W medycynie nuklearnej sztuczna inteligencja wkroczyła już na III i IV poziom w pięciostopniowej skali. Oznacza ona oszczędność czasu, szansę uniknięcia błędów ludzkich i skuteczniejsze terapie dla pacjentów – ocenia prof. Janusz Braziewicz z Polskiego Towarzystwa Medycyny Nuklearnej.

Wkraczająca do nowoczesnej medycyny sztuczna inteligencja budzi skrajne emocje: w środowisku medycznym jak i w społeczeństwie jedni wiążą z nią duże nadzieje, inni mają obawy i wątpliwości. Tak jest np. z medycyną nuklearną, w której wykorzystywane są nowoczesne technologie.

Prof. Janusz Braziewicz – kierownik Zakładu Medycyny Nuklearnej z Ośrodkiem PET w Świętokrzyskim Centrum Onkologii twierdzi, że zaawansowanie automatyzacji i sztucznej inteligencji w medycynie nuklearnej jest już na tyle duże, ze wkroczyło na III i IV poziom w pięciostopniowej skali.

Pierwszy poziom oznacza jedynie działania manualne, drugi – maszynowo-manualne, a trzeci – zautomatyzowane działania maszynowo-manualne. Na czwartym poziomie pojawia się automatyzacja, ale „z ludzką ręką”, piąty oznacza pełną automatyzację.

W diagnostyce obrazowej wygląda to w ten sposób, że na poziomie III (warunkowej automatyzacji) skaner czy system opisowy pod wpływem operatora dostosowuje się do narzucanych mu warunków i wykonuje zlecone zadanie.

„Obecnie obserwujemy duże przyspieszenie technologiczne i wejście na poziom IV (wysokiej automatyzacji), kiedy to system automatycznie przetwarza samodzielnie pozyskane dane i dostarcza specjaliście wstępnie przeanalizowane informacje. Ma to miejsce na przykład wówczas, kiedy system zeskanuje ułożonego na stole skanera PET/TK pacjenta i na podstawie swego rodzaju skanu topogramowego, w oparciu o analizę danych anatomicznych chorego zaproponuje wykonanie skanu PET i tomografu komputerowego z uwzględnieniem wskazania klinicznego i sylwetki pacjenta” – wyjaśnia w informacji przekazanej PAP prof. Braziewicz, członek Zarządu Polskiego Towarzystwa Medycyny Nuklearnej.

Odbywa się to z użyciem automatycznie dostosowanych parametrów akwizycji, z minimum wymaganej dawki promieniowania ze strony tomografu komputerowego. Algorytm po stronie PET ustala: szybkość przesuwu łóżka podczas płynnego skanowania różnych części ciała pacjenta, zastosowanie różnych matryc rekonstrukcyjnych, zastosowanie bramkowania oddechowego dla odpowiedniego obszaru klatki piersiowej i tułowia.

Według prof. Braziewicza bezzasadne są zatem obawy, że komputery zastąpią lekarzy. W przypadku diagnostyki obrazowej stają się one wręcz niezbędne. Powodem jest choćby lawinowy wzrost diagnostycznych badań obrazowych, w tym również z zakresu medycyny nuklearnej. Jedynie w latach 2000-2010 liczba badań tomografii komputerowej i rezonansu magnetycznego wzrosła dziesięciokrotnie. Z kolei w medycynie nuklearnej taki gwałtowny wzrost liczby badań SPECT i PET przypada na okres po 2010 r.

„W ślad za tym nie następuje niestety proporcjonalny wzrost liczby dostępnych lekarzy specjalistów, którzy mogliby je szybko i rzetelnie przeprowadzić. Brakuje także wyszkolonych techników, korzystających z zaawansowanych metod akwizycji z zastosowaniem narzędzi, jakie oferuje dany skaner. Efektem jest przeciążenie ilością pracy poszczególnych grup specjalistów i często coraz dłuższy czas oczekiwania na opisanie badań. Co istotne, presja obniża jakość pracy. Jak pokazują badania, jeśli skróci się o 50 proc. czas na interpretację badania radiologicznego, to stosunek błędów interpretacyjnych wzrośnie o niemal 17 proc.” – zaznacza prof. Janusz Braziewicz.

Sztuczna inteligencja w coraz bardziej skomplikowanej i wymagającej diagnostyce obrazowej może zatem usprawnić i wspomóc pracę lekarza. „Wdrożenia algorytmów opartych na Artificial Intelligence (AI) przynoszą oszczędność czasu i szansę na pełną standaryzację procedur, ale także na uniknięcie błędów ludzkich i skuteczniejsze, spersonalizowane terapie dla pacjentów” – twierdzi specdjalista.

Obecnie medycy nuklearni rozwijają nowy trend teranostyki, który wydaje się być przyszłością personalizowanej medycyny poprzez ścisłe połączenie diagnostyki i terapii w celu dobrania do potrzeb konkretnego pacjenta celowanego leczenia. „W obszarze sztucznej inteligencji medycy nuklearni coraz częściej wspierają proces terapii, pomagając w ocenie trafności i zasadności zaleconego leczenia już w początkowej jego fazie. Nie bez znaczenia jest w tym kontekście wykorzystywanie hybrydowych badań PET/CT na przykład w planowaniu radioterapii” – tłumaczy prof. Janusz Braziewicz.

Sztuczna inteligencja określa proces, w którym maszyna, czyli komputer, uczy się i naśladuje funkcje poznawcze specyficzne dla człowieka, aby wykonywać zadania, jakie zwyczajowo wykonywane są przez ludzki umysł: rozpoznawanie obrazów, identyfikacja różnic czy stawianie logicznych wniosków i prognozowanie. W procesie deep learning komputer już nie organizuje danych i nie wykonuje wcześniej zdefiniowanych ciągów równań, ale zbiera podstawowe parametry dotyczące tych danych i jest tak zaprogramowany, że przygotowuje się do samodzielnego uczenia się przez rozpoznawanie wzorców przy użyciu wielu kolejnych warstw przetwarzania.

„Trzeba mieć zatem świadomość, że algorytmy AI będą tak dobre, jak dane, na których były trenowane. Wyzwaniem będzie zatem zgromadzenie odpowiednio opracowanych dużych zestawów danych oraz odpowiednio wydajnych centrów obliczeniowych” – uważa przedstawiciel Polskiego Towarzystwa Medycyny Nuklearnej.

Jego zdaniem szanse zastosowania sztucznej inteligencji w medycynie to przede wszystkim digitalizacja wszystkich danych dotyczących konkretnego pacjenta, z uwzględnieniem takich aspektów, jak miejsce zamieszkania, historia chorób w rodzinie, dotychczasowe hospitalizacje, podejmowane wcześniej terapie lekowe i obecnie przyjmowane leki, styl życia, rodzaj wykonywanej pracy, kondycja psychofizyczna.

Ta ilość danych może być przetworzona przez wydajne komputery. Jeśli maszyny będą miały zaimplementowane algorytmy deep learning, jest szansa, że wesprą specjalistów w szybszej i trafniejszej diagnostyce oraz lepszej opiece farmakologicznej. Korzyści z wdrożeń sztucznej inteligencji może odnieść zatem cały system opieki zdrowotnej, w tym: świadczeniodawca, lekarz, ale przede wszystkim – sam pacjent” – uważa specjalista.

Podkreśla, że lekarze, którzy będą używać z dużą rozwagą i odpowiedzialnością systemów opartych na sztucznej inteligencji zastąpią tych, którzy ich nie będą używać. Tym bardziej, że w nowoczesnych rozwiązaniach nie mówimy już o wielkości danych generowanych przy badaniach i dalej poddawanych processingowi w gigabajtach, terabajtach czy nawet petabajtach. Bardzo szybko nadchodzi era exabajtów danych – dodaje prof. Janusz Braziewicz. (PAP)

źródło:

www.naukawpolsce.pap.pl