Nauka To Lubię

Oficjalna strona Tomasza Rożka

Tag: burza

4 teorie na temat tego, czym są pioruny kuliste

Jeżeli zwykłe pioruny są tajemnicze, to o piorunach kulistych nie wiemy prawie nic. Czym są i co wiemy na ich temat? W tym materiale przedstawiam cztery hipotezy na temat tego,…

Jeżeli zwykłe pioruny są tajemnicze, to o piorunach kulistych nie wiemy prawie nic. Czym są i co wiemy na ich temat? W tym materiale przedstawiam cztery hipotezy na temat tego, czym są pioruny kuliste.

Wesprzyj Zrzutkę Nauka. To Lubię

Co to jest piorun?

Budzą niepokój, innych fascynują, a dla innych są po prostu przedmiotem badań. Pioruny. Fascynują ludzkość od wieków, wiele wiemy na ich temat, wiele jeszcze jest do zbadania. W tym artykule opowiem nieco na temat piorunów kulistych, ale zanim o tym, tytułem uporządkowania – co to jest piorun? Piorun to nic innego niż wyładowanie elektryczne i sytuacja, w której w jednym miejscu zgromadzony ładunek przeskakuje w miejsce, gdzie jest go mniej.

Na temat tego, jak powstaje burza i co przyciąga pioruny przeczytasz w tym artykule.

Jak wygląda piorun kulisty?

Występuje bardzo rzadko i wygląda jak świecąca, szybko poruszająca się sfera. Świadkowie twierdzą, że ma on wielkość od kilku do kilkudziesięciu centymetrów i wydaje dźwięki. Najczęściej coś w rodzaju świstów. Może mieć różne kolory, od jasnych, niemal białych, przez żółte i bladoniebieskie.

Właściwie, co to jest piorun kulisty? – 4 teorie

Naukowcy nie są pewni, co to jest piorun kulisty. Pewni są jednak, że istnieje. Pioruny kuliste pojawiają się w trakcie burz i „istnieją” do kilkudziesięciu sekund.

A. Opary krzemu

Istnieje grupa naukowców (University of Cattenbury), którzy twierdzą, że świecąca kula to opary odparowanego z gleby krzemu. To odparowanie ma występować w chwili, w której piorun (ten zwykły) uderzy w glebę.

B. Kałuża

Inni (Uniwersytet w Tel Awiwie) uważają, że piorun kulisty powstaje, gdy piorun uderzy w kałużę (to udało się zrekonstruować w laboratorium).

C. Złudzenie

W końcu są tacy (Uniwersytet w Innsbrucku), który twierdzą, że pioruny kuliste to złudzenie, które powstaje w mózgu osoby, która znajduje się blisko rzeczywistego wyładowania atmosferycznego.

D. Wiązka elektronów

Jest i hipoteza, która mówi, że piorun kulisty powstaje, gdy w wyniku wyładowania tradycyjnego pojawia się relatywistyczna wiązka elektronów. Nie wchodząc w detale, może wtedy powstać „pęcherzyk plazmy”, który jest „pułapką dla promieniowania mikrofalowego”.

Jak powstaje piorun kulisty?

Jaka jest prawda?

A jak jest naprawdę? Nauka zna tylko jeden przypadek zarejestrowania pioruna kulistego przez specjalistyczną aparaturę. Doszło do tego w 2014 roku w Chinach. Na podstawie jednej obserwacji, nie da się odpowiedzieć na pytanie czym są tego rodzaju pioruny. Jeśli coś na ten temat się pojawi, natychmiast Was poinformuję.

Możliwość komentowania 4 teorie na temat tego, czym są pioruny kuliste została wyłączona

Jak powstaje burza i co przyciąga pioruny?

Pioruny to dość tajemnicze zjawiska i wciąż wielu rzeczy o nich nie wiemy. Na przykład tego, jaka jest rola w ich powstawaniu promieniowania kosmicznego? W tym artykule opowiem o tym,…

Pioruny to dość tajemnicze zjawiska i wciąż wielu rzeczy o nich nie wiemy. Na przykład tego, jaka jest rola w ich powstawaniu promieniowania kosmicznego? W tym artykule opowiem o tym, co przyciąga pioruny oraz jak powstaje burza.

Wesprzyj Zrzutkę Nauka. To Lubię

Co to jest piorun? Czy wiemy o nim wszystko?

Zwykle widzimy, jak lecą z nieba ku ziemi, ale zdarza się, że błyskają pomiędzy chmurami, a nawet z chmur ku górze w kierunku jonosfery. Burze najczęściej pojawiają się latem i na ogół częściej występują w górach. Choć może się to wydawać dziwne, nie do końca wiadomo, jak powstaje piorun. Bez wchodzenia w szczegóły generalnie wszystko wiemy, ale jak wchodzimy w szczegóły, to pojawiają się takie detale, o których nie mamy specjalnie pojęcia. A więc co to jest piorun? W skrócie mówiąc, piorun to wyładowania elektryczne. Ładunek elektryczny zgromadzony w jednym miejscu przeskakuje w inne, gdzie jest go mniej.

Ale od początku, najpierw fizyka!

Jak na fizyka cząstek przystało każdą opowieść lubię zacząć od początku, więc zaczynam. Materia wokół nas zbudowana jest z atomów. Atomy węgla, tlenu, żelaza, czegokolwiek. One wszystkie są skonstruowane według tego samego przepisu. Wokół naładowanego dodatnio jądra atomowego posklejanego z dodatnich protonów i neutralnych elektrycznie neutronów krążą elektrony o ładunku ujemnym. Atom elektrycznie jest obojętny. To znaczy, że liczba dodatnich protonów w jądrze jest taka sama jak liczba krążących wokół niego ujemnych elektronów.

Rozdzielenie ładunków i mini pioruny

W niektórych sytuacjach zdarza się jednak, że ta równowaga zostaje zaburzona. Zdarza się tak na przykład, gdy pocieramy o siebie przedmioty wykonane z różnych materiałów albo materiałów o różnej temperaturze. Każdy to obserwuje, np. przy zakładaniu swetra wykonanego z włókien syntetycznych. Gdy przeciska się przez głowę, włosy ocierają się o włókna materiału i następuje właśnie takie rozdzielenie ładunków.

W sumie liczba plusów i minusów nie zmienia się. Zmienia się za to ich położenie. Jeden materiał ma nadmiar plusów, a drugi minusów. Przy zakładaniu swetra słychać czasami takie trzaski. I to właśnie są takie niewielkie wyładowania elektryczne. Takie mini pioruny. Ładunki ujemne przeskakują z ciała z nadmiarem minusów na obiekt z nadmiarem plusów. Co to wszystko ma wspólnego z chmurą i z piorunami?

Pionowy wiatr i szybki ruch kropel

We wnętrzu chmury burzowej wieje bardzo silny wiatr. Szczególnie często, jak się wydaje, pionowo. W efekcie w chmurze panuje ciągły i bardzo szybki ruch zamarzniętych kropel wody i kryształów lodu. Jedne przemieszczają się ku górze, bardzo szybko się ochładzając, inne z kolei spadają. Zderzają się ze sobą, ocierając się o siebie, a przy okazji elektryzują. Kryształki lodu elektryzują się dodatnio. Podczas gdy zamarznięte krople wody, tzw. krupy, ujemnie. Krupy są cięższe od kryształów lodu i opadają na dno chmury. W efekcie spód chmury ma nadmiar ładunków ujemnych, a sam jej szczyt dodatnich. Ładunki jednoimienne odpychają się, więc w dole chmury jest nadmiar ładunków ujemnych. Z powierzchni ziemi pod chmurą ładunki ujemne uciekają.

Im bardziej dół chmury jest naładowany ujemnie, tym bardziej powierzchnia ziemi pod chmurą jest naładowana dodatnio. Ładunki o przeciwnych znakach jednak się przyciągają, więc te minusy z dołu chmury chętnie przeskoczyłyby na plusy na powierzchni ziemi.

Czy wyładowanie przeskoczy między dwoma ciałami?

To zależy od wielu czynników.

  1. Jednym z nich jest tzw. różnica potencjałów, mówiąca o różnicy w liczbie ładunków zgromadzonych pomiędzy obiektami. Im więcej minusów na dnie chmury, tym łatwiej przeskoczą one na powierzchnię ziemi.
  2. Drugim czynnikiem jest odległość, na jaką miałyby przeskoczyć. Im ta odległość jest mniejsza, tym łatwiej o wyładowania. To m.in. dlatego pioruny częściej uderzają w wieże kościołów czy w obiekty znajdujące się na szczytach wzniesień. Mają po prostu mniejszą drogę do przebycia.
  3. Ważna jest także wilgotność powietrza. To jest kolejny czynnik. Im większa, tym łatwiej dochodzi do wyładowania.
  4. Liczy się także kształt przedmiotu – to też jest bardzo istotne. Pioruny chętnie uderzają w obiekty o ostro zakończonych kątach.

Co to jest piorun

Jak powstaje piorun i jaką wybiera drogę?

Pomiędzy chmurą burzową a ziemią powstaje właśnie ta różnica potencjałów. Jest to różnica rzędu dziesiątek, a czasami nawet setek milionów woltów. To wystarczy, by doszło do tzw. wyładowania. Nie do końca wiadomo, co zapoczątkowuje i dlaczego piorun leci taką, a nie inną drogą, by dotrzeć na Ziemię. Ładunek elektryczny wybiera zawsze drogę o najmniejszym oporze. Takie drogi wytyczane mogą być przez cząstki kosmiczne, cząstki promieniowania kosmicznego o bardzo wysokich energiach. Wlatują one w atmosferę, zderzają się z atomami atmosfery i jonizują je, czyli wybijają nadmiar elektronów. W efekcie swojego przejścia zostawiają w atmosferze taki tunel, w którym panuje znacznie mniejszy opór elektryczny. Tunel ten to swego rodzaju autostrada dla ładunków z chmury.

Nigdy on nie jest linią prostą, właśnie dlatego, że cząsteczki promieniowania kosmicznego zderzają się z atomami atmosfery i o trochę wygląda jak kula bilardowa.

Jak powstaje wyładowanie?

Bardzo ciekawy jest sam moment powstawania wyładowania.

  1. Przed piorunem chmurę burzową opuszcza tzw. prekursor. To jest niewielka ilość ładunku, który skokowo porusza się od chmury ku powierzchni Ziemi z prędkością kilkudziesięciu tysięcy kilometrów na sekundę. Całe zjawisko trwa nie więcej niż kilka tysięcznych części sekundy i w zasadzie jest nie do zauważenia nieuzbrojonym okiem.
  2. Tuż za prekursorem chmury opuszcza ten piorun właściwy. Ten porusza się wolniej, bo „zaledwie” z prędkością kilku tysięcy kilometrów na sekundę, ale za to niesie nieporównywalnie większą energię.
  3. Pioruny mają długość kilku kilometrów i szerokość wspomnianego już tego takiego tunelu pozostawionego przez cząstki kosmiczne, kilkadziesiąt centymetrów, choć główny ładunek porusza się w kanale o grubości zaledwie kilku centymetrów.

Jak powstaje burza

Natężenie wyładowania głównego może wynosić ponad 100 tysięcy amperów, a napięcie dziesiątki milionów woltów. Całkowita energia setki kilowatogodzin. Niestety nie potrafimy wykorzystać energii piorunów, a badacze, którzy tego próbowali, często przypłacali to życiem. A bardzo szkoda, bo byłoby o co walczyć. Na całej Ziemi w ciągu jednej doby pioruny przenoszą energię rzędu bilionów, bilionów kilowatogodzin.

Przeczytaj także:

Sezon na kleszcze – jak się chronić przed kąsającymi pajęczakami? Kompleksowy poradnik

7 skutecznych rad, jak przetrwać upały?

Możliwość komentowania Jak powstaje burza i co przyciąga pioruny? została wyłączona

Czy błyskawice oczyszczają atmosferę?

Pioruny wzbudzają różne skojarzenia i choć dla wielu są bardzo pięknym zjawiskiem, to jednocześnie są bardzo niebezpieczne. Badania opublikowane w czasopiśmie Science udowadniają, że błyskawice mogą odgrywać ważną rolę w…

Pioruny wzbudzają różne skojarzenia i choć dla wielu są bardzo pięknym zjawiskiem, to jednocześnie są bardzo niebezpieczne. Badania opublikowane w czasopiśmie Science udowadniają, że błyskawice mogą odgrywać ważną rolę w wypłukiwaniu zanieczyszczeń z atmosfery.

Wesprzyj Zrzutkę Nauka. To Lubię

Jak powstaje piorun?

Zacznijmy od tego, jak powstają pioruny? To wynik różnicy potencjałów dwóch naładowanych obszarów. We wnętrzu chmur burzowych wiatr porusza krople wody i kryształki lodu, które trąc o siebie wymieniają między sobą ładunki. Prąd powietrza rozdziela cząsteczki i te dodatnio naładowane przemieszczają się ku górze, natomiast te naładowane ujemnie wędrują w dół. Kiedy różnica ładunków staje się zbyt duża, w powietrzu tworzy się kanał, przez który gwałtownie przepływają ładunki.

Jak powstaje piorun?

Ładunek może także przeskoczyć na Ziemię. Kiedy spód chmury elektryzuje się ujemnie, to gromadzony ładunek odpycha elektrony na powierzchni Ziemi. Powierzchnia ma wtedy ładunek dodatni. Różnica potencjałów powoduje, że ładunki zaczynają szukać najprostszej drogi do wyładowania. Najpierw wysyłane jest wyładowanie pilotujące, trwające ułamek sekundy, które jonizuje powietrze i zmniejsza opór elektryczny. Powstały kanał wykorzystują wyładowania główne. Rozgrzewają one powietrze do olbrzymiej temperatury 30 000 °C, co widzimy jako błysk. Wysoka temperatura rozpręża powietrze powodując falę dźwiękową, czyli grzmot.

Oczyszczające działanie błyskawic

Duże wyładowania elektryczne nie pozostają obojętne dla cząsteczek powietrza i mogą sporo namieszać w chemii atmosfery. Obserwacje z samolotu ścigającego burze pokazały, że pioruny mogą tworzyć duże ilości oczyszczających powietrze związków zwanych oksydantami (utleniaczami), które pomagają oczyszczać powietrze poprzez reakcję z zanieczyszczeniami, takimi jak metan i formować molekuły bardziej rozpuszczalne w wodzie lub bardziej lepkie. To pozwala na ich łatwiejsze wypłukanie z deszczem z ziemskiej atmosfery.

Badacze zdawali sobie sprawę z tego, że błyskawice produkują tlenek azotu, co może prowadzić do powstawania takich utleniaczy jak rodniki hydroksylowe, ale nie wiedzieli, że pioruny bezpośrednio produkują także duże ilości samych utleniaczy. Rodniki to atomy lub cząsteczki, które zawierają niesparowane elektrony, a więc zazwyczaj bardzo reaktywne chemicznie. W maju i czerwcu 2012 roku odrzutowiec NASA zmierzył zawartość dwóch oksydantów w chmurach burzowych nad stanami Kolorado, Oklahomą i Teksasem. Pierwszym z nich był rodnik hydroksylowy, OH. Drugim był podobny utleniacz nazywany rodnikiem wodoronadtlenkowym, HO2. Łączna koncentracja cząsteczek OH i HO2 wygenerowana przez pioruny i pozostałe naelektryzowane obszary powietrza osiągnęły tysiące cząsteczek na bilion w niektórych częściach tych chmur. Najwyższa koncentracja OH, poprzednio zaobserwowana w atmosferze, wynosiła kilka cząsteczek na bilion. W przypadku HO2 obserwowano do 150 cząsteczek na bilion. Naukowcy nie spodziewali się tak dużego wyniku. Nawet przez pewien czas odłożyli je na półkę, bo wydały im się zbyt nieprawdopodobne. Eksperymenty laboratoryjne potwierdziły jednak, że elektryczność naprawdę potrafi wygenerować tak duże ilości OH i HO2, co pomogło potwierdzić poprawność pomiarów.

Jak powstaje błyskawica

Mogłoby się wydawać, że to i tak nie jest dużo, jednak jeśli weźmiemy pod uwagę, że w każdej chwili przez Ziemię przetacza się około 2000 burz z piorunami, to może się okazać, że efekt ten jest bardzo znaczący. Naukowcy orientacyjnie oszacowali, że wyładowania mogą odpowiadać za 2-16% atmosferycznego OH. Bardziej dokładne oszacowanie będzie wymagać obserwacji większej ilości chmur burzowych.

Źródło: https://www.sciencenews.org/

 

Możliwość komentowania Czy błyskawice oczyszczają atmosferę? została wyłączona

Type on the field below and hit Enter/Return to search

Skip to content