem było jego pochodzenie. Metan może powstawać na wiele różnych sposobów, ale na Ziemi niemal wszystkie związane są z działalnością organizmów żywych. Metan – zwany czasami gazem błotnym – składa się z atomu węgla i czterech połączonych z nim atomów wodoru (jego wzór to CH4). Jest bezwonny i bezbarwny. Skąd się wziął na Marsie? To jest właśnie pytanie za milion dolarów. A może nawet za 100 milionów. Amerykański łazik marsjański Curiosity nad wywierconym przez siebie otworem wykrył dziesięciokrotny wzrost stężenia metanu. Otwór nie był zbyt głęboki, metan zaczął się ulatniać z gruntu, który znajduje się zaraz pod powierzchnią. Do odkrycia doszło podczas badań wewnątrz 154-kilometrowego krateru Gale. W warunkach ziemskich metan jest w 95 proc. pochodzenia organicznego i związany ściśle z cyklem życiowym roślin i zwierząt. Ten fakt o niczym jeszcze nie przesądza. Po pierwsze dlatego, że pozostałe 5 proc. to produkcja metanu w procesach geologicznych. A po drugie kto powiedział, że znamy wszystkie procesy produkcji metanu? Być może na Marsie mają miejsca takie, których na Ziemi nie ma. – Te okresowe znaczne wzrosty zawartości metanu w atmosferze, tj. szybki wzrost, a później spadek, wskazują, że ich źródło musi być stosunkowo niewielkie – przypuszcza Sushil Atreya z Uniwersytetu Stanu Michigan, który bierze udział w projekcie Curiosity. – Może być wiele źródeł, biologicznych i niebiologicznych, takich jak np. reakcje zachodzące między wodą i skałami – dodał.

Podsumowując. Co wiemy nowego? Jeden z marsjańskich łazików wykrył szybko zmieniające się stężenie metanu. Czy to znaczy, że znaleziono tam życie? Nie! Czy to znaczy, że było tam kiedyś życie? Nie! W takim razie co to znaczy? Tylko tyle, albo aż tyle, że mamy kolejny kawałek układanki. Nie znamy jeszcze pełnego obrazu, ale wydaje się, że jest na nim planeta, która kiedyś obfitowała zarówno w płynną wodę, jak i w życie. Planeta, na której to życie przetrwało do dzisiaj.

Brak komentarzy do Żyć albo nie żyć

Teleportuj się !!!

Powiem szczerze: bałbym się teleportacji, skoro mamy kłopot z tradycyjnymi środkami transportu. A tymczasem naukowcom udała się teleportacja na odległość 25 km!

Może więc i dobrze, że teleportacja ludzi jest (na razie) niemożliwa. O co w ogóle chodzi? Teleportacja to przenoszenie obiektów z miejsca na miejsce, ale – jak mówią fizycy – bez zachowania ciągłości istnienia. Brzmi nie najlepiej, ale w największym skrócie polega na tym, że obiekt w jednym miejscu znika, a w drugim się pojawia.

Mielonka

Teleportacja jest dość popularna np. w filmach science fiction. Szczególnie w tych, których akcja dzieje się w przestrzeni kosmicznej. To jeden z dwóch sposobów radzenia sobie z ogromnymi odległościami, jakie w kosmosie są faktem. Nie chcąc narażać się na śmieszność, trzeba znaleźć w miarę prawdopodobny sposób szybkiego przemieszczania się. Jednym ze sposobów radzenia sobie z tym kłopotem jest zamontowanie w statkach kosmicznych napędów nadświetlnych, czyli takich, które rozpędzają obiekt do prędkości wyższej niż prędkość światła. Drugim ze sposobów jest teleportowanie. Napędów nadświetlnych nie ma i nie wiem, czy kiedykolwiek będą. Jeżeli zaś chodzi o teleportację, to problemu nie ma. Naukowcy potrafią teleportować… choć na razie nie ludzi. Na razie nie mamy ani urządzenia, ani nawet pomysłu, jak powinno wyglądać urządzenie do teleportowania większych i bardziej złożonych obiektów. Pisząc „większych i bardziej złożonych”, nie mam na myśli słonia afrykańskiego czy fortepianu. Mam na myśli większe atomy, nie mówiąc już nawet o najprostszej cząsteczce chemicznej.

Problemy z teleportowaniem przewidzieli także futurolodzy. Od czasu do czasu także w produkcjach science fiction nielubiany bohater korzystał z uszkodzonego „portalu” i w efekcie pojawiał się „po drugiej stronie” w kawałkach albo w formie przypominającej – brutalnie mówiąc – mielonkę. I także tutaj scenarzyści mieli nosa i nie bardzo minęli się z prawdą. Z definicji przy przesyłaniu cech zwanych stanami kwantowymi cząstki A do oddalonej cząstki B, niszczony jest stan kwantowy A. Trochę to skomplikowane, ale w zasadzie da się prosto wytłumaczyć. Nie może być tak, że teleportacja polega na skopiowaniu obiektu. Wtedy istniałyby dwa takie same obiekty. Teleportacja polega na „sczytaniu” obiektu A i przesłaniu w oddalone miejsce. Ale w czasie tego przesyłania obiekt A przestaje istnieć („znika”). Gdy przychodzi do jego odtworzenia, a coś pójdzie nie tak jak trzeba, wychodzi… w największym skrócie mielonka.

W czym jest problem?

Dzisiaj nikt ludzi oczywiście nie próbuje teleportować. Poza zasięgiem naukowców jest nawet teleportacja najprostszych cząsteczek. Nawet tak prostych jak chociażby trzyatomowa cząsteczka wody. Więcej, dzisiejsza technika nie pozwala teleportować nawet pojedynczego atomu, o ile mówimy o większym atomie, np. uranu, który składa się z kilkuset protonów, neutronów i elektronów. Jak to wygląda w praktyce? Każda cząstka ma tzw. stany kwantowe, czyli swoją specyfikę. Cząstki różnią się od siebie właśnie stanami kwantowymi, tak jak obiekty makroskopowe różnią się od siebie np. kolorem, zapachem, smakiem czy fakturą. Teleportacja polega na odczytaniu tych „cech”, przesłaniu ich w nowe miejsce i tam nadaniu ich innej cząstce. Przy okazji niszczy się stany kwantowe cząstki pierwotnej, stąd nie ma mowy o kopiowaniu czegokolwiek, tylko rzeczywiście o przesyłaniu.

Skoro to takie proste, w czym problem, żeby teleportować duże obiekty? Nie da się przesłać takich cech jak kolor, kształt, smak czy zapach po to, by w drugim teleporcie je odtworzyć… Te wspomniane cechy makroskopowe są wypadkową stanów kwantowych miliardów, bilionów cząstek, z których duże obiekty się składają. Problem teleportowania dużych czy większych od pojedynczych cząstek obiektów jest więc problemem skali. Na razie ledwo radzimy sobie ze stanami kwantowymi maleńkich obiektów, ale przyjdzie czas na te większe. I może wtedy pojawi się problem, czy da się teleportować wiedzę, czy da się teleportować duszę…

Wróćmy jednak na Ziemię (albo ziemię). Pierwszą teleportację kwantową przeprowadzono w 1997 r., ale już 7 lat później zespół badaczy z USA i Austrii opublikował dane, z których wynikało, że teleportowano najmniejszy atom, czyli wodór. Tym razem w piśmie „Nature Photonics” ukazała się publikacja, z której wynika, że dzięki badaczom z Uniwersytetu w Genewie, należącego do NASA Jet Propulsion Laboratory, oraz z National Institute of Standards and Technology w USA, udało się teleportować cząstkę na rekordową odległość 25 kilometrów. Informacja o stanach kwantowych została przesłana światłowodem, ale w przyszłości być może uda się ją przesłać falami radiowymi albo promieniem lasera. Tylko 25 kilometrów? Tak, wiem, wiem. W ten sposób na Księżyc czy Marsa się nie dostaniemy, ale od czegoś trzeba zacząć

Tekst ukazał się w tygodniku Gość Niedzielny

32 komentarze do Teleportuj się !!!

Komputer na światło

Wyobraź sobie komputery miliardy razy szybsze od tych, które dzisiaj mamy do dyspozycji. Po co nam takie urządzenia? Na razie jeszcze nie wiem, ale jestem pewien, że jak tylko je stworzymy, zastosowania sypną się jak z rękawa.

Wyobraź sobie komputery miliardy razy szybsze od tych, które dzisiaj mamy do dyspozycji. Po co nam takie urządzenia? Na razie jeszcze nie wiem, ale jestem pewien, że jak tylko je stworzymy, zastosowania sypną się jak z rękawa.

Skąd ta pewność? Tego uczy nas historia. Także ta najnowsza. W 1946 roku Thomas Watson, prezes koncernu IBM, firmy, która właśnie skonstruowała pierwszy komputer, stwierdził publicznie, że tego typu maszyny nigdy nie będą powszechne. W dość długim przemówieniu powiedział także, że jego zdaniem w przyszłości świat nie będzie potrzebował więcej niż 5 maszyn cyfrowych. No tak, przecież gry były planszowe, o internecie nikt nie słyszał, a dokumenty można przecież pisać na maszynie do pisania. Tymczasem dzisiaj mocna pozycja firmy IBM została zbudowana właśnie na produkcji ogólnie dostępnych i powszechnych maszyn cyfrowych. I jeszcze jeden przykład. W połowie lat 90. XX wieku (czyli zaledwie 20 lat temu) guru technologii cyfrowej, założyciel i szef Microsoftu Bill Gates stwierdził, że internet to mało użyteczna zabawka. Faktycznie, wtedy był on czymś takim. Faktycznie, listy można było wysłać pocztą albo faksem. Zawsze to samo. Cywilizacja rozwija się dzięki wizjonerom spełniającym swoje marzenia. Dzięki ludziom, którzy nie zawsze potrafią odpowiedzieć na pytania „po co?” albo „do czego nam się to przyda?”. Historia uczy jednak, że każde odkrycie, każda rewolucja błyskawicznie zostają zagospodarowane. I stąd pewność, że komputery kwantowe, bo o nich mowa, będą urządzeniami, bez których ludzie nie będą sobie wyobrażali życia.

Światłem hurtowo

Pomysł, by wykorzystać kwanty (np. pojedyncze cząstki światła) jako nośnik informacji, jako „medium” do prowadzenia obliczeń, ma około 40 lat. Jak to często bywa, w takich sytuacjach dość trudno wskazać pierwszego pomysłodawcę, ale nie ma wątpliwości, że jednym z pierwszych był znany fizyk Richard Feynman. No i potoczyło się. Na kilku uniwersytetach grupy naukowców rozpoczęły teoretyczne obliczenia. Jedna z takich grup, związana z uniwersytetem oksfordzkim, stworzyła protokoły kwantowe. Współpracował z nią też Polak, Artur Ekert. Po około 10 latach od rzucenia pomysłu, czyli w połowie lat 90. XX wieku, powstały pierwsze podstawowe elementy konstrukcji komputera kwantowego, czyli bramki, które przetwarzały kubity. Co to takiego? To cząstki elementarne, fotony lub elektrony, których różne stany w pewnym sensie są nośnikami informacji. Tylko dlaczego komputer zbudowany „na kwantach” ma być szybszy od tradycyjnego? Sprawa, wbrew pozorom, nie jest aż tak bardzo skomplikowana. Podstawą jest przeniesienie się do zupełnie innego świata. Świata, w którym nic nie jest takie jak w naszym świecie. Mam tutaj na myśli świat kwantów, same podstawy budowy naszej materii. Zjawiska, które tam występują, są dla nas fascynujące, bo wokół nas ich nie zauważamy. Więcej, one są nielogiczne, przeczące intuicji i zdrowemu rozsądkowi.

Jedną z dziedzin badających ten świat jest optyka kwantowa. Tak jak „zwykła” optyka, czyli ta, której uczymy się w szkole na lekcjach przyrody czy fizyki, tak samo i ta kwantowa zajmuje się światłem. Różnica polega na tym, że optyka kwantowa bada pojedyncze cząstki światła, czyli kwanty albo ich niewielkie grupy (pary, trójki…), podczas gdy „optyka szkolna” zajmuje się światłem bardziej „hurtowo”. Bada je jako zbiór ogromnej ilości kwantów. Właśnie w tych ogromnych ilościach fotonów (czyli w wiązkach czy promieniach światła) gubią się te zjawiska, które w przypadku pojedynczych cząstek występują. O co konkretnie chodzi? Na przykład o zjawisko superpozycji. – To zjawisko nie występuje w świecie klasycznym i bardzo trudno w ogóle znaleźć do niego zrozumiałą analogię – mówi „Gościowi” Radosław Chrapkiewicz, doktorant Wydziału Fizyki Uniwersytetu Warszawskiego.

I w lewo, i w prawo

Superpozycja. O co chodzi? – Definicja mówi, że to istnienie dwóch pozornie wykluczających się stanów cząstki – mówi Chrapkiewicz. I od razu dodaje, że superpozycja w naszym świecie nie występuje, ale gdyby występowała, strzałka skierowana w prawo równocześnie byłaby skierowana także w lewo, a prawy but byłby równocześnie lewym. – W świecie, który nas otacza, strzałka jest skierowana albo w jedną, albo w drugą stronę, a jeden but może być albo prawy, albo lewy. Ale w świecie kwantów jest inaczej. Jedna cząstka może istnieć w stanach, które się wzajemnie wykluczają. Tylko co to ma wspólnego z komputerami kwantowymi? W klasycznym komputerze, takim, jaki stoi w niemal każdym domu, takim, na jakim piszę ten artykuł, wszelkie obliczenia robi się na zerach i jedynkach. Maleńkie elementy elektroniczne mogą przyjmować albo wartość „0”, albo „1”. – W komputerze kwantowym w pewnym sensie zera i jedynki istnieją równocześnie, a to oznacza, że możemy wykonywać równocześnie wiele obliczeń naraz – mówi Radosław Chrapkiewicz. Muszę mieć niewyraźną minę, bo Radek tłumaczy dalej. – Jeden klasyczny bit to jest zero lub jedynka, jeden kwantowy bit, czyli kubit, to jakiś stan równoczesnego istnienia zera i jedynki. W tym samym momencie zamiast jednej wartości mamy dwie współistniejące. Jeżeli weźmiemy dwa kubity, mamy jednoczesne współistnienie czterech wartości, bo tyle jest możliwych kombinacji zer i jedynek. A jeżeli zbuduję komputer dziesięciokubitowy, różnych możliwości jest 2 do 10 potęgi, czyli 1024, podczas gdy w klasycznym komputerze dziesięciobitowym jest tylko 10 możliwości – tłumaczy Radosław Chrapkiewicz. I dodaje: – Liczba operacji możliwych do wykonania równocześnie rośnie bardzo szybko wraz ze wzrostem liczby kubitów. Komputery skonstruowane w ten sposób działałyby nieporównywalnie szybciej, bo wiele operacji mogłyby wykonywać równocześnie. Dzisiejsze komputery nie potrafią robić kilku operacji naraz – kończy Chrapkiewicz.

Zasada działania komputera kwantowego nie wydaje się skomplikowana. Ale jak jest z jej realizacją? No i tutaj pojawia się problem. Dzisiaj nie ma jeszcze układów, które z czystym sumieniem można byłoby nazwać wielokubitowymi. Co prawda na początku lutego 2007 roku firma D-Wave Systems zaprezentowała 128-kubitowy komputer, ale istnieją uzasadnione wątpliwości, czy to rzeczywiście jest „pełnowartościowy” komputer kwantowy, czy tylko urządzenie, które wykorzystuje pewne zjawiska kwantowe. Być może różnica pomiędzy tymi dwoma przypadkami jest subtelna, ale specjaliści ją zauważają. Ale nawet w przypadku komputera, który nie jest przez wszystkich zaliczany do maszyn kwantowych, liczby mogą robić wrażenie. Jedna z grup badaczy twierdzi, że stworzyła czip, który może dokonywać ponad 10^38 obliczeń naraz. Zwykłemu, klasycznemu komputerowi zajęłoby to kilka milionów lat.

To takie logiczne

No i powstaje pytanie kluczowe. Po co nam tak szybkie komputery? Kilka zastosowań przychodzi do głowy od razu. Zastosowania wojskowe, a właściwie wywiadowcze. Dzisiejsze komputery nie radzą sobie z ogromną ilością danych, które nadsyłają urządzenia podsłuchowe. Ludzie odpowiedzialni w strukturach państwa za bezpieczeństwo (własnych obywateli) nie lubią sytuacji, gdy mają dane, ale nie są ich gdy przeanalizować, bo jest ich za dużo. Niewiele instytucji ma fundusze na to, by inwestować w takie dziedziny nauki jak optyka kwantowa. Nieliczne są instytucje związane z wojskiem czy wywiadem. Amerykańska Agencja Bezpieczeństwa Narodowego, która zajmuje się tym drugim, w komputery kwantowe inwestuje duże pieniądze. Zresztą podobnie było z komputerami, których dzisiaj używamy. Ich rozwój związany był z Projektem Manhattan – budowy pierwszej bomby jądrowej. – Ta analogia jest bardzo dobra. Moim zdaniem komputery kwantowe dzisiaj są na takim etapie rozwoju technologicznego, jak w latach 40. XX wieku były komputery klasyczne – mówi Radosław Chrapkiewicz. I dodaje, że nie sposób dzisiaj powiedzieć, kiedy przyjdzie przełom.

Choć sam zajmuje się optyką kwantową, nie jest w stanie wyobrazić sobie komputerów kwantowych w każdym domu czy w zminiaturyzowanej wersji zastosowanych w jakichś urządzeniach mobilnych, takich jak np. dzisiejsze smartfony. Nie tylko zresztą on. Przegląd specjalistycznych stron internetowych pokazuje, że gdy mowa o wykorzystaniu komputerów kwantowych, najczęściej pojawiają się stwierdzenia o analizie dużej ilości danych, w tym danych naukowych i o skomplikowanych modelach matematycznych, dotyczących np. pogody czy na przykład projektowania leków. Nic dla ludzi? Cóż, leki są jak najbardziej dla ludzi, ale faktycznie brakuje nam chyba wyobraźni, by dzisiaj znaleźć zastosowanie dla maszyn o tak ogromnej mocy obliczeniowej. Spokojnie, gdy pojawią się takie komputery, pojawią się i zastosowania. A wtedy będziemy nieskończenie zdziwieni, że wcześniej tych zastosowań nie potrafiliśmy zauważyć. Przecież one są takie… logiczne.

komputer kwantowy

 

>>> Na zdjęciu układ skonstruowany przez firmę D-Wave Systems, zawierający 128 kubitów.

 

Tekst ukazał się w tygodniku Gość Niedzielny

6 komentarzy do Komputer na światło

Telepatia działa…

…przez internet. Przeprowadzono eksperyment, w ramach którego udało się skomunikować ze sobą dwa oddalone od siebie mózgi. W efekcie jeden człowiek zrobił coś, co pomyślał drugi.

…przez internet. Przeprowadzono eksperyment, w ramach którego udało się skomunikować ze sobą dwa oddalone od siebie mózgi. W efekcie jeden człowiek zrobił coś, co pomyślał drugi.

Nieinwazyjny interfejs mózg–mózg jest czymś, co budzi równie dużo obaw, co nadziei i fascynacji. Odkrycie czy raczej eksperyment był dość naturalną konsekwencją prac, które prowadzi się od lat i które polegają na „sprzęgnięciu” ze sobą mózgu i komputera. Interfejsy mózg–komputer działają dzięki odczytowi, a następnie skomplikowanej interpretacji sygnałów elektrycznych, które generuje ludzki mózg. Te sygnały mogą być odczytywane wprost z mózgu, ale także (co czyni całą sprawę jeszcze bardziej skomplikowaną) na powierzchni skóry głowy. Zresztą te same sygnały są analizowane w znanej lekarzom od lat metodzie EEG. Interfejs mózg–komputer jest kolejnym krokiem. Sygnały są nie tylko rejestrowane, ale przypisywane jest im pewne znaczenie. I tak np. osoba niepełnosprawna myśląc, jest w stanie kierować wózkiem inwalidzkim. Albo ktoś całkowicie sparaliżowany jest w stanie komunikować się z otoczeniem poprzez koncentrację, wyobrażanie sobie np. liter, które następnie pojawiają się na ekranie komputera (opisuję to w skrócie, bo w rzeczywistości proces jest bardziej złożony).

Jak mózg z komputerem

Wspomniane techniki nie są przeznaczone oczywiście tylko dla ludzi chorych. Już dziś można kupić urządzenie przypominające kask, które zakłada się na głowę, co pozwala za pomocą myśli sterować postaciami w grze komputerowej. Być może w przyszłości komunikacja ludzi z urządzeniami elektronicznymi w całości będzie się opierała na falach mózgowych. Dzisiaj w komputerze czy telefonie niezbędna jest klawiatura, myszka czy dotykowy ekran. Inaczej nie wprowadzimy do urządzenia informacji, bez tego nie wyegzekwujemy żadnego działania. Przyszłości nie da się przewidzieć, ale nie znaczy to, że nie można zostać futurologiem. Sytuacja, w której myślami będę „współpracował” z komputerem, wydaje mi się fascynująca. Ale to oczywiście nie koniec drogi, tylko być może dopiero jej początek. No bo skoro da się skomunikować pracę mózgu i komputera, dlaczego nie spróbować komunikacji pomiędzy dwoma mózgami? Naukowcy z amerykańskiego Uniwersytetu Waszyngtona stworzyli taki interfejs. Informacja pomiędzy dwoma mózgami została przesłana siecią internetową.

Pisząc „informacja”, nie mam jednak na myśli konkretnej wiedzy przekazywanej pomiędzy mózgami, tylko raczej impuls do zrobienia czegoś. Eksperyment wykonało dwóch uczonych, którzy tematem zajmowali się od wielu lat. Jeden to Andrea Stocco, drugi Rajesh Rao. W sierpniu tego roku ci dwaj panowie usiedli wygodnie w fotelach w dwóch różnych punktach kampusu uniwersyteckiego i zrobili coś, co będzie opisywane kiedyś w podręcznikach. Rao założył na głowę czepek z elektrodami rejestrującymi fale mózgowe. Z kolei Stocco założył czepek z elektrodami do tzw. przezczaszkowej stymulacji magnetycznej. W pewnym sensie te urządzenia są swoją przeciwnością. Jedno fale mózgowe rejestruje, a drugie raczej je w mózgu generuje. Rao nie myślał o niczym specjalnym, po prostu grał w grę komputerową, z tym, że nie przez klawiaturę czy inne urządzenie peryferyjne, tylko używał do tego własnych myśli. Gdy jego zadaniem było trafienie w cel znajdujący się z prawej strony ekranu komputera, wyobrażał sobie, że porusza prawą ręką i trafia w ten punkt. Tymczasem niemal dokładnie w tej samej chwili jego kolega Stocco, kilkaset metrów dalej, rzeczywiście poruszył prawą ręką.

Mimowolny tik

Stocco miał na uszach słuchawki (po to, by nie było podejrzeń, że ktoś mu podpowiada) i słuchał muzyki. Nie patrzył też na ekran komputera. Był zrelaksowany, odpoczywał, a w pewnym momencie poruszył palcem ręki. Nie do końca potrafił powiedzieć, dlaczego to zrobił. Tłumaczył, że jego ruch „przypominał mimowolny tik”. Ten eksperyment oznacza, że po raz pierwszy udało się przekazać informację pomiędzy dwoma mózgami. Na razie ten przepływ jest jednokierunkowy, ale wiadomo, że kolejnym krokiem będzie dwukierunkowość. Co ciekawe, w tym eksperymencie w zasadzie nie używa się niczego, co dotychczas nie było znane. Zarówno EEG, jak i stymulację magnetyczną lekarze stosują od wielu lat. Przełom polega na tym, że badaczom udało się, wykorzystując znane narzędzia, uzyskać zupełnie nową jakość. Badacze jak zwykle studzą emocje.

Eksperyment powiódł się dlatego, że ośrodek odpowiedzialny za motorykę nie jest usytuowany we wnętrzu mózgu, tylko na jego powierzchni. W innym wypadku nie udałoby się go pobudzić bezinwazyjnie z zewnątrz. Nie ma żadnych szans – jak twierdzą – na to, by obecna metoda była wykorzystywana do wpływania na myśli drugiego człowieka. Badacze kategorycznie stwierdzili również, że nie ma także możliwości sterowania drugim człowiekiem bez jego woli. Na co w takim razie są szanse? Dość trudno na tym etapie powiedzieć, ale niemal od razu narzuca się pomoc osobom niepełnosprawnym w komunikacji ze światem zewnętrznym. Być może uda się stworzyć urządzenia pomagające ludziom w kontrolowaniu bardzo skomplikowanych urządzeń, takich, jakimi są np. samoloty.

Dwóch pilotów mogłoby być w jakiś sposób połączonych ze sobą, tak, że działaliby jako jeden organizm, a nie dwa oddzielne. Z drugiej strony piloci przez wielogodzinne szkolenia, nawet bez nowej technologii, potrafią doskonale ze sobą współpracować. Jest jeszcze coś. A może ta technologia przyda się w porozumiewaniu pomiędzy osobami, które mówią w różnych językach? Fale mózgowe są przecież uniwersalne i nie zależą od wieku, kultury i pochodzenia. Tym bardziej że nikt nie powiedział, że w takiej komunikacji mogą uczestniczyć tylko dwie osoby.

Tekst ukazał się w tygodniku Gość Niedzielny

2 komentarze do Telepatia działa…

Ład czy chaos?

Chaos i ład – choć wydają się przeciwstawne, w naturze pięknie się przenikają. Ład wynika z chaosu, a chaos kroczy przed harmonią. Wystarczy spojrzeć na piaskową wydmę, płatek śniegu czy którykolwiek układ planetarny.

Co było pierwsze: ład czy chaos? W życiu codziennym chaos powstaje z ładu, ale we wszechświecie w różnych skalach kolejność może być odwrotna. Gwiazdy i układy planetarne powstają z chaotycznej chmury drobinek, ta zaś z eksplozji gwiazdy. Tylko czy taka chmura jest rzeczywiście chaotyczna? Nie da się przewidzieć ruchu każdego z jej atomów, ale to nie znaczy, że nie działają w niej prawa fizyki. Z czasem to one wprowadzają porządek. Z tego porządku rodzą się nowe światy. Ale czy w nich panuje ład i porządek?

Góra piasku

Z naszego punktu widzenia niekoniecznie. Na przykład ruch planet, księżyców i wszystkich innych obiektów w Układzie Słonecznym wydaje się uporządkowany i przewidywalny. Ale gdyby tak było, jak należałoby tłumaczyć, skąd wzięły się kratery, które świadczą o kolizjach, do jakich dochodziło w przeszłości i wciąż dochodzi? Skąd pojawiające się co jakiś czas „alarmy”, że do Ziemi zbliża się groźna asteroida albo planetoida? Czy to wszystko rzeczywiście działa jak w szwajcarskim zegarku? Tak, ale złożoności tego mechanizmu nie jesteśmy (jeszcze?) w stanie pojąć. Zdarzenia w kosmosie, a wśród nich zderzenia między kosmicznymi obiektami, są elementem porządku, którego my nie dostrzegamy. Ta swego rodzaju ślepota to problem nie tylko kosmicznych skal. Mamy kłopot z ogarnianiem świata w każdej skali. Z tych ograniczeń wynika to, że dość często mylimy chaos z porządkiem. Jak to możliwe?

Wyobraźmy sobie niewielki fragment pustyni i wietrzny dzień. Pojedyncze ziarenka piasku są unoszone i opadają. Jedne blisko siebie, inne dalej. Jedne w powietrzu przebywają chwilę, inne przez długi czas. Nie ma najmniejszych szans, by przewidzieć ruch wspomnianych ziarenek. On zależy od tak wielu czynników, że największe komputery na Ziemi nie poradziłyby sobie z takim wyzwaniem. Gdy patrzy się na ten obraz, aż ciśnie się na usta słowo „chaos”. Czy ruch ziarenek piasku podrywanych przez wiatr jest przypadkowy? Na pewno jest (dla nas) nieprzewidywalny, ale nie chaotyczny. Jest w nim porządek i rządzą nim prawa fizyki. Nie trzeba wierzyć na słowo, wystarczy poczekać, aż wiatr ustanie, a wtedy naszym oczom ukaże się wydma. Ta potrzebuje swego rodzaju nieporządku. Wydma nigdy nie powstanie na idealnie płaskiej powierzchni. Potrzebna jest przeszkoda. Lokalne zaburzenie porządku. Po co? By wyhamować wiatr. Tylko wtedy niesiony przez niego piasek opadnie. Jedno ziarenko, później drugie, kolejne…

(Nie)porządek na zimno

Wystarczy rzut oka na wydmę, by zobaczyć porządek. Wydmy zawsze mają jedno zbocze łagodne, a drugie strome. Łagodnym odwrócone są w kierunku wiejącego wiatru. Rozpoznajemy wydmy poprzeczne, seify, barchany czy wydmy gwiaździste. Ich kształt zależy od wielu czynników. Wśród nich są ukształtowanie terenu, siła i kierunek wiatru oraz rodzaj (właściwości) piasku. Zależności między tymi czynnikami są tak skomplikowane, że nawet największe komputery nie są w stanie tego ogarnąć. Ale o żadnym chaosie nie ma tu mowy. Tak samo jak nie ma mowy o chaosie w procesie tworzenia się kryształów. Chyba najlepszą ilustracją jest powstawanie płatków śniegu. Nie mogłyby się pojawić w idealnie czystym powietrzu, w którym nie byłoby chociażby najmniejszego pyłku. Woda w pewnej temperaturze zamarza – to jasne – ale może przechodzić w stan stały na dwa sposoby. Lód to cząsteczki wody, które zamarzły w nieuporządkowaniu. Śnieg to kryształy wody, a więc cząsteczki, które zamarzając, zdążyły się uporządkować, znaleźć się na swoich miejscach. Płatek śniegu to nieprzewidywalny porządek. Nie ma dwóch takich samych śnieżynek, ale to nie zmienia faktu, że wszystkie są stworzone według konkretnego wzoru. Każdy płatek śniegu ma kształt sześciokąta foremnego, figury, która ma sześć kątów (wierzchołków) i której wszystkie boki są równej długości. Dlaczego? Bo cząsteczki wody w krysztale łączą się ze sobą szóstkami. Połączenie „na płasko” sześciu cząsteczek wody musi utworzyć sześciokąt, w którym w wierzchołkach są atomy tlenu. I choć płatki śniegu są sześcioramiennymi gwiazdkami, każda jest nieco inna, bo każdy płatek ma inną historię, przechodzi inną drogę w chmurze. Nie da się jej przewidzieć ani odtworzyć. Rządzi nią zbyt wiele zmiennych, ale czy można powiedzieć, że w chmurze śniegowej panuje chaos? Idealnie regularne, symetryczne i uporządkowane płatki śniegu świadczą o czymś zupełnie innym. Tak samo jak idealnie „dostrojone” do siebie planety w systemach planetarnych, które powstały z chmury materii. Czy istnieją dwie takie same gwiazdy? Czy istnieją dwa takie same układy planetarne? Nie. Każdy jest inny, mimo że wszystkie powstały na podstawie tych samych zasad fizyki.
Za mało wiemy

Co ciekawe, nie do przewidzenia czy nie do opisania jest nie tylko proces, w którym coś powstaje (układ planetarny, wydma, kryształ…), ale także sam moment, w którym to powstawanie się zaczyna. Zainicjowanie wielu procesów wiąże się z nieprzewidywalną sytuacją. W przypadku płatka śniegu musi być pyłek, jakieś zanieczyszczenie. Podobnie sprawa się ma ze wszystkimi kryształami. Woda w garnku nie zacznie się gotować, o ile na ściankach garnka nie znajdzie się jakaś mała rysa. W idealnie gładkim garnku idealnie czysta woda może być w stanie ciekłym nawet wtedy, gdy jej temperatura dawno przekroczyła 100 st. C. Lawina rozpoczyna się od niewielkiego zaburzenia. Podobnie jak burza. Pioruny uderzają w sposób nieprzewidywalny, ale na pewno nie przypadkowy. Choć kształt błyskawic zdaje się na to nie wskazywać, w rzeczywistości ładunki elektryczne obierają drogę, która gwarantuje najmniejszy opór elektryczny. Skąd ładunki wiedzą, w którą stronę się przemieszczać? Przed właściwym wyładowaniem z chmury wylatuje niewielka „paczka” ładunków, która sprawdza drogę o najmniejszym oporze. Ładunki z błyskawicy, którą widzimy, są prowadzone niemalże jak po sznurku. Wszystko w idealnym porządku, według ściśle określonych reguł. Choć z zewnątrz wygląda to na chaos i przypadek.

Układ Słoneczny potrzebuje 250 mln lat, by zrobić pełny obrót wokół centrum galaktyki Drogi Mlecznej. Ten ruch ma oczywiście swoje konsekwencje. Zmieniające się kosmiczne otoczenie powoduje, że naruszana jest subtelna równowaga między Słońcem a pozostałymi obiektami w naszym układzie planetarnym. Tego oczywiście nie da się przewidzieć, ale zdarza się, że to naruszenie równowagi skutkuje wzmożoną aktywnością komet. Te częściej niż zwykle wylatują w kierunku Słońca. Zwiększa się przez to szansa na kolizję z Ziemią. Co oznaczałoby takie zderzenie? Chaos? To chyba nie jest dobre słowo. Dzięki takim kolizjom w przeszłości dzisiaj na Ziemi jest woda. Patrząc na przepiękny krajobraz z wodą, piaskiem i palmami w tle, warto sobie zdać sprawę, że tę wodę przyniosły komety, piasek to skruszone skały, a palma czy jakikolwiek inny żywy organizm na tej planecie są zbudowane z cząsteczek chemicznych, których ruch wciąż jest dla nas chaotyczny i nieprzewidywalny. Z chaosu w pewnym sensie wynika porządek. Widząc ten porządek, harmonię, warto sobie zdać sprawę z tego, że w naszym świecie tak naprawdę nic nie jest chaotyczne. Wszystko jest podporządkowane prawom natury. Wszystko jest uregulowane i przewidywalne. Kłopot w tym, że my tego porządku często nie dostrzegamy.

 

Tekst ukazał się w Tygodniku Gość Niedzielny

 

2 komentarze do Ład czy chaos?

Nano-lekarz

Kiedyś po naszym ciele będą krążyły niewielkie urządzenia badawcze. Będą sprawdzały stan naszego zdrowia, podawały leki, a może nawet wykonywały – od wewnątrz – operacje chirurgiczne. Kiedy to się stanie?

Kiedyś po naszym ciele będą krążyły niewielkie urządzenia badawcze. Będą sprawdzały stan naszego zdrowia, podawały leki, a może nawet wykonywały – od wewnątrz – operacje chirurgiczne. Kiedy to się stanie?

Nie wiem, kiedy ta wizja się spełni, ale widzę, że świat inżynierii zmierza w tym kierunku. A wszystko zaczęło się w 1960 roku od słów jednego z najbardziej zasłużonych i barwnych fizyków w historii nauki. Richard Feynman był znany z bardzo dużego poczucia humoru i talentów popularyzatorskich. Uwielbiał grać na bębnach bongo. W ich rytmie zdarzało mu się nawet prowadzić wykłady. Malował, pisał książki i zbierał znaczki. Ale w historii zapisał się z innego powodu. Był fizykiem teoretykiem i laureatem Nagrody Nobla. Pracownikiem najlepszych na świecie uniwersytetów. Zajmował się dość hermetyczną dziedziną, jaką jest kwantowa teoria pola i grawitacji, ale interesował się także fizyką cząstek i nadprzewodnictwem. To on jako pierwszy podał koncepcję komputera kwantowego i – w 1960 roku – zapowiedział powstanie nowej dziedziny inżynierii – nanotechnologii.

Sporo miejsca

Nanotechnologia bada i próbuje wykorzystać potencjał natury i właściwości świata bardzo małych rozmiarów i bardzo małych odległości. Co jest tam tak interesującego? – „There is plenty of room at the bottom” – powiedział w czasie pamiętnego wykładu zapowiadającego powstanie nowej dziedziny wspomniany już Richard Feynman. W tłumaczeniu na polski to zdanie znaczyłoby mniej więcej: „gdzieś tam na dole jest dużo miejsca”. Feynman zastanawiał się, jak naśladować naturę, która z atomów i cząsteczek potrafi tworzyć większe, olbrzymie, piękne struktury, takie jak chociażby białka czy cukry. A wszystko to robi ze znakomitą wydajnością, i mechaniczną, i energetyczną. Innymi słowy, człowiek powinien spróbować nauczyć się naśladować przyrodę, tworzyć układy złożone, wychodząc z atomów i cząsteczek, i kontrolując ten proces, mieć jakiś wpływ na powstającą nową materię. Brzmi dumnie, ale jak to zrobić? To jest właśnie coś, co ma rozstrzygnąć nowa dziedzina. Naukowcy i inżynierowie do tego wyzwania próbują podejść na dwa sposoby. Jeden to tak zwane „bottom up”, czyli przejście od podstaw, z tego poziomu najniższego, atomowo-cząsteczkowego, do większych, zaprojektowanych struktur. Czyli od pojedynczych atomów i cząsteczek do konkretnych materiałów. Najpierw tych w skali nanometrowej, a później o tysiąc razy większej, czyli mikrometrowej.

To podejście przypomina budowanie domu z cegieł. Małe elementy łączone są w duże struktury. Atomy łączone są w cząsteczki. Na przykład takie, które w przyrodzie nie występują. Cząsteczki białek, które mogą być lekarstwem na wciąż niezwyciężone choroby, czy cząsteczki o takich właściwościach, które można będzie wykorzystać w elektronice. Drugie podejście jest dokładnie odwrotne, czyli „top down” – z góry do dołu. To jak wytwarzanie ziarenek piasku podczas mielenia większych kawałków skały albo jeszcze lepsza analogia, mielenie całych ziaren kawy na kawowy proszek. Po co? Im drobniej zmielone, tym lepiej gorąca woda wyciągnie z nich kofeinę. Z całych ziaren kofeiny nie da się wyciągnąć. Wracając do fizyki czy technologii: to drugie podejście polega na rozdrabnianiu materii i schodzeniu do niższych jej form wymiarowych, do skali nano włącznie.

Podróże do wnętrza

O nanotechnologii można bardzo dużo pisać. Choć to nowy kierunek, rozwija się bardzo dynamicznie. Trudno znaleźć dziedzinę nauki, w której nie byłaby obecna. Jednym z bardziej pasjonujących kierunków jej rozwoju jest nanomedycyna. Ta rozwija się w dwóch kierunkach. Jeden to próby (coraz częściej udane) stworzenia nanocząsteczek, które będą nośnikami leków, a nawet genów. Wnikając do organizmu, będą uwalniać przenoszony materiał dokładnie w tym miejscu i dokładnie o tym czasie, jaki jest optymalny. Drugi kierunek to nanosensory i nanoroboty. Już kilka lat temu stworzono nanodetektor komórek rakowych. Do jego działania wystarczy – dosłownie – jedna kropla krwi. Krew przesączana jest przez tysiące mikroskopijnych kanalików krzemowych, w których znajdują się przeciwciała wyłapujące komórki nowotworowe. Analiza przeciwciał pozwala stwierdzić, czy w krwi znajdują się komórki rakowe, a jeżeli tak, to ile i jakie. Taka informacja nie może być pozyskana w trakcie standardowej analizy, bo komórek nowotworowych w krwi jest bardzo mało. Nanomedycyna jednak najbardziej kojarzy się z nanorobotami. Wpuszczone do ludzkiego krwiobiegu będą nie tylko monitorowały funkcje życiowe, ale także reagowały na stany kryzysowe organizmu.

Te skojarzenia – przynajmniej na razie – są nierealne. Na razie. W listopadowym numerze czasopisma naukowego „Nature Communications” opisano urządzenie wielkości kawałka główki od szpilki. Zbudowane jest jak muszla małża, z dwóch połówek połączonych w jednym punkcie (to połączenie przypomina zawias w drzwiach). Niewielkie elektromagnesy w obydwu częściach urządzenia mogą powodować otwieranie i zamykanie „muszli”. Ta w efekcie takiego ruchu może się poruszać. Prędkość tego ruchu jest oczywiście zależna od przekroju naczynia i prędkości krwi (oraz kierunku), ale już dzisiaj mówi się, że urządzenie, którego wielkość nie przekracza 0,3 mm, jest jednym z tych, które w przyszłości będą podróżowały we wnętrzu naszego ciała.

 

Tekst ukazał się w tygodniku Gość Niedzielny

Brak komentarzy do Nano-lekarz

Ten robot ma żywy mózg

Komórki szczurzego mózgu nauczyły się kontrolować pracę robota. – Dzięki temu może zrozumiemy jak wyleczyć chorobę Alzheimera – mówią naukowcy. Może i tak, ale mnie przechodzą ciarki po plecach jak myślę o tym eksperymencie.

Ludzki mózg, stanowi dla badaczy większą tajemnicę niż wszechświat. Nie wiemy jak w detalach przebiega proces uczenia się czy zapamiętywania. Nie wiemy dlaczego tkanka nerwowa się nie regeneruje. I co szczególnie ważne nie wiemy jak leczyć wiele chorób związanych z naszą pamięcią.

Mózg w mechanicznym ciele

Badacze z brytyjskiego University of Reading wybudowali robota, którego głównym zajęciem jest… jeżdżenie od ściany do ściany. Jest mały, wolny i prawie nic nie potrafi. Zamiast kamery ma zwykły sonar, a duże koła poruszają się mało precyzyjnie. Jest jednak szczególny. Jego mózgiem nie jest elektroniczny procesor, tylko żywe komórki nerwowe szczura. Ten robot ma żywy mózg ! To on najpierw się uczy, a po chwili sam decyduje gdzie robot ma jechać.

Kevin-foto Mózgiem robota jest 300 tyś komórek pobranych z kory mózgowej szczura. Naukowcy chemicznie pozbawili neurony połączeń międzykomórkowych (zabili ich pamięć ?) a następnie umieścili w specjalnym, wypełnionym pożywką i antybiotykami pojemniku. Stworzyli im warunki w których mogły samodzielnie żyć. W dno tego pojemnika zatopionych było 60 przewodów elektrycznych a ich zakończenia, elektrody, były wyprowadzone do środka pojemnika. To właśnie tymi elektrodami wędrowały impulsy elektryczne, np. wtedy gry robot zderzył się ze ścianą. Tymi samymi kanałami wędrowała informacja z sonarów. Gdy urządzenie zbliżało się do ściany, na elektrodach pojawiało się odpowiednie napięcie elektryczne. Gdy robot zderzał się ze ścianą, do komórek wędrował inny sygnał elektryczny a odpowiedni system nakazywał kręcić się kołom robota w innym kierunku.

Komórki uczą się

Po kilku próbach okazało się, że żywe komórki coraz rzadziej pozwalałby zderzać się ze ścianą. Nauczyły się, że sygnał „przed nami ściana” oznacza, że za chwilę dojdzie do kolizji. Żeby do tego nie dopuścić, tymi samymi elektrodami sygnał elektryczny wędrował w drugim kierunku. Szczurzy mózg w ciele robota nakazywał kołom skręt i do zderzenia ze ścianą nie dochodziło. Żywe komórki zaczęły kontrolować maszynę.

Gordons-neuronsPo jakimś czasie robot unikał nawet 90 proc. wszystkich kolizji. Ale nie o kontrolę, albo nie tylko o kontrolę chodzi. Naukowcom szczególnie zależy na tym, żeby na gorącym uczynku złapać proces uczenia się. Komórki nerwowe w specjalnym odżywczym odczynniku zaczęły rekonstruować połączenia pomiędzy sobą. Zaczęły do siebie wysyłać sygnały elektryczne. Naukowcy przeprowadzający to doświadczenie mówili, że wyglądało to trochę tak jak gdyby pojedyncze neurony szukały siebie nawzajem, a równocześnie komunikowały gdzie same się znajdują. Tak jak gdyby same były żywym organizmem. – Wydaje się, że komórki mózgu mogą ponownie się organizować w każdych warunkach, które nie są dla nich zabójcze – powiedział Steve Potter z Georgia Institute of Technology w Atlancie, USA. Każdy sygnał elektryczny jaki pochodził od komórek nerwowych, przez elektrody dostawał się do komputera i tam był rejestrowany. Szczurzy mózg, choć kierował robotem, nie przestawał być żywą tkanką. Potrzebował energii (stąd żel odżywczy w pojemniku z komórkami) oraz antybakteryjnej tarczy (stąd w żelu antybiotyki). To jednak nie wystarcza. Żywe komórki muszą mieć zapewnioną odpowiednią temperaturę. Dlatego też w czasie dłuższych prób szczurze komórki mózgowe wcale nie były fizycznie w robocie. Krążek z elektrodami i komórkami był podłączony do urządzenia, które sygnały elektryczne „tłumaczyło” na fale radiowe. Innymi słowy mózg robota był w inkubatorze w którym utrzymywana była optymalna temperatura, a robot sygnały o tym jak ma się poruszać dostawał za pośrednictwem fal radiowych (wykorzystano technologię Bluetooth). Odpowiednie urządzenie pozwalało na dwustronny kontakt pomiędzy jeżdżącym robotem i „jego” mózgiem w inkubatorze.

Czy to komuś pomoże ?

Mózg poza urządzeniem…brzmi abstrakcyjnie. Choć z drugiej strony dzisiejsze komputery także często korzystają z mocy obliczeniowej, która znajduje się poza ich „ciałem”. Coraz częściej to w chmurze trzymamy dane a nawet całe programy.

– To co w tych badaniach najciekawsze, to znalezienie odpowiedzi na pytanie jak aktywność pojedynczych neuronów przekłada się na złożone zachowania całych organizmów – powiedział dr Ben Whalley, jeden z naukowców biorących udział w badaniach. – Ten eksperyment pozwala na wgląd w ten proces na poziomie pojedynczych komórek. To pozwoli nam na sformułowanie odpowiedzi na pytania fundamentalne – dodaje. Naukowcom udało się nauczyć żywe komórki kontroli nad prostym robotem. Ale to nie oznacza końca eksperymentu. Kolejnym krokiem będzie uszkodzenie połączeń pomiędzy wyuczonymi już komórkami mózgu w taki sposób w jaki upośledzone są połączenia u osób cierpiących na chorobę Alzheimera czy Parkinsona. Jak teraz będzie wyglądał proces uczenia się ? Czy robot z mózgiem który „cierpi” na chorobę Alzheimera będzie także się uczył ? Czy powstaną nowe połączenia ? Jeżeli nie, co zrobić żeby powstawały ?

Choć badacze zaangażowani w projekt uważają, że ich praca będzie krokiem milowym w rozumieniu wielu procesów które dzieją się w mózgu, nie brakuje i takich, którzy studzą emocje. – To zaledwie model. To nie badania mózgu, tylko jego małego wycinka w sztucznym otoczeniu. Oczywiście wyniki badań mogą nas wiele nauczyć, ale mogą też zmylić nas na przyszłość. Przecież nie wiemy czy to co zaobserwujemy w laboratorium wystąpiłoby w rzeczywistości – powiedział Steve Potter z Georgia Institute of Technology. – Trzeba być bardzo ostrożnym w wyciąganiu daleko idących wniosków – dodaje. Autorzy badań zgadzają się z tym podejściem, ale podkreślają, że… – nawet jeżeli przeprowadzane przez nas eksperymenty tylko w 1 proc. pogłębią naszą wiedzę o chorobach takich jak Alzheimer, będzie to świadczyło o tym, że warto je było przeprowadzić – powiedział profesor Kevin Warwick z School of Systems Engineering. Co do tego nie ma jednak chyba żadnej wątpliwości.

 

Tekst ukazał się w Tygodniku Gość Niedzielny.

1 komentarz do Ten robot ma żywy mózg

UWAGA KONKURS!!!

Pytanie jest w zasadzie proste. Popatrzcie na to zdjęcie i zgadnijcie o czym będzie kolejny filmik. Odpowiedzi wpisujcie na FBkowym profilu Nauka. To lubię. Pierwsza osoba, która zgadnie, dostanie ode mnie bożonarodzeniowy prezent, którym jest – do wyboru – któraś z moich książek: „Kosmos” albo „Nauka. To lubię. Od ziarnka piasku do gwiazd”. Książki oczywiście z dedykacją dla wskazanej osoby.

Rozstrzygnięcie konkursu !!!

Zanim ogłoszę wyniki, chcę napisać, że to pierwszy, ale nie ostatni konkurs jaki tutaj ogłoszę. Zachęcam Was do włączenia funkcji „obserwowania” na facebookowym profilu Nauka. To lubię, a wtedy nic Was już nie ominie.

*********

Nagrodą w konkursie była jedna z dwóch moich książek. Z dedykacją oczywiście.
W sumie padło ponad 50 odpowiedzi, choć niektóre były tak rozbudowane, że właściwie powinno się je uznać za wielokrotne.

Prawidłowa padła jedna odpowiedź, ale o tym na końcu. Przede wszystkim BARDZO serdecznie Wam dziękuję za wzięciu udziału w zabawie. Szczególnie chciałem podziękować: Pawłowi Grychowi, Tadeuszowi Marek i Maciejowi Mrowcowi. Tych trzech Panów próbowało powiązać temat przewijania niemowląt (puder) z magnetyzmem. Myślę, że to b.ciekawy kierunek badań. W wolnej chwili zajmę się tematem.

Mirosławowi Dworniczkowi dziękuję za totalnie abstrakcyjne (jak dla mnie) skojarzenie, że „talk” to po angielsku rozmowa. A więc tematem filmiku będzie rozmowa o magnetyzmie. 🙂

And the winner is… Beata Pawłowska za odpowiedź: „o ludziach-magnesach”. Pani Beato, GRATULUJĘ, będę się z Panią kontaktował na priv.

Jeszcze raz wszystkim dziękuję za wzięcie udziału w konkursie.

 

 

Od kilkunastu miesięcy, średnio raz w tygodniu, dodaję nowy filmik na kanał Nauka. To lubię. Przy okazji BARDZO zachęcam do subskrypcji tego kanału. Często, zanim wrzucę nowy filmik, na FBkowy profil kanału wrzucam zdjęcie albo zagadkę związaną z tematem filmiku. Zwykle temat zgadujecie od razu, ale tym razem może być trochę trudniej.

DSC_0168

Przyglądnijcie się dokładnie temu zdjęciu i powiedzcie o czym będzie najnowszy filmik. Żeby nie było wątpliwości. Na zdjęciu jest kompas i dziecięcy puder (talk). Propozycje wpisujcie na FBkowym profilu.

Pierwsza osoba, która udzieli poprawnej odpowiedzi (jeżeli nie będzie poprawnych odpowiedzi nagrodę dostanie najbardziej oryginalna) dostanie w prezencie – do wyboru – którąś z moich dwóch książek „Kosmos” lub „Nauka. To lubię. Od ziarnka piasku do gwiazd”. Książkę zadedykuję wskazanej osobie i prześlę.

okładka - Kosmos   okładka - piasek

Rozwiązanie konkursu jutro (w środę) przed południem. Wtedy też „uwolnię” filmik.

Powodzenia 🙂

 

 

1 komentarz do UWAGA KONKURS!!!

Bombardowanie z kosmosu

Małe asteroidy o średnicy około 1 metra wpadają w naszą atmosferę zadziwiająco często. NASA właśnie opublikowała raport dotyczący „bombardowania Ziemi” w latach 1994 – 2013.

Jednometrowe obiekty wpadają w atmosferę średnio co dwa tygodnie! Mniejszych obiektów nawet nie sposób policzyć. Miejsca w których dochodzi do kolizji są rozrzucone mniej więcej równomiernie po całej planecie. Z trwających 20 lat badań wynika, że w tym czasie zarejestrowano przynajmniej 556 przypadków bolidów, czyli dużych obiektów kosmicznych w atmosferze. Ich energia wynosi czasami setki miliardów dżuli. Jednym z nielicznych – w ostatnich latach – takich przypadków o którym mamy świadomość był meteor czelabiński, który w połowie lutego 2013 roku wywołał panikę nie tylko w Czelabińsku na Syberii. Jego energia wynosiła mniej więcej tyle ile energia pół miliona ton trotylu.

Meteor czelabiński zanim wszedł w ziemską atmosferę miał wielkość około 20 metrów. Rosnąca gęstość gazowej powłoczki Ziemi spowodowała jednak, że obiekt rozpadł się na mniejsze. To samo dzieje się z większością obiektów o średnicy około metra. Choć ich resztki nie „spalają” się w atmosferze całkowicie, zwykle nie są groźne dla ludzi. A wracając do wydarzenia z Czelabińska. Nawet eksperci uważali wtedy, że częstotliwość takich zdarzeń jest niewielka. Tymczasem okazuje się, że jest inaczej. Z danych NASA wynika, że obiekt podobny do czelabińskiego wchodzi w naszą atmosferę co kilka (a nie kilka tysięcy) lat. Obiekt wielkości boiska sportowego wchodzi w atmosferę średnio raz na 5000 lat. Obiekty wielkości samochodu osobowego „nawiedzają nas” średnio raz w roku. Obiekty mniejsze, o średnicy rzędu jednego metra wpadają średnio co dwa tygodnie. Te mniejsze, jeszcze częściej. Na powierzchnię Ziemi każdej doby spada ponad 100 ton kosmicznej materii. To, że mniejsze obiekty nie docierają do powierzchni planety to jasne. Ziemska atmosfera działa jak mechanizm hamujący. Ogromna energia kosmicznego obiektu jest „wytracana” ale nie znika, tylko zamieniana jest na ciepło, na ogrzewanie obiektu, a ten albo rozpada się na drobny maczek, albo po prostu topi się i wyparowuje. To dotyczy także obiektów dużych, tych metrowych. Przeważająca większość z nich rozpada się w górnych warstwach atmosfery pod wpływem dużej zmiany ciśnienia przy wchodzeniu atmosfery. Mniejsze obiekty albo topią się, albo spadają jako niegroźnie małe. Poza tym, 2/3 powierzchni planety pokryta jest oceanami, a całkiem spora pustyniami i lasami, w skrócie tereny niezamieszkałe stanowią dużą większość  obszarów Ziemi. Jakiekolwiek uderzenie pozostaje tam niezauważone.

Obiekty wielkości ziarenka piasku, o ile wejdą w ziemską atmosferę w nocy, są łatwo zauważalne nawet gołym okiem. Większe to tzw. bolidy, świecą jaśniej niż Wenus. Co ciekawe, to świecenie nie wynika z tarcia obiektu kosmicznego o cząsteczki gazów w atmosferze, tylko z silnego sprężenia powietrza przed czołem bolidu. Ogromny wzrost ciśnienia powoduje podniesienie temperatury nie tylko obiektu, ale także gazu. I to świecący gaz, a nie meteor jest tym co widać w nocy. Bolid czy meteor nagrzewa się do temperatury kilku tysięcy stopni Celsjusza. Szybkiej zmianie ciśnienia często towarzyszy także grom dźwiękowy.

NASA od wielu już lat obserwuje obiekty, które potencjalnie mogą zagrozić Ziemi (to tzw. NEO – Near Earth Object). Jako takie definiuje się te, które znajdują się w odległości mniejszej niż 50 milionów kilometrów od orbity Ziemi.Dla porównania średnia odległość Ziemia – Słońce wynosi około 150 mln kilometrów, a średnia odległość Ziemia Księżyc około 350 tys. kilometrów.

W obszarze szczególnego zainteresowania obserwatorów z NASA, tylko obiektów o średnicy 1km lub większej znajduje się około tysiąca. Ponad 950 z nich jest przez agencję (w ramach programu NEO) obserwowana. W najbliższym sąsiedztwie Ziemi ilość obiektów, których średnica wynosi 150 metrów i więcej, szacuje się na około 25 tysięcy, z czego ponad 22 tys. jest pod obserwacją.

 

Lista potencjalnie groźnych obiektów:

http://neo.jpl.nasa.gov/risks/

Więcej informacji:

http://science.nasa.gov/planetary-science/near-earth-objects/

 

 

Brak komentarzy do Bombardowanie z kosmosu

Tajemnica zamarzniętego człowieka

Żył ponad 5300 lat temu, a wiemy o nim więcej… niż o niejednym sąsiedzie. Kim był, gdzie się urodził, co jadał i czym się zajmował Oetzi, człowiek, którego zwłoki znaleziono ponad 20 lat temu?

Może był szpiegiem, który chciał niepostrzeżenie przedostać się z terytorium dzisiejszych Włoch do Austrii. Może turystą, albo pasterzem czy myśliwym, który zagubił drogę. W końcu mógł przechodzić przez góry w interesach. Poza tym o człowieku z Alp wiadomo całkiem sporo. Gdzie i co jadł w czasie swojego ostatniego posiłku, jak wyglądał przed śmiercią i jakie miał przy sobie przedmioty. Wiadomo ile miał lat, skąd pochodził i co miał na sobie w chwili śmierci. Co prawda mordercy nie znaleziono do dzisiaj, ale wiele wskazuje na to, że był nim ktoś, kogo denat znał. Acha, zapomniałem dodać. Zwłoki z Alp mają ponad 5 300 lat!

W 1991 roku grupa niemieckich alpinistów zauważyła ciało leżące w kałuży topniejącego lodowca. W pierwszym odruchu turyści pomyśleli, że znaleźli współczesnego alpinistę, który uległ wypadkowi w czasie wspinaczki. Szybko okazało się jednak, że to nieprawda, bo przy trupie znaleziono łuk, strzały i miedziany toporek. Nieboszczyka znaleziono w alpejskiej Dolinie Oetz, na granicy Austrii i Włoch, stąd postanowiono go nazwać Oetzi. Miał na sobie bardzo dobrze zachowane skórzane spodnie i zrobione z traw nakrycie głowy. Z badań wynika, że gdy umierał miał 46 lat i mierzył około 160 cm wzrostu. Już w czasie pierwszych oględzin zwłok naukowcy zauważyli, że Oetzi miał reumatyzm i cierpiał na infekcję jelit pasożytem – włosogłówką. A to dopiero był sam początek odkryć.

Wiemy gdzie mieszkał

Oetzi urodził się i mieszkał na terenie dzisiejszych Włoch, całkiem niedaleko miejsca w którym znaleziono jego zwłoki. Skąd o tym wiadomo ? Z badań izotopowych, które przeprowadzili naukowcy z Włoch, USA i Szwajcarii. Niektóre atomy z których zbudowane są kości czy zęby, występują w przyrodzie w różnych odmianach. To tzw. izotopy. Te odmiany, w zależności od części świata pojawiają się w różnych proporcjach. W ten sposób, można określić skąd pochodziło jedzenie czy woda, którą spożywał Oetzi. I tak z analizy szkliwa zębów wynika, że pomiędzy 3 i 5 rokiem życia (wtedy formuje się szkliwo) Alpejczyk mieszkał od kilkunastu do kilkudziesięciu kilometrów na południe od miejsca w którym znaleziono jego zamarznięte ciało. Tylko tam występuje charakterystyczna proporcja pomiędzy izotopami tlenu i argonu. Z kolei analiza kości pozwala zrekonstruować jego dorosłe życie. Naukowcy są pewni, że Oetzi często zmieniał miejsce zamieszkania. Być może jego plemię było wędrowne, albo on sam był obieżyświatem. Mógł też być handlowcem albo szpiegiem. Nie ulega jednak wątpliwości, że śniadanie w dniu swojej śmierci jadł w pobliżu miejsca w którym przebywał jako dziecko. To wynika z analizy treści jelitowej. Może przed długą wędrówką, albo niebezpieczną misją odwiedził rodzinne strony ? Na pewno nie spotkał tam rodziców, bo Oetzi był bardzo wiekowy jak na swoje czasy. Jego rodzice na pewno już dawno nie żyli. Wydaje się, że Alpejczyk zajmował się – przynajmniej przez część swojego życia – wytapianiem miedzi. O tym świadczyć ma bardzo wysoki poziom izotopów miedzi i arszeniku w jego włosach.

Wiemy co jadł

Tak więc dzień w którym zginął, Oetzi rozpoczął od wystawnego, jak na swoje czasy, śniadania. Z analiz przeprowadzonych przez naukowców z Włoch i Australii wynika, że zjadł ziarna zboża (neolityczne płatki śniadaniowe ?), trochę warzyw i mięso koziorożca alpejskiego (gatunek ten już wyginął). Następnie przechodząc przez iglasty las najpewniej upolował jelenia. Co do drogi przez iglasty las naukowcy mają pewność, bo wskazują na to badania genetyczne resztek roślin jakie zjadł na drugie śniadanie. Najpewniej będąc już w drodze, podjadał to co znalazł w lesie. Skąd badacze wiedzą, że Oetzi upolował jelenia ? To spekulacje, ale faktem jest że mocno prawdopodobne. Mięso jelenia był bowiem głównym daniem na obiad Alpejczyka. Poza tym zjadł jeszcze trochę ziaren zbóż. Wędrówka i śmierć miała miejsce najpewniej w maju, bo na to wskazuje obecność w drogach oddechowych i systemie trawiennym pyłków chmielograbu wirginijskiego. To drzewo z rodziny brzozowatych kwitnie w Alpach pomiędzy kwietniem a czerwcem.

Wiemy jak zginął

Nie wiadomo czy jeszcze w lesie, czy po tym gdy już z niego wyszedł, Alpejczyka ktoś zaatakował. Nie wiadomo czy napastnik był jeden czy było ich kilku. Najpewniej wywiązała się walka w ręcz, bo na ciele Oetzi badacze znaleźli rany szarpane. Zaledwie kilka godzin przed śmiercią, ktoś zadał mu głęboką ranę prawego nadgarstka. Nic nie wskazuje na to, że była śmiertelna, ale na pewno była bardzo bolesna. Co do dalszego biegu wypadków nie ma całkowitej pewności, ale najpewniej Oetzi przegonił przeciwnika lub przeciwników. Z poważnie zranioną ręką Alpejczyk ruszył w dalszą drogę, ale przegrani mu nie odpuścili. Być może uciekli w kierunku doliny i zaczaili się poniżej. Zaatakowali po jakimś czasie ponownie. Tym razem postanowili jednak nie wdawać się w bójkę, tylko strzelili do Alpejczyka z łuku. Badacze mają pewność, że ten nie mógł wiedzieć o ataku, bo napastnicy strzelili mu w plecy.  Świadczą o tym dokładne analizy naukowców ze Szwajcarii i Włoch. Użyli oni specjalnie skonstruowanego tomografu komputerowego, który pozwolił skanować ciało Oetzi, bez rozmrażania go. Dodatkowo obrazy w ten sposób uzyskane nałożyli na zrobione inną techniką zdjęcia w promieniach X. Nie ma wątpliwości, że strzała wbiła się poniżej obojczyka i rozerwała tętnicę szyjną. Krwotok musiał być bardzo gwałtowny. Uczeni podkreślają, że Alpejczyk mimo trudnego do opisania bólu próbował usunąć wbitą w plecy strzałę. Prawdopodobnie tym tylko przyspieszył swoją śmierć. Rana którą zadali mu przeciwnicy była śmiertelna i nawet gdyby znalazł się w pobliżu ktoś gotowy do pomocy, nic nie mógłby zrobić. Zaangażowani w badania lekarze ocenili, że nawet dzisiaj jego szanse przeżycia, do czasu dowiezienia do szpitala i przejścia operacji, nie przekraczałaby 40%.

Wiemy kto zaatakował

Oetzi w wyniku wstrząsu najpewniej doznał rozległego zawału serca. Zmarł krótko potem z powodu wykrwawienia. Słabnąc spadł w dół w miejsce w którym go znaleziono. To zgadza się z innymi analizami, które mówią, że śmiertelna strzała została wystrzelona od dołu. Łucznik albo klęczał, albo – co bardziej prawdopodobne – znajdował się na zboczu wzniesienia niżej niż jego ofiara. Nie mógł być jednak daleko, bo strzała poruszała się z dużą prędkością gdy weszła w ciało Alpejczyka. Badacze zauważyli ogromny zakrzep jaki powstał w wyniku wewnętrznego krwotoku. Kim był lub byli przeciwnicy ? Naukowcy są przekonani, że Oetzi znał swoich oprawców, bo na to wskazuje znajdujący się pod jego obojczykiem 2 cm kamienny grot strzały, która go zabiła. Wg profesora Annaluisa Pedrotti z Uniwersytetu w Trento we Włoszech kształt grota wskazuje na dokładne miejsce jego produkcji. A więc najpewniej i miejsca w którym żył łucznik. – Tego typu groty był robione tylko w południowej części Alp, właśnie tam gdzie mieszkał Oetzi. Groty pochodzące z północnej części masywu, mają bardziej płaskie ostrza – powiedział prof. Pedrotti.

Dzięki badaniom udało się dowiedzieć całkiem sporo na temat człowieka, który żył i który umarł ponad 3300 lat przed naszą erą. Każde nowe odkrycie oznacza poznanie kolejnego fragmentu życia Oetziego, a przez to czasów w których żył. Wg. panującego jeszcze niedawno przekonania, Oetzi nie miał prawa mieć metalowego toporka. Badacze myśleli, że metalowe narzędzie pojawiły się dopiero tysiąc lat później. Takich niespodzianek Oetzi dostarczył badaczom więcej. I jeszcze pewnie niejednej dostarczy, bo nikt nawet nie myśli by przestać badać najstarszego znanego alpinistę. W końcu ktoś może pozna odpowiedź na pytanie, co on robił tak wysoko w górach. Dolina Oetz leży na wysokości 3 tyś m n.p.m.

 

Tekst ukazał się w tygodniku Gość Niedzielny

 

 

4 komentarze do Tajemnica zamarzniętego człowieka

Częste mycie skraca życie

Choć brzmi to nieprawdopodobnie, ale naukowe dowody na to, że brudne ręce mają związek z infekcjami pojawiły się dopiero w połowie XIX wieku. Brud nie jest zdrowy, ale zbyt częste mycie także.

Myjąc skórę mydłem, nie usuniemy z niej bakterii. 15 minutowe szorowanie dłoni obniża ich ilość o 10 razy. Czyli na centymetrze kwadratowym zamiast kilku milionów, będzie kilkaset tysięcy. Pozbycie się bakterii które zamieszkują bruzdy na naszych dłoniach jest praktycznie niemożliwe. W szpitalach lekarze używają specjalnych żelów bakteriobójczych. W dniu codziennym, nie ma potrzeby pozbywać się bakterii ze skóry.

Jak nie bakterie to grzyby

Część bakterii to oczywiście nasi wrogowie, ale nie wszystkie. Tymczasem większość, o ile nie wszystkie metody eliminacji drobnoustrojów nie działa selektywnie, tylko globalnie. Takim postępowaniem, taką strategią, mocno sobie szkodzimy. Mikroby są częścią naszego świata. Bez nich zginiemy.

Silne środki czystości są potrzebne, ale w umiarze. Łazienka nie musi być regularnie czyszczona chlorem. Tam nie musi być jak na sali chirurgicznej.

Na każdym centymetrze kwadratowym ludzkiej skóry może być do kilku milionów bakterii. Proszę się nie bać! To sytuacja całkowicie normalna. Tworzymy z naszymi bakteriami układ niemal idealny. Symbiozę. My bakteriom dajemy dom. Żyją na naszej skórze, żywią się na naszej skórze i… bronią do niej dostępu. Głównie przed innymi bakteriami. Gdy zbyt częstym myciem, szczególnie wtedy, gdy stosujemy nie zwykłe mydło, tylko środki dezynfekujące, pozbawimy się tej naturalnej ochrony, może się to skończyć ostrym zakażeniem. Z sepsą włącznie. Hasło „częste mycie skraca życie” nie jest wymysłem. Jest szczerą prawdą. Problem dotyczy nie tylko zjadliwych bakterii, które mają do zbyt czystej skóry swobodny dostęp, ale także grzybicy. Mechanizm jest prosty i znany od przynajmniej kilkudziesięciu lat. Nasza skóra, a konkretnie gruczoły łojowe w niej „zainstalowane” uwalniają lipidy (tłuszcze), którymi żywią się żyjące na skórze bakterie. Te bakterie z kolei uwalniają kwasy tłuszczowe, które mają silne właściwości przeciwgrzybicze. Nie ma bakterii, pojawia się grzybica.

Uwaga na alergie!

Zbyt sterylne warunki życia wcale nie są dla człowieka optymalne. Gdy dziecko rozwija się w świecie bez drobnoustrojów, ma dużą szansę zostać alergikiem. Ludzki układ odpornościowy w czasie setek tysięcy lat ewolucji dostosował się do ziemskich warunków życia. Każde od nich odstępstwo nie jest wskazane. Np. brak siły grawitacji powoduje zanik mięśni i kości. Zbyt wysoki poziom promieniowania powoduje wzrost zachorowalności na nowotwory.

Co z tym mają wspólnego bakterie ? Układ odpornościowy jest tak skonstruowany, że broni nas przed bakteriami, a także wirusami, grzybami i obcymi białkami. Jeżeli w naszym otoczeniu zabraknie tych czynników, zaburzymy działanie układu. Przyroda nie lubi próżni, więc organizm zaczyna reagować na substancje, które wcale nie pochodzą od drobnoustrojów. A stąd już krótka droga, by zostać alergikiem. Taki mechanizm działa zresztą nie tylko u ludzi, ale także u zwierząt. W skrajnych przypadkach układ immunologiczny szukając sobie wroga, atakuje swój własny organizm. O prawdziwości tych słów, świadczą statystyki. Alergie, astmy i grzybice szczególnie często występują w krajach wysokorozwiniętych i wśród ludzi o wysokim standardzie życia. Rzadziej mamy z nimi do czynienia w rodzinach wielodzietnych, w rodzinach gdzie są jakieś zwierzęta i tych mieszkających na wsi.

Problem dotyczy także ochrony środowiska. Korzystając z silnych trucizn (np. szorując kuchnię czy łazienkę) wybijamy bakterie, których rola w środowisku jest z naszego punktu widzenia pożyteczna. Dajemy też amunicję tym, które mutując, stają się coraz bardziej odporne.

Dziecko brudne to dziecko szczęśliwe. Ale jest jeszcze coś. dziecko brudne, to także dziecko zdrowe. Oczywiście brudne do pewnych granic.

 

 

okładka - piasek

 

 

Artykuł pochodzi z mojej książki

Nauka. To lubię. Od ziarnka piasku do gwiazd

(WAB, 2012)

3 komentarze do Częste mycie skraca życie

Przekręt na czasie

Zmiana czasu na którą godzimy się dwa razy w roku nie ma żadnego sensu. Miała sens może dwieście lat temu. Dzisiaj powoduje straty, zamieszanie i uszczerbek na zdrowiu. Danych o oszczędnościach jakie mają wynikać ze zmiany czasu nie ma. Są niepewne oszacowania, które twierdzą że zmiana czasu… powoduje finansowe straty.

Podobno na zmianę czasu z zimowego na letni wpadł autor konstytucji USA Benjamin Franklin. Gdy był ambasadorem w Paryżu zauważył, że z powodu niedostosowanej do pory dnia godziny, wszyscy śpią choć słońce było wysoko, wieczorem zaś pracują oświetlając pomieszczenia świecami. Franklin był nie tylko politykiem i dyplomatą, ale także naukowcem i wynalazcą. Choć nie do końca wiadomo jak, obliczył, że gdyby przesuwać czas na wiosnę „do przodu” a jesienią „do tyłu” można by w samym tylko Paryżu zaoszczędzić 30 mln kilogramów wosku rocznie. Wosku z którego robiono świecie. Pomysł Franklina był jak najbardziej – na tamte czasy – logiczny. Ludzie używali świec, bo funkcjonowali, pracowali, bawili się czy uczyli po zachodzie słońca. Gdyby więc przesunąć godziny wstawania, a co się z tym wiąże także zasypiania, świece nie byłyby w takich ilościach potrzebne.

Raz jest, a raz go nie ma

Pomysł Franklina – po latach – został podchwycony. Pierwsi którzy go zrealizowali byli Niemcy. To były trudne czasy, I Wojna Światowa, kryzys i braki w energii, która była potrzebna do produkcji broni i amunicji. W 1916 roku po raz pierwszy w Niemczech przesunięto czas. Obywatele ogarniętego wojną kraju mieli wcześniej chodzić spać, po to by nie oświetlać swoich mieszkań po zmroku. Chwile później zmianę czasu wprowadziły inne kraje europejskie. Argumenty o oszczędnościach nie przekonały wszystkich. Mówiono o zamieszaniu w rozkładach jazdy i o tym, ze jest całkiem spora grupa zawodów które wykonywać trzeba niezależnie od umownie ustalonej godziny. Tarcia pomiędzy przeciwnikami i zwolennikami zmiany czasu były tak duże, ze w wielu krajach czasowo rezygnowano z regulacji zegarków, po to by po kilku latach do pomysłu wrócić. Tak było także w Polsce. U nas po raz pierwszy przestawiono czas w okresie międzywojennym. Później ze sprawy zrezygnowano. Czas zimowy i czas letni przywrócono pod koniec lat 40tych, a później znowu z niego zrezygnowano (na prawie 10 lat). W 1957 roku zmianę czasu wprowadzono, ale w 1965 roku znowu zarzucono. Na stałe Polska jest krajem „dwuczasowym” od 1976 roku.

Danych o oszczędnościach jakie mają wynikać ze zmiany czasu, praktycznie nie ma. Są niepewne oszacowania, które na dodatek nie są wcale jednoznaczne. Oszczędność energii da się policzyć (choć nie jest to takie proste, bo w zimie i w lecie są przecież inne warunki i nie da się tych dwóch okresów bezkrytycznie przyrównać), ale jak oszacować zamieszanie związane z przestawianiem wskazówek? Pomińmy na razie to ostatnie. A pozostańmy na samych oszczędnościach energii. Jeden z nielicznych raportów na ten temat wydał ponad 30 lat temu Amerykański Departament Energii (ADE). Z jego obliczeń wynika, że zmiana czasu rzeczywiście oznacza mniejszą konsumpcję prądu. O cały 1 proc i to na dodatek tylko przez dwa miesiące, marzec i kwiecień. Później dzień jest tak długi, że dodatkowa godzina nie wpływa na mniejsze zużycie prądu. Wyniki raportu ADE podważały poważne instytucje naukowe. Uważały, ze rachunki były błędne, a o żadnych oszczędnościach nie ma mowy. Argumentowano, że każdego roku rośnie zapotrzebowanie na energię elektryczną, a tego ADE nie wziął pod uwagę w obliczeniach. To był rok 1976. Jeżeli już wtedy wyniki analiz nie były jednoznaczne, co dopiero teraz.

Oszczędności brak

Od czasów Franklina, od czasów I Wojny Światowej, ba nawet od czasów kiedy opublikowano raport Amerykańskiego Departamentu Energii, bardzo dużo się zmieniło. I tutaj dochodzimy do sedna problemu. Zmiany godziny mogą wpłynąć na oszczędność energii, ale tylko tej którą zużywa się na oświetlenie pomieszczeń. I to pomieszczeń prywatnych. Toster, czajnik bezprzewodowy czy bojler, niezależnie od godziny zużywają przecież tyle samo energii. A żelazka, pralki, komputery? Można kręcić wskazówkami do oporu, a ilość zużywanej przez te sprzęty energii i tak nie ulegnie zmianie. To samo dotyczy zresztą oświetlenia ulic (a to pobiera znacznie więcej prądu niż oświetlenie mieszkań prywatnych), które działa od zmierzchu do świtu, niezależnie od tego o której godzinie zaczyna się świt. Dzisiaj oświetlenie pomieszczeń „pożera” mniej niż 1 proc prądu który produkują elektrownie. Co więcej, choć prądu w ogóle zużywamy coraz więcej, na oświetlenie mieszkań i domów potrzebujemy go coraz mniej. Głównie dlatego, że coraz częściej korzystamy z energooszczędnych źródeł światła. A wiec co konsumuje coraz więcej? Podnosimy swój standard życia. Coraz częściej kupujemy klimatyzatory, większe lodówki, elektryczne systemy grzewcze czy sprzęty kuchenne. Nowoczesne telewizory (wielkości okna) konsumują więcej energii niż starsze ich typy. To wszystko zużywa znacznie więcej energii niż oświetlenie, a równocześnie korzystamy z tego niezależnie od wskazywanej przez zegarki godziny. Najwięcej prądu potrzebują fabryki (przemysł), transport czy kopalnie. Przestawianie wskazówek nic tutaj nie zmieni.

Rolnicy liczą straty

Jedną z najdłużej opierających się zmianie czasu grup zawodowych byli rolnicy. Dla nich ważny jest jasny poranek a nie długi wieczór. Zwierzęta nie przestawiają przecież zegarków. W USA, gdzie rząd w Waszyngtonie nie ingeruje zbyt mocno w życie obywateli, w stanach rolniczych (m.in. Arizona i Indiana) wciąż są hrabstwa, które czasu nie przestawiają. Choć powoduje to gigantyczne zamieszanie, wola obywateli jest tam świętością. W 2006 roku kilka hrabstw w Indianie zdecydowało się jednak dostosować. Dla naukowców to była idealna okazja by sprawdzić jak to z tymi oszczędnościami energii elektrycznej jest. Obszar na którym zdecydowano się po raz pierwszy zmienić czas na letni nie był duży, więc badacze z Uniwersytetu Kalifornijskiego mogli sobie pozwolić na prześledzenie rachunków za energię elektryczną każdego domostwa. I co się okazało? Nie było żadnego zysku, tylko spora strata. W sumie na stosunkowo niewielkim terenie rachunki za prąd wzrosły o prawie 9 mln dolarów. Skonsumowano do 4 proc więcej energii niż przed zmianą czasu. To nielogiczne ! Skąd się wzięły te procenty? Naukowcy zauważyli, że istotnie nieco spadła ilość energii używanej do oświetlenia domów. Równocześnie znacznie zwiększyła się ilość energii zużywanej przez klimatyzatory i ogrzewanie. To ostanie włączano, bo wcześniejszym rankiem niektórym w mieszkaniach było za zimno. Gdy wieczorem trzeba było się wcześniej kłaść spać, okazywało się, że niektóre mieszkania są zbyt nagrzane po ciepłym dniu i do komfortowego snu, trzeba je nieco schłodzić.

Dzisiaj jedynym bezdyskusyjnym zyskiem z przesuwania czasu jest bezpieczeństwo na drogach. Dzięki temu, że po południu, w czasie powrotów z pracy jest wciąż jasno, zdarza się mniej wypadków. Szczególnie tych z udziałem pieszych. Zresztą ten argument (a nie oszczędność prądu) przekonał brytyjskich parlamentarzystów na początku XX wieku do zgody na zmianę czasu. Bezpieczniej na drogach jest jednak nie przez cały okres obowiązywania czasu letniego, ale tylko w pierwszych jego miesiącach.

 

O czasie słów kilka 🙂 :

 

 

Kiedy zmieniamy?

W Unii Europejskiej (dyrektywa UE 2000/84/EC) czas zmienia się z zimowego na letni w ostatnią niedzielę marca, a letniego na zimowy w ostatnią niedzielę października. W marcu tracimy godzinę, a w październiku zyskujemy. Zmiany czasu nie dotyczą oczywiście rodziców małych dzieci. Te wstają przecież niezależnie od wskazówek zegara.

3 komentarze do Przekręt na czasie

Kryształ Wikingów działa !

W każdej legendzie jest trochę prawdy. Od lat naukowcy (i żeglarze) zastanawiali się jak Wikingom udawało się tak skutecznie nawigować w czasie rejsów po morzach północnych, po Atlantyku czy Morzu Śródziemnym. Nie mieli kompasu, mgły często zasłaniały niebo, a w miejscu w którym mieszkali, przez pół roku nie było nocy (więc nie mogli nawigować obserwując gwiazdy).
Legendom o słonecznym kamieniu, którym miał się posługiwać m. in. król Olaf nie dawano wiary. Kamień do nawigacji? Dajcie spokój.

Wikingowie byli w swoim czasie (od roku 900 do roku 1200) panami mórz i oceanów. Byli najdoskonalszymi żeglarzami na Ziemi. W średniowieczu swobodnie pływali nie tylko po morzach północy, ale także po Oceanie Atlantyckim czy po Morzu Śródziemnym. Setki lat przed Kolumbem dotarli też do Ameryki. Od lat naukowcy (i żeglarze) zastanawiali się jak Wikingom udawało się tak skutecznie nawigować w czasach, w których nie znali igły magnetycznej (kompasu). Legendom o słonecznym kamieniu, którym miał się posługiwać m. in. król Olaf nie dawano wiary. Kamień do nawigacji? Dajcie spokój.

Przepuszczą, albo nie

Zrozumienie zasad nawigacji ludów północy było tym trudniejsze, że Wikingowie – z racji miejsca w którym mieszkali, a więc Islandii czy wybrzeży dzisiejszej Szwecji i Norwegii – pływali głównie po morzach północy. To obszary o bardzo dużym zachmurzeniu, a to uniemożliwia astronawigację. Na dalekiej północy, przez pół roku nocy w ogóle nie ma. Często występują też mgły, a linia brzegowa, z powodu lodowców i gór lodowych często się zmienia. I jak w takich warunkach nawigować? Jak wyruszyć tak daleko i – co ważniejsze – wrócić do domu?

Pierwszą osobą, która legendy próbowała zweryfikować legendy był duński archeolog Thorkild Ramskou. Był rok 1967, a Ramskou twierdził, że „sólarsteinn”, czyli tzw. słoneczny kamień istniał naprawdę i był nim szpat islandzki (odmiana kalcytu), występujący powszechnie na Islandii (zajmowanej przez Wikingów). Co to takiego? Fale elekto-magnetyne, w tym światło, mogą być uporządkowane, albo chaotyczne. Źródłem światła uporządkowanego jest np. laser. Za to już zwykła żarówka daje światło, które składa się z fal nieuporządkowanych. Choć nasze oko nie wykrywa polaryzacji, nie widzi czy fala która w nie wpada jest spolaryzowana czy nie, oczy niektórych zwierząt są na to wrażliwe. Np. niektórych owadów. Ponadto w przyrodzie są materiały, które działają jak filtry, i falę „ustawioną” w jednym kierunku przepuszczają, a w innych kierunkach nie.

Jak to sobie wyobrazić?

Gdyby przywiązanym do drzewa (płotu,… czegokolwiek) sznurkiem machać w kierunku góra – dół, powstałaby na nim fala.  Można też sznurkiem machać lewo – prawo. Też mielibyśmy falę. W końcu, sznurkiem można machać raz góra – dół, a raz lewo – prawo. A teraz na drodze sznurka ustawmy w pionie dwie deseczki. Tak, żeby sznurek swobodnie przechodził pomiędzy nim. Deseczki zadziałają jak każdy materiał polaryzujący. Jeżeli są ustawione w pionie, „przepuszczą” tylko falę, która powstanie na sznurze w czasie machania góra – dół. Nie przepuszczą fali lewa – prawa. Identycznie działają niektóre kryształy gdy przepuścić przez nie światło. Przepuszczą tylko te fale, które są zgodne z polaryzacją danego kryształu. Może się też zdarzyć tak, że kryształ nie przepuści światła w ogóle. To bardzo widowiskowe, bo w zależności od położenia kryształu, raz jest on przezroczysty, a za chwilę czarny jak węgiel. Zdaniem – wracając do Wikingów – duńskiego archeologa, Thorkilda Ramskou, takich kryształów używali właśnie Wikingowie do nawigacji. Ciekawa koncepcja, ale gdy powstała, była rozważaniem czysto teoretycznym, nikt jej nie sprawdził.

To działa!

Zresztą kryształów które polaryzują światło jest więcej. Niektóre z nich, (m. in. turmaliny i kordieryty) występują w Skandynawii. Obracanie nimi pozwala stwierdzić z jakiego kierunku padają promienie słoneczne, czyli gdzie jest Słońce, nawet wtedy, gdy zasłania je chmura, albo gdy panuje gęsta mgła.

W 2005 roku naukowcy z Węgier i Szwecji (Gábor Horváth z Uniwersytetu Eötvös w Budapeszcie i Susanne Ĺkesson Lund University) wybrali się z polaryzującym kryształem w rejs lodołamaczem po Oceanie Arktycznym. Rejs trwał kilka dni, w czasie których wielokrotnie panowała pogoda uniemożliwiająca astronawigację. Badacze udowodnili, że niezależnie od pogody, dzięki kryształowi można wyznaczyć strony świata. A to wystarczy by skutecznie pływać po morzach i oceanach (trafiając zawsze tak gdzie chce się trafić). Cztery lata później w czasopiśmie Science opublikowano artykuł napisany przez uczonych z francuskiego Universite de Rennes 1, którzy skonstruowali pełny przyrząd którym mogli posługiwać się Wikingowie. Jego sercem jest właśnie kamień słoneczny czyli „sólarsteinn”. Z pomiarów (a nie szacunków!) jakich dokonali Francuzi wynika, że wyznaczona dzięki kryształom dokładność położenia Słońca może wynieść około 1 proc. Nawet wtedy, gdy Słońce znajduje się już za horyzontem (o ile nie jest jeszcze kompletnie ciemno).

Brak komentarzy do Kryształ Wikingów działa !

Uderzy czy nie?

19 października, o godzinie 20:28 czasu polskiego w pobliżu Marsa przeleci kometa C/2013 A1. Będzie tak blisko, że niewykluczona jest kolizja. Te w przeszłości się zdarzały. W lipcu 1994 roku z Jowiszem zderzyły się reszki komety Shoemaker-Levy 9. Nigdy wcześniej nie oglądaliśmy jednak zderzenia komety z Marsem.

Kometa C/2013 A1 została odkryta 3 stycznia 2013 roku przez Roberta McNaughta z Siding Spring Observatory w Australii. Jak wszystkie komety i ta narodziła się na samym skrawku Układu Słonecznego, w Obłoku Oorta. Nigdy wcześniej się stamtąd nie ruszała. W naszych okolicach pojawia się po raz pierwszy. Pierwszy i być może ostatni. Obliczenia trajektorii komety, które są prowadzone od momentu jej odkrycia, wskazują, że obiekt zbliży się do powierzchni Marsa na bardzo BARDZO małą odległość zaledwie 140 tysięcy kilometrów. Nigdy wcześniej żadna kometa nie zbliżyła się tak bardzo do którejś z planet wewnętrznych Układu Słonecznego. To tak, jak gdyby w pobliżu Ziemi przeleciał obiekt w odległości 1/3 odległości Ziemia – Księżyc!

PIA17833-CometSidingSpring-C2013A1-MarsEncounter-20140128

Okazji tak bliskiego przejścia nie można zmarnować, stąd niektóre sondy i łaziki pracujące na powierzchni albo na orbicie Marsa już są przygotowywane do wstrzymania swoich zwykłych zajęć i „zajęcia” się przelatującą kometą. I tak łazik Curiosity ma robić zdjęcia komecie z powierzchni Marsa, orbitalna sonda MAVEN zbada gazy pochodzące z jądra komety i jej warkocza oraz ich wpływ na górne warstwy marsjańskiej atmosfery. Mars Odyssey Orbiter zmierzy właściwości termiczne jądra, komy i warkocza.

Badanie komety może być (dla sond i łazików) niebezpieczne. W warkoczu komety lecą bowiem mniejsze odłamki, które mogą uszkodzić znajdujące się w ich polu rażenia urządzenia. Dlatego właśnie – o ile było to możliwe – orbity tych sond, które nie biorą udziału w badaniu komety, przeprogramowano tak, by w chwili największego zbliżenia komety z Marsem, były po drugiej stronie planety. Tak zmieniono orbitę np. sondy Mars Reconnaissance Orbiter.

Kometa, której wielkość ocenia się na od kilku do kilkudziesięciu kilometrów, w pobliżu Marsa przeleci z prędkością ponad 200 tys km/h. Czy grawitacja Marsa wystarczy by tak szybko poruszający się obiekt ściągnąć na swoją powierzchnię? To okaże się dopiero w niedzielę wieczorem. Gdyby jednak kometa uderzyła w powierzchnię Czerwonej Planety, biorąc pod uwagę jej masę, wielkość i energię, wybiłaby krater o średnicy ok. 800 km (odległość większa niż z Gdańska do Zakopanego) i głębokości 10 kilometrów (prawie tak głęboko jak największa głębia na Ziemi czyli Rów Mariański na Pacyfiku). W skrócie mówiąc, już w niedzielę, może powstać jeden z największych znanych nam kraterów w Układzie Słonecznym! O tym jakie byłyby skutki uderzenia takiej komety w Ziemię, nawet trudno mówić.

W momencie w którym kometa ewentualnie zderzy się z Marsem, planeta będzie z terenu Polski już niewidoczna. Zdąży zajść za horyzont. Krótko po zachodzie Słońca – o ile pogoda pozwoli – Marsa będzie można oglądać spoglądając w kierunku południowo – zachodnim. Może lepiej zerknąć, kolejnej nocy Mars, może już być inną planetą 🙂

Jedna z całkiem prawdopodobnych teorii mówi, że to komety z granic Układu Słonecznego przyniosły m.in. na Ziemię wodę. Być może wraz z wodą, przyniosły także zalążki życia.

Zobacz mój filmik na temat wody, komet i życia:

Brak komentarzy do Uderzy czy nie?

Jesteśmy dziećmi gwiazd

My i całe nasze otoczenie, jesteśmy zbudowani z atomów różnych pierwiastków. Te pierwiastki – w przeważającej części – powstały we wnętrzu gwiazdy, która w naszej okolicy wszechświata kiedyś świeciła. Innymi słowy, jesteśmy zbudowani z popiołów gwiazd.

Najlżejsze atomy powstały zaraz po Wielkim Wybuchu. Te cięższe, powstają cały czas we wnętrzach świecących gwiazd. Atomy najcięższe powstają w czasie śmierci dużych słońc.

Na początku był…

Wielki Wybuch. To początek wszystkiego co fizyczne. Materii, czasu i przestrzeni. Nie ma sensu rozważać gdzie miał miejsce. Zdarzył się wszędzie równocześnie. Wtedy cała przestrzeń skupiona była w jednym punkcie, nie było nic na zewnątrz, nie było nic poza. Od tego momentu zaczął się także liczyć czas. Nie ma sensu rozważanie co było przed Wielkim Wybuchem, bo nie istniało … przed. Już kilkadziesiąt sekund po Wielkim Wybuchu z kwarków powstały protony i neutrony. Po kolejnych kilku minutach te cząstki wraz z elektronami (które nie składają się z kwarków) powstał wodór, jego cięższa odmiana – deuter oraz hel, lit i beryl. Z tej grupy najcięższy jest beryl. Składa się z 4 protonów i 5 neutronów w jądrze i 4 elektronów krążących wokoło. Powstawanie najlżejszych atomów trwało nie więcej niż kilkanaście minut. W bardzo szybko rozszerzającym się wszechświecie cięższe niż beryl pierwiastki nie miały szans powstać, bo energia za bardzo zdążyła się już rozproszyć.

Przez kolejnych kilkaset milionów lat, cała materia we wszechświecie była zbudowana z zaledwie kilku pierwiastków. Gdyby tak pozostało do dzisiaj, układ okresowy pierwiastków miałby zaledwie kilka pozycji.

I wtedy pojawiły się gwiazdy

Choć na początku swojego istnienia wszechświat był jednorodny, po jakimś czasie zaczęły w nim powstawać lokalne zagęszczenia. Te grawitacyjnie przyciągały swoje otoczenie. W środku tak zagęszczającej się materii rosło ciśnienie i temperatura. Im więcej materii się ze sobą zlepiało, tym większe ciśnienie (a więc i temperatura). Temperatura rosła aż do chwili gdy przyszła gwiazda „zapalała się”. Co to oznacza ? Gwiazdy czerpią energię z reakcji w której małe atomy łączą się w większe. Żeby jednak ta reakcja zastartowała, potrzeba bardzo wysokiej temperatury. Gdy ta została osiągnięta, gwiazda zaczynała świecić. Lekkie atomy łączyły się w cięższe, co dawało ogromną ilość energii. Ta energia daje gwiazdom życie, to dzięki niej gwiazdy świecą.

I tak, czasami przez miliardy lat lekkie atomy łączą się w gwiazdach w cięższe, te cięższe w jeszcze cięższe i jeszcze cięższe. Z wodorów powstaje hel, potem węgiel. Później tworzy się tlen, krzem, neon czy magnez. Każdy cięższy pierwiastek powstaje z połączenia się (fuzji albo inaczej syntezy) tych lżejszych. Ale we wnętrzu gwiazd nie powstają wszystkie znane z układu okresowego pierwiastki. Czym większy atom, tym więcej energii potrzeba do jego stworzenia. Ostatnim jaki może powstać we wnętrzu gwiazdy jest żelazo. Ma 26 protonów i 30 neutronów w jądrze, oraz 26 elektronów krążących wokoło. Gwiezdny piec jest za mały, by wytworzyć cokolwiek cięższego. Jak zatem powstają te naprawdę wielkie pierwiastki ?

Potrzebna jest śmierć

Duża gwiazda kończy swój żywot jako kula żelaza (żelaza, bo to ono jest najcięższym pierwiastkiem jaki może powstać w gwieździe). Ale to nie koniec życia gwiazdy. Przed nami najlepsze! Następuje największy bodaj kataklizm z jaki można sobie wyobrazić. Gwiazda wybucha jako supernowa. To dzieje się w zaledwie kilka sekund. Eksplozja jest tak duża, że zewnętrzne warstwy gwiazdy wyrzucane są w przestrzeń z prędkością rzędu dziesiątków tysięcy kilometrów na sekundę. To chwila, w której gwiazda może świecić jaśniej niż cała galaktyka w której się znajduje. Z zapisków w starych kronikach wynika, że w 1054 roku na dziennym niebie, oprócz Słońca, widoczny był efekt wybuchu jednej z supernowych. Przez 23 doby ludzie widzieli dwa „słońca”! Ten efekt równocześnie obserwowali chińscy astronomowie, arabscy mędrcy i Indianie Nimbres mieszkający na terenie obecnego Meksyku. Dzisiaj po tej supernowej został rozszerzający się obłok rozżarzonego gazu tworzący Mgławicę Kraba.

Crab_NebulaW czasie samego wybuchu energia eksplozji jest tak wielka, że dochodzi do produkcji najcięższych z występujących we wszechświecie pierwiastków. Także w tym przypadku powstają one z połączenia elementów lżejszych. To właśnie w czasie tylko niezwykle krótkich chwil powstaje np. ciężki, bo składający się aż 238 neutronów i protonów uran. Ale także ołów czy złoto. To ostatnie, choć wydobywane jest na Ziemi, powstało w czasie wybuchu gwiazdy, której teraz już nie ma. Te najcięższe pierwiastki w wyniku eksplozji zostają rozrzucone wokół eksplodującej gwiazdy. Wokół w kosmicznej skali. Wspomniana Mgławica Kraba ma średnicę około 11 lat świetlnych ( 100 bilionów kilometrów) i co sekundę powiększa się o 1500 kilometrów.

Człowiek, ale także wszystko to co wokoło widzimy zbudowane jest z cegiełek – dosłownie – wypalonych we wnętrzu gwiezdnego pieca. Te cięższe budujące nas elementy nie zaistniałyby gdyby nie dochodziło do gwałtownego i widowiskowego wybuchu gwiazdy supernowej. Jesteśmy – nie tylko w przenośni – dziećmi gwiazd. Korzystamy z tego co one wytworzyły, a gdy nasza dzienna gwiazda Słońce dożyje wieku sędziwego, budujące nas cegiełki na powrót zostaną rozsypane w kosmosie. Może wykorzysta je kto inny?

4 komentarze do Jesteśmy dziećmi gwiazd

Nos – wrażliwa sprawa

Ludzi nos to złożone urządzenie. Ruch powietrza w jego wnętrzu jest bardziej skomplikowany niż układ turbulencji wokół skrzydeł odrzutowca. 50 milionów komórek receptorowych wysyła do płatów czołowych kory mózgowej impulsy elektryczne, dzięki którym czujemy ponad 10 tysięcy różnych zapachów.

Zapach, nam wąchającym, kojarzy się z czymś niematerialnym. Błąd. To nic innego jak związek chemiczny, cząsteczka, ba nawet pojedynczy pierwiastek, który działa na receptory w naszym nosie. W zasadzie są dwa warunki by „coś” stało się zapachem. Musi być lotne. Tzn. musi parować oraz musi przedostać się przez błonę śluzową, którą „opakowane” są receptory węchowe. To oczywiście nie znaczy, że wszystko co lotne ma zapach. Dobrym przykładem jest np. para wodna, która przecież nie pachnie. Nie pachnie też tlen czy azot, ale równocześnie nieprzyjemny zapach chloru zna chyba każdy kto używał środków dezynfekujących toaletę.

Gdy wraz z wdychanym powietrzem do kanałów nosowych dostają się związki zapachowe… no i właśnie tutaj zaczyna się problem. Przedostają się przez błonę śluzową i zaczepiają się o receptory. Skąd receptor wie jak ma pachnieć citroetalon (cytrusy) a jak 3-etoksy-4-hydroksybenzaldehyd (zapach wanilii) ? To nie nos ani receptory wie jak co ma pachnieć, tylko nasz mózg. Receptory przekazują informacje o tym co złapały, a nasz mózg konkretnemu sygnałowi przypisuje wrażenie zapachu. Ten sam związek może być przez różne osoby odczuwany w inny sposób, choć mózg najprawdopodobniej dostaje w obydwu przypadkach taką samą informację. Wrażenie zapachu może się zmieniać nawet u jednej osoby w zależności od pory dnia czy roku.

No dobrze, ale skąd w takim razie konkretny receptor wie jaki związek się do niego przyczepił ? Wydaje się, że mechanizm zapachu opiera się na drganiach cząsteczki zapachowej. Ta – obrazowo opisując – wchodzi do zagłębienia znajdującego się w receptorze. Tam, w jej kierunku wysyłany jest elektron, który odbijając się od poszczególnych atomów cząsteczki zapachowej (jak kule bilardowe) i wprawia ją w drgania. Te drgania są ściśle zależne od tego, jak cząsteczka wygląda, z jakich atomów się składa i jak te atomy są względem siebie rozlokowane. Nawet najmniejsza różnica w budowie dwóch cząsteczek powoduje, że drgają one w inny sposób. To drganie powoduje, że receptor wysyła do mózgu odpowiednią informację. Dla każdej cząsteczki inną, bo każda cząsteczka drga w trochę inny sposób. W przypadku niektórych związków wystarczy 8 cząsteczek, by w mózgu powstał impuls nerwowy. – No cóż, zaproponowany mechanizm wydaje się być bardzo skomplikowany – powiedział prof. John Mitchell, chemik z University of Cambridge, specjalista od substancji zapachowych. – Ale natura bywa skomplikowana – dodaje.

Jeszcze ciekawiej do problemu… nosa podeszli badacze z Imperial College London ( badania sfinansowane były przez Biotechnology and Biological Sciences Research Council). Naukowcy zadali sobie pytanie jak cząsteczki zapachowe docierają do receptorów. Jak wygląda przepływ powietrza wewnątrz kanałów nosowych. Dzięki nowoczesnej technice obrazowania doszli do wniosku, że ten ruch w czasie wdechu jest bardziej złożony niż ruch powietrza wokół skrzydeł lecącego odrzutowca. Badacze najpierw stworzyli model komputerowy, a później, z pleksi model rzeczywisty. Badano w których miejscach powietrze tworzy wiry, a w których jego przepływ jest wsteczny. Naukowcy chcieli się też dowiedzieć czy w akcie pojedynczego wdechu, cała porcja powietrza przechodzi przez nos do jamy gardła czy też jego część zostaje w jamie nosowej na dłużej. Symulowano też kaszel, kichanie i siąkanie. – Od cichego i spokojnego oddychania po gwałtowne kichanie – chcemy dokładnie wiedzieć co dzieje się w nosie – powiedział profesor Bob Schroter – lider grupy badawczej.

Wyniki badań zaskoczyły naukowców. Sama jama nosowa jest bardzo nieregularna. Pełno w niej zakamarków, fałd i niesymetrycznych załamań. Te największe to trzy małżowiny nosowe (górna, środkowa i dolna), które rozdzielają strumień powietrza na części. Sprawę dodatkowo komplikuje fakt, że wnętrze nosa pokryte jest dobrze ukrwioną błoną śluzową. Ją z kolei – w zależności od obszaru jamy nosowej – pokrywa nabłonek oddechowy, migawkowy, a w okolicy węchowej – nabłonek węchowy. No i włoski. One powodują że ruch powietrza w ich sąsiedztwie, albo wręcz pomiędzy nimi jest praktycznie niemożliwy do opisania. Powietrze wciągnięte w czasie wdechu nie przechodzi zaraz do jamy gardła, tylko jeszcze przez dłuższą chwilę wiruje w okolicach gdzie rozmieszczone są receptory węchu. Czy powodem może być to, że receptory węchu potrzebują trochę czasu na zadziałanie ? A może w przypadku bardziej złożonych zapachów nasz mózg potrzebuje danych płynących z nosa przez dłuższą chwilkę, żeby poprawnie zinterpretować zapach. Czy ma to związek z wrażeniem, że niektóre zapachy „pozostają” w nosie dłużej, nawet po wydechu powietrza ?

Brak komentarzy do Nos – wrażliwa sprawa

Skąd dwa słońca?

Nad Lublinem zaświeciły dwa słońca. Tak to przynajmniej wyglądało. Skąd się wzięły?

Wydawałoby się, że nic szczególnego. Kryształki lodu, krople wody czy pyłki zawieszone w atmosferze. Przy odrobinie szczęścia i czasami wytrwałości mogą być jednak źródłem niezapomnianych wrażeń. Podwójne słońca, pierścienie, słupy, miraże, zielone zachody i glorie. Dzisiaj kilka słów o dwóch słońcach, które pojawiły się na niebie w okolicach Lublina.

Ze wszystkich zjawisk optycznych najciekawsze, najbardziej spektakularne, ale też najtrudniejsze do zaobserwowania są te, które występują w wyższych partiach atmosfery. Tam, gdzie promienie Słońca są załamywane, rozpraszane lub odbijane nie na kropelkach wody, tylko na kryształkach lodu. Wszystkie krople wody mają podobny kształt i takie samo ułożenie w przestrzeni w czasie drogi z chmury na ziemię. W przypadku kryształów podobna sytuacja nie występuje, bo kryształ kryształowi nierówny.

W zależności od temperatury i wilgothalo - słońceności otoczenia w chmurze mogą na przykład przeważać kryształki w kształcie graniastosłupów sześciokątnych o długości znacznie przewyższającej szerokość – przypominające małe ołówki. Przy odrobinie szczęścia można wówczas zaobserwować tzw. 22-stopniowe halo. Co to takiego?  To obwódka (pierścień) wokół Słońca, o zawsze tych samych rozmiarach kątowych. Dlaczego akurat 22 stopnie? Bo dla kryształu lodu o podstawie sześciokąta właśnie 22 stopnie są najmniejszym kątem odchylenia promieni. Wystarczy jednak, że lodowe kryształki nie będą przypominały długich ołówków, a raczej płaski, sześciokątny kafelek – i możliwość zaobserwowania 22-stopniowego halo przepadnie. Wtedy jednak być może uda się zobaczyć tzw. słońce poboczne (czyli inaczej parhelium). To właśnie to zjawisko zaszło na niebie w okolicy Lublina. Płaskie kryształki lodu nie opadają na ziemię w przypadkowych orientacjach, jak miało to miejsce w przypadku kryształków-ołówków. W rezultacie halo nie powstaje wokół słońca, tylko po jednej z jego stron. Słońce i jego rozproszona nieco kopia są oddalone od siebie nadal o 22 stopnie, bo dla bryły o podstawie sześciokąta 22 stopnie to dalej minimalny kąt załamania.

Kryształki lodu są także powodem powstawania tzw. słupów świetlnych. Ale to temat na zupełnie inną notatkę. No chyba, że przyślecie zdjęcia takiego zjawiska, chętnie je wtedy opiszę.

Zdjęcia pochodzą z serwisu kontakt24.pl

 

 

Brak komentarzy do Skąd dwa słońca?

Type on the field below and hit Enter/Return to search

WP2Social Auto Publish Powered By : XYZScripts.com
Skip to content