Nauka To Lubię

Oficjalna strona Tomasza Rożka

Tag: kosmos

„Ziemia” w sąsiedztwie

Jest skalista, jest bliziutko nas i ma wielkość podobną do wielkości Ziemi. Co jednak najważniejsze, znajduje się w tzw. strefie życia, czyli ani nie za blisko, ani nie za daleko od swojej gwiazdy. Właśnie odkryto nową planetę.

Jest skalista, jest bliziutko nas i ma wielkość podobną do wielkości Ziemi. Co jednak najważniejsze, znajduje się w tzw. strefie życia, czyli ani nie za blisko, ani nie za daleko od swojej gwiazdy. Właśnie odkryto nową planetę.

>>> Więcej naukowych informacji na FB.com/NaukaToLubie.

Planeta krąży wokół czerwonego karła Proxima Centauri, czyli gwiazdy, która jest naszą najbliższą gwiazdową sąsiadką. Na odkrytej planecie woda może być w stanie ciekłym. Proxima b została złapana dzięki obserwacjom prowadzonym w Chile. Krąży wokół swojej gwiazdy macierzystej nieco ponad 11 ziemskich dni. Tak jak wspomniałem Proxima Centauri jest naszą najbliższą sąsiadką, a to oznacza, że planeta, która wokół niej krąży jest najbliższą nam planetą pozasłoneczną. Czy jest na niej życie? Tego nie wiadomo i trudno nawet powiedzieć w jaki sposób moglibyśmy się tego dowiedzieć. Bardzo dokładne obserwacje mogą nam udzielić inf. o składzie atmosfery albo nawet związków na powierzchni planety, ale na przelot na Proxima b będzie trzeba jeszcze poczekać. Gwiazda i planeta oddalone sa od nas o około 4 lata świetlne, czyli około 38 bilionów kilometrów.

>>> Więcej naukowych informacji na FB.com/NaukaToLubie.

Dla tych, którzy gwiazdę i planetę będą próbowali wypatrzyć na nocnym niebie, także nienajlepsza wiadomość. Obserwacja pozasłonecznych planet jest ekstremalnie trudna nawet przez profesjonalne teleskopy nie mówiąc już o amatorskich. Gołym okiem wcale nie da się ich zobaczyć. Niestety gołym okiem nie widać nawet gwiazdy Proxima Centauri. Jest czerwonym karłem, który świeci za słabym światłem. – Po raz pierwszy zaczęliśmy podejrzewać, że wokół tej [Proxima Centauri] gwiazdy krąży planeta już w 2013 roku. Od tamtego czasu obserwowaliśmy gwiazdę kilkoma różnymi teleskopami – powiedział Guillem Anglada-Escude, szef zespołu astronomów zaangażowanych w projekt badawczy Pale Red Dot.

Masa odkrytej planety to 1,3 masy Ziemi. Planeta krąży wokół swojego słońca w odległości 7 mln kilometrów, a to wielokrotnie mniej niż odległość Ziemia – Słońce. To znacznie mniej niż odległość Słońce – Merkury. Proxima Centauri jest jednak inną gwiazdą niż ta nasza. Świeci słabym światłem i dlatego mimo małej odległości gwiazda – planeta, na powierzchni tej drugiej może znajdować się woda w stanie ciekłym.

>>> Więcej naukowych informacji na FB.com/NaukaToLubie.

Teraz, te Proxima b będzie głównym celem obserwacji tych astronomów, którzy będą poszukiwali życia na obcych planetach. Jeżeli kiedykolwiek (a to na pewno nastąpi) zorganizujemy międzygwiezdną misję, na pewno pierwszym jej celem będzie właśnie nowo odkryta planeta.

Tomasz Rożek

Możliwość komentowania „Ziemia” w sąsiedztwie została wyłączona

Świat między 44 zerami

W 2013 roku, na maturze z języka polskiego, uczniowie analizowali wstęp do mojej książki „Nauka po prostu. Wywiady z wybitnymi”. Rozwiązałem test maturalny stworzony do mojego tekstu i zdobyłem… około 70 proc. punktów. Dlaczego nie 100 proc? Części pytań nie zrozumiałem, część moich odpowiedzi nie trafiła w klucz. W skrócie z tekstu który sam zrozumiałem rozumiem ok. 70 proc. Nie świadczy to chyba o mnie najlepiej. Dzisiaj – nie tylko maturzystom – ten tekst przypominam.

W 2013 roku, na maturze z języka polskiego, uczniowie analizowali wstęp do mojej książki  „Nauka po prostu. Wywiady z wybitnymi”. Rozwiązałem test maturalny stworzony do mojego tekstu i zdobyłem… około 70 proc. punktów. Dlaczego nie 100 proc? Części pytań nie zrozumiałem, część moich odpowiedzi nie trafiła w klucz. W skrócie z tekstu który sam zrozumiałem rozumiem ok. 70 proc. Nie świadczy to chyba o mnie najlepiej. Dzisiaj – nie tylko maturzystom – ten tekst przypominam.

**************

Świat między 44 zerami

Widzialny Wszechświat ma rozmiar kilkunastu miliardów lat świetlnych. To około 1026 (1 z 26 zerami) metra. Z kolei najmniejsze struktury, których istnienia jesteśmy pewni, to budujące między innymi protony i neutrony kwarki. Mają rozmiar kilku attometrów, czyli 10-18 metra. Najmniejsze i największe obserwowane przez człowieka obiekty dzielą od siebie aż 44 rzędy wielkości! Kwarki są o 100 000 000 000 000 000 000 000 000 000 000 000 000 000 000 razy mniejsze od największego obiektu dociekań naukowców. Nasz świat mieści się w tych 44 zerach. Są w nim cząstki elementarne, żywe organizmy i ich DNA, Ziemia i inne planety. Są gwiazdy, galaktyki i gromady galaktyk. A gdzieś w środku jest człowiek. Jedyna znana istota, która chce wiedzieć i chce to wszystko zrozumieć.

Świat, ten zamknięty „między 44 zerami”, jest skonstruowany według uniwersalnych reguł. Człowiek ich nie tworzy, najwyżej odkrywa i nazywa. Na razie znamy je wycinkowo, choć chcielibyśmy oczywiście ogarniać w całości. Marzy nam się też, by w pełni je wykorzystywać. Nanotechnolodzy chcieliby tworzyć komputery oparte na węglu i projektować cząsteczki leków atom po atomie. Na razie jednak nie wiedzą jak. Biotechnolodzy chcą nadawać żywym organizmom dowolne cechy, chcą hodować tkanki, a może nawet całe organy, z jednej tylko komórki. Inni chcą poznać tajemnice mózgu (by skuteczniej się z nim komunikować), początków materii (by znaleźć źródło niewyczerpywalnej energii) czy klimatu (by zapobiegać ekstremalnym zjawiskom pogodowym).

Odkrywamy coraz więcej i nieustannie jesteśmy zaskakiwani złożonością świata, w którym żyjemy. Odkrywamy coraz więcej, a ciągle tyle pozostaje do poznania i zrozumienia. Horyzont poznania wcale się nie przybliża, gorzej … można odnieść wrażenie, że się oddala.  Nie przeszkadza nam to jednak marzyć.

Świat przyszłości, świat czasów, w których jeżeli wszystkie reguły zostaną poznane (czy to w ogóle kiedykolwiek nastąpi?), będzie światem dostosowanym przez człowieka do człowieka – tylko czy w ostatecznym rachunku dla człowieka. To wizja bardzo odległa, ale przecież zmierzamy ku niej od zawsze. Zaglądamy za horyzont zdarzeń w poszukiwaniu mechanizmów, które za tym wszystkim stoją, bo chcemy je wykorzystywać po swojemu, albo inaczej, na swój użytek. Coraz częściej zresztą nam się to udaje. Tymi mechanizmami, trybami i zębatkami są naukowe prawa przyrody. Nauczyliśmy się kontrolować reakcje jądrowe i dlatego potrafimy korzystać z energii atomowej. Wybudowaliśmy urządzenia, które odczytują niektóre intencje mózgu i dlatego możemy pomagać osobom niepełnosprawnym. W końcu dzięki poznaniu właściwości materii w skali mikro budujemy komputery, a zrozumienie sposobu zapisu informacji w naszym DNA już niedługo zaowocuje terapiami genowymi. To wszystko, te niewątpliwe osiągnięcia ludzkiego intelektu, nie zmieniają jednak faktu, że do poznania wszystkich reguł rządzących przyrodą (a może jest tylko jedna reguła uniwersalna, która stosuje się do wszystkiego?) sporo nam jeszcze brakuje. Czy w związku z tym warto zaprzątać sobie głowę refleksją nad przyszłością? Nad kierunkiem i tempem rozwoju nauki? Może lepiej upajać się wizją świata ułożonego, oswojonego, dostosowanego? Wizją świata przyszłości. Powód jest – jak sądzę – jeden. Uczymy się przez eksperyment. Rozwój sam się nie dzieje, a bez prób i bez błędów nie ma postępu. No właśnie – błędów. O te najłatwiej w pośpiechu. Świat rozwija się dzisiaj szybciej niż kiedykolwiek wcześniej, szybciej niż refleksja nad nim. Nie ma tygodnia bez spektakularnego odkrycia, bez przesunięcia granicy poznania. Wszystko dzieje się tak szybko, że słowo drukowane już dawno przestało nadążać. Wypiera je słowo wyświetlane na ekranie. Już nawet nie komputera stojącego na biurku, ale coraz częściej telefonu komórkowego, albo czegoś co telefonem jest tylko przy okazji.

Nasz świat jest pędzącym pociągiem, w którym siedzimy i patrzymy za okno. Wszystko jest zamazane. Nie widać szczegółów, nie ma czasu na analizę detali. Pędzimy do przodu. To wspaniałe… ale trzeba uważać. W przeszłości na przykład w czasie wojen i rewolucji zdarzało się, że gdy historia przyspieszała brakowało czasu na refleksję. Rzeczy działy się tak szybko, że konsekwencje czynów i decyzji czasami uświadamiano sobie zbyt późno. Wchodząc więc w erę „nano” czy „cyber” warto byłoby zdawać sobie sprawę ze wszystkich ewentualnych konsekwencji. Dopiero ta wiedza pozwala na w pełni świadome funkcjonowanie w dzisiejszym świecie. Skąd ją czerpać? Najlepiej u źródła.

Na początku XXI wieku żyjemy w świecie nieustannie kształtowanym, wręcz kreowanym przez naukę i technologię. W każdej epoce życie jednostki w jakimś stopniu zależało od postępu cywilizacji, ale nigdy nie zależało aż tak bardzo jak obecnie. Miasto bez prądu czy komunikacja bez Internetu nie istnieją. Nie potrafimy żyć bez prądu, Internetu, telefonu komórkowego i komputera. I nie chodzi o naszą wygodę czy przyzwyczajenia, ale o przetrwanie. Bez sieci komputerowej i komórkowej nie działają systemy sterujące pracą elektrowni, oczyszczalni ścieków, uzdatniania wody czy komunikacji (metro, tramwaje, koleje). Niedługo nie będzie istniała elektronika bez nanotechnologii i medycyna bez biotechnologii, a może nawet cybernetyki. Coraz częściej osobom chorym i niepełnosprawnym pomaga się wszczepiając zaawansowane technologiczne implanty i protezy. Niektórym to ratuje życie, innym ułatwia i czyni znośniejszym. Ale wszystkich w pewnym sensie uzależnia od technologii.

Być może z powodu wspomnianego uzależnienia naszego świata od osiągnięć naukowych, może dosłownego rozumienia słowa „demokracja”, a może z powodu asekuranckiej postawy polityków, coraz częściej od nie-specjalistów wymaga się zajmowania stanowiska w sprawach bezpośrednio związanych z nauką. Nigdy wcześniej tak nie było. W niektórych krajach to w referendach ważą się losy biotechnologii i energetyki. W innych pyta się obywateli o status ludzkiego embriona albo o moment, w którym można przerwać ludzkie życie. Tam gdzie formalnie plebiscytu nie ma, rządzący i tak przed podjęciem jakiejkolwiek decyzji przyglądają się słupkom sondaży. Zdanie naukowców, specjalistów zdaje się mieć mniejszą wartość niż opinie elektoratu, często manipulowanego przez sprawnych lobbystów.

W interesie wszystkich jest, by każdy obywatel, a nie tylko osoba z wykształceniem kierunkowym, mógł zabrać świadomy głos w toczących się dzisiaj na wielu frontach debatach z naukowym tłem. Gdy w każdych kolejnych wyborach frekwencja jest coraz niższa, mówi się o zagrożeniu demokracji. Zagrożeniem jest także to, że tak niewiele osób zdaje sobie sprawę z kierunków naszego rozwoju, z szans jakie przed nami stoją i z zagrożeń z nimi związanych. Jeden z moich rozmówców stwierdził, że naukowcy powinni uprawiać naukę, politycy powinni na nią dawać pieniądze, a społeczeństwo powinno kontrolować i jednych i drugich.  Gdy rządzący przed wieloma laty Niemcami kanclerz Gerhard Schroeder poszukiwał oszczędności i chciał obciąć nakłady na naukę, został powszechnie skrytykowany. W mediach pojawiały się nawet sondaże społeczne, z których wynikało, że Niemcy nie chcą w ten sposób oszczędzać. Nasi sąsiedzi zdają sobie po prostu sprawę z tego, że inwestowanie w naukę oznacza rozwój. Społeczeństwo może pośrednio – przez wybieranych polityków – wpływać na kierunek rozwoju nauki. O ile ma wiedzę, która umożliwia podjęcie świadomej decyzji. U nas nakłady na naukę czy nowe technologie nigdy nie były tematem debaty publicznej. Ani w czasie kampanii wyborczych, ani poza nimi. Dlaczego tak się dzieje? W powszechnym odczuciu polski naukowiec to ktoś zamknięty w hermetycznym laboratorium. Ktoś całkowicie oderwany od dnia codziennego. Przyjęło się u nas myśleć, że nauka ma swego rodzaju autonomię, jest niezależna od rzeczywistości. Niestety niebezpieczną konsekwencją takiej opinii jest przekonanie, że uprawianie nauki to sztuka dla sztuki. Trudno sobie wyobrazić większy absurd. Życie nie biegnie innym torem niż najnowsze osiągnięcia i technologie. Przeciwnie. Te obydwie dziedziny są ze sobą ściśle związane. Ale – i znowu wracamy do tego samego – skąd mamy o tym wiedzieć? Jak mamy wpływać na szybkość i kierunek zmian, skoro nie mamy o nich większego pojęcia? Warto wiedzieć więcej. I warto zajrzeć do źródeł.

Tomasz Rożek

 

Możliwość komentowania Świat między 44 zerami została wyłączona

(wszech)Świat się marszczy !!!

Lada dzień gruchnie wiadomość na którą czekamy od kilku dziesięcioleci. Wszechświat, przestrzeń marszczy się. W LIGO podobno odkryto fale grawitacyjne.

Kosmiczny detektor, kosmiczne zagadnienie. W świecie fizyków i kosmologów od kilku dni nie mówi się o niczym innym niż fale grawitacyjne, które miał podobno wykryć LIGO. O co chodzi?

>>> Więcej naukowych informacji na FB.com/NaukaToLubie

waves-101-1222750-1600x1200

Fale grawitacyjne to kompletny odlot. Człowiekiem który sprawę rozumiał, ba, który ją wymyślił, a w zasadzie wyliczył był nie kto inny tylko Albert Einstein (swoją drogą powinien dostać nagrodę za odkrycie najbardziej nieintuicyjnych zjawisk we wszechświecie). Z napisanej przez niego 100 lat temu Ogólnej Teorii Względności wynika, że ruch obiektów obdarzonych masą,  jest źródłem rozchodzących się w przestrzeni fal grawitacyjnych (lub inaczej – choć nie mniej abstrakcyjnie – zaburzeń czasoprzestrzennych). Jak to sobie wyobrazić? No właśnie tu jest problem. Bardzo niedoskonała analogia to powstające na powierzchni wody kręgi, gdy wrzuci się do niej kamień. W przypadku fal grawitacyjnych zamiast wody jest przestrzeń, a zamiast kamienia poruszające się obiekty. Czym większa masa i czym szybszy ruch, tym łatwiej zmarszczki przestrzeni powinny być zauważalne. Rejestrując największe fale grawitacyjne, tak jak gdybyśmy bezpośrednio obserwowali największe kosmiczne kataklizmy: zderzenia gwiazd neutronowych, czarnych dziur czy wybuchy supernowych. Trzeba przyznać, że perspektywa kusząca gdyby nie to… że fale grawitacyjne to niezwykle subtelne zjawiska. Nawet te największe, bardziej będą przypominały lekkie muśnięcia piórkiem niż trzęsienie ziemi. W książce „Zmarszczki na kosmicznym morzu” (Ripples on a Cosmic Sea: The Search for Gravitational Waves) australijski fizyk, prof. David Blair, poszukiwanie fal grawitacyjnych porównuje do nasłuchiwania wibracji wywołanych przez pukanie do drzwi z odległości dziesięciu tysięcy kilometrów. Detektory zdolne wykryć fale grawitacyjne powinny być zdolne zarejestrować wstrząsy sejsmiczne wywołane przez upadek szpilki po drugiej stronie naszej planety. Czy to w ogóle jest możliwe? Tak! Od 2002 roku działa w USA Laser Interferometer Gravitational Wave Observatory w skrócie LIGO czyli Laserowe Obserwatorium Interferometryczne Fal Grawitacyjnych. Zanim budowa ruszyła, pierwszy szef laboratorium prof. Barry Barrish na dorocznym posiedzeniu AAAS (American Association for the Advancement of Science) oświadczył, że pomimo wielu trudności nadszedł w końcu czas na zrobienie czegoś, co można nazwać prawdzią nauką (swoją drogą, odważne słowa na zjeździe najlepszych naukowców na świecie).

>>> Więcej naukowych informacji na FB.com/NaukaToLubie

This_visualization_shows_what_Einstein_envisioned

Symulacja łączenia się czarnych dziur – jedno ze zjawisk, które wytwarza najsilniejsze fale grawitacyjne

Z falami grawitacyjnymi jest jednak ten problem, że przez dziesięciolecia, mimo prób, nikomu nie udało się ich znaleźć. Gdyby komuś zaświtała w głowie myśl, że być może w ogóle ich nie ma, spieszę donieść, że gdyby tak było naprawdę, runąłby fundament współczesnej fizyki – Ogólna Teoria Względności, a kosmologię trzeba byłoby przepisać od początku. Dzisiaj głośno mówi się, że fale grawitacyjne zostały przez LIGO zarejestrowane. Panuje raczej atmosfera lekkiego podniecenia i oczekiwania na to, co stanie się za chwilę. Potwierdzenie istnienia fal grawitacyjnych nie będzie kolejnym odkryciem, które ktoś odfajkuje na długiej liście spraw do załatwienia.  Zobaczymy otaczający nas wszechświat z całkowicie innej perspektywy.

Jako pierwszy falowe zmiany pola grawitacyjnego, w latach 60 XX wieku próbował zarejestrować amerykański fizyk Jaseph Weber. Budowane przez niego aluminiowe cylindry obłożone detektorami nie zostały jednak wprawione w drgania. Co prawda Weber twierdził, że złapał zmarszczki wszechświata, ale tego wyniku nie udało się potwierdzić. Dalsze poszukiwania trwały bez powodzenia, aż do 1974 roku, gdy dwóch radioastronomów z Uniwersytetu w Princeton (Joseph Taylor i Russel Hulse) obserwując krążące wokół siebie gwiazdy (PSR1913+16) stwierdziło, że układ powoli traci swoją energię, tak jak gdyby wysyłał … fale grawitacyjne. Mimo, że samych fal nie zaobserwowano, za pośrednie potwierdzenie ich istnienia autorzy dostali w 1993 roku Nagrodę Nobla. Uzasadnienie Komitetu Noblowskiego brzmiało: „za odkrycie nowego typu pulsara, odkrycie, które otwiera nowe możliwości badania grawitacji”.

>>> Więcej naukowych informacji na FB.com/NaukaToLubie

virgoviewInstalacja, która z lotu ptaka wygląda jak wielka litera L, to dwie rury o długości 4 km każda, stykające się końcami pod kątem prostym. Choć całość przypomina przepompownię czy oczyszczalnię ścieków jest jednym z najbardziej skomplikowanych urządzeń kiedykolwiek wybudowanych przez człowieka. Każde z ramion tworzy betonowa rura o średnicy 2 metrów. W jej wnętrzu – jak w bunkrze – znajduje się druga ze stali nierdzewnej, która jest granicą pomiędzy światem zewnętrznym a bardzo wysoką próżnią. Z miejsca w którym rury się stykają, „na skrzyżowaniu”, dokładnie w tym samym momencie wysyłane są wiązki lasera. Ich celem są zwierciadła umieszczone na końcu każdej z rur. 2000px-Ligo.svgOdbijane przez zwierciadła tam i z powrotem około 100 razy promienie, wpadają z powrotem do centralnego laboratorium i tam zostają do siebie porównane. Dzięki zjawisku interferencji możliwe jest wyliczenie z wielką dokładnością różnicy przebytych przez obydwie wiązki światła dróg. A drogi te powinny być identyczne, no chyba że… chyba że w czasie pomiaru przez Ziemie – podobnie jak fala na powierzchni wody – przejdzie fala grawitacyjna. Wtedy jedno z ramion będzie nieco dłuższe, a efekt natychmiast zostanie wychwycony w czasie porównania dwóch wiązek. Tyle tylko, że nawet największe zaburzenia zmienią długość ramion o mniej niż jedną tysięczną część średnicy protonu (!). To mniej więcej tak, jak gdyby mierzyć zmiany średnicy Drogi Mlecznej (którą ocenia się na ok. 100 tys. lat świetlnych) z dokładnością do jednego metra. Czy jesteśmy w stanie tak subtelne efekty w ogóle zarejestrować ? Lustra na końcach każdego z korytarzy (tuneli) mogą zadrgać (chociażby dlatego, że przeleciał nad nimi samolot, albo w okolicy przejechał ciężki samochód). By tego typu efekty nie miały wpływu na pomiar zdecydowano się na budowę nie jednej, ale dwóch instalacji, w Handford w stanie Waszyngton i w Livingston w stanie Luizjana. Są identyczne, choć oddalone od siebie o ponad 3 tys. kilometrów. Ich ramiona maja takie same wymiary i maja takie same układy optyczne. Nawet gdy w jednym LIGO zwierciadło nieoczekiwanie zadrga, niemożliwe by to samo w tej samej chwili stało się ze zwierciadłem bliźniaczej instalacji. Zupełnie jednak inaczej będzie gdy przez Ziemię przejdzie z prędkością światła fala grawitacyjna. Zmiany jakie wywoła zajdą w dokładnie tej samej chwili w obydwu ośrodkach.

>>> Więcej naukowych informacji na FB.com/NaukaToLubie

A kończąc, pozwólcie na ton nieco nostalgiczny. Wszechświat jest areną niezliczonych kataklizmów a dramatyczne katastrofy, to naturalny cykl jego życia. To nic, że od tysięcy lat na naszym niebie królują te same gwiazdozbiory. W skali kosmicznej taki okres czasu to nic nieznacząca chwila, a nawet w czasie jej trwania widoczne były wybuchy gwiazd. Z bodaj największego kataklizmu – Wielkiego Wybuchu – „wykluło” się to co dzisiaj nazywamy kosmosem. Obserwatoria grawitacyjne (np. takie jak LIGO) otworzą oczy na inne wielkie katastrofy, i to nie tylko te które będą, ale także te które były. Już prawie słychać zgrzyt przekręcanego klucza w drzwiach. Już za chwilę się otworzą. Najpierw przez wąską szparę, a później coraz wyraźniej i coraz śmielej będziemy obserwowali wszechświat przez nieznane dotychczas okulary. Ocenia się, że to co widzą „zwykłe” teleskopy (tzw. materia świecąca) to mniej niż 10% całej masy Wszechświata. A gdzie pozostałe 90% ? Na to pytanie nie znaleziono dotychczas odpowiedzi. Tzw. ciemna materia powinna być wszędzie, a nie widać jej nigdzie. Przypisuje się jej niezwykłe właściwości, łączy się ją z nie mniej tajemniczą ciemną energią. Czy LIGO, pomoże w rozwiązaniu tej intrygującej zagadki? Czy będzie pierwszym teleskopem, przez który będzie widać ciemną materię? Jeżeli obserwatoria grawitacyjne będą w stanie „zobaczyć” obiekty, które można obserwować także w świetle widzialnym (np. wybuch supernowej), a nie będą widziały ani grama ciemnej materii, to zagadka staje się jeszcze bardziej tajemnicza. Bo albo ta materia nie podlega prawom grawitacji, albo nie ma żadnej ciemnej materii. Konsekwencje obydwu tych scenariuszy są trudne do przewidzenia. Czy teraz rozumiecie dlaczego odkrycie fal grawitacyjnych jest tak ważne? 

10 komentarzy do (wszech)Świat się marszczy !!!

Burza światła

Podobno dzisiaj i jutro widoczna na polskim niebie ma być zorza polarna. O ile nie będzie chmur. 156 lat temu miała miejsce największa opisana burza geomagentyczna. Gdyby zdarzyła się dzisiaj, zamilkłyby telefony, radia i stacje telewizyjne. Najpewniej uszkodzona zostałaby także infrastruktura energetyczna.

Dzisiaj, a może nawet jutro widoczna ma być na polskim niebie zorza polarna. O ile nie będzie chmur.  156 lat temu miała miejsce największa opisana burza geomagentyczna. Gdyby zdarzyła się dzisiaj, zamilkłyby telefony, radia i stacje telewizyjne. Najpewniej uszkodzona zostałaby także infrastruktura energetyczna.

>>> Więcej naukowych ciekawostek na FB.com/NaukaToLubie

Dokładnie 1 września 1859 roku na Słońcu zdarzył się potężny wybuch. Materia słoneczna została wyrzucona w przestrzeń z prędkością dochodzącą nawet do 900 km na sekundę. Wybuchy na Słońcu to nic niezwykłego, ale ten był wyjątkowo silny. Co ciekawe nasza dzienna gwiazda wcale nie była wtedy w fazie swojej największej aktywności.

Tymczasem na Ziemi…     

… rozpętała się burza światła. Dzień po wybuchu na Słońcu, wyrzucona z jego powierzchni materia dotarła do Ziemi. Naładowane elektrycznie cząstki, w zderzeniu z naszą atmosferą, a właściwie hamowane przez ziemskie pole magnetyczne były źródłem jednej z największych, kiedykolwiek rejestrowanych zórz polarnych. W 1859 roku nie było telefonów komórkowych, telewizorów ani odbiorników radiowych. Gdyby były, na pewno by zamilkły. Straty byłyby ogromne. Do listy strat trzeba doliczyć stacje transformatorowe i całą flotyllę satelitów. Nie tylko tych naukowych, ale także komercyjnych. Szacuje się, że dzisiaj straty spowodowane burzą porównywalnej wielkości wyniosłyby około 2 trylionów dolarów. Trylion to miliard miliardów. Wtedy, w połowie XIX wieku, zaburzona została jedynie raczkująca wtedy łączność telegraficzna. Pierwszy telegraf elektryczny zbudowano 22 lata wcześniej, w 1837 roku. Dzisiaj burza sparaliżowałaby życie. Trudno je sobie wyobrazić bez elektronicznej komunikacji, prądu czy choćby GPS’a. Wtedy, w zasadzie nikomu nie utrudniła życia. Mocno je za to urozmaiciła.

Zorze na Kubie

Na wysokości od 100 do 400 km nad naszymi głowami naładowane elektrycznie cząstki pochodzące ze Słońca (elektrony i protony), są przechwytywane przez ziemskie pole magnetyczne. Zaczynają się poruszać wzdłuż jego linii. Te zagęszczają się w okolicach biegunów i tam cząstki wiatru słonecznego zderzają się z atomami rozrzedzonej atmosfery. Atom w który uderzają traci część swoich elektronów (zjawisko jonizacji). Gdy „złapie” je z powrotem, energię którą otrzymał od protonu czy elektronu ze Słońca, wypromieniowuje w postaci światła. To światło, to zorza polarna. Luminescencję rozrzedzonych gazów zaobserwowano także wokół biegunów innych planet, m.in. Jowisza, Saturna, Urana, Neptuna, a nawet Marsa.

Zorze występują zwykle w okolicach biegunów. 150 lat temu, w wyniku rekordowej ilości naładowanych cząstek, zjawisko było widoczne jednak w całej Ameryce Północnej, a nawet na Kubie. Zorze były tak intensywne i jasne, że ludzie wstawali w środku nocy myśląc, że już świta. Ich zdziwienie, a może przerażenie, musiało być całkiem spore gdy zamiast wschodu Słońca na niebie pojawiły się piękne, kolorowo pulsujące niby-płomienie.

To może się zdarzyć jutro

Na dużych szerokościach geograficznych zorze polarne – nazywane czasami światłami północy – mają kolor biały, żółty i zielony, na niższych, charakteryzują je kolory ciemniejsze: czerwone, niebieskie, a nawet fioletowe. Zorze polarne w Polsce zdarzają się rzadko i tylko w okresie najwyższej aktywności Słońca. Co około 11 lat nasza dzienna gwiazda przeżywa burzliwe chwile. Kolejne maksimum było rejestrowane w latach 2012-2013. Nie powinniśmy być tego jednak całkowicie pewni. Nasza gwiazda jest nieprzewidywalna. Gdy coś stanie się na jej powierzchni, mamy kilkadziesiąt godzin czasu na przygotowanie się na niesamowite zjawisko. A gdyby eksplozja na Słońcu była duża, lepiej wyłączyć wszystkie urządzenia elektroniczne i … zaopatrzyć się w świeczki. Prądu może nie być przez kilka dni.

>>> Więcej naukowych ciekawostek na FB.com/NaukaToLubie

5 komentarzy do Burza światła

W kosmosie woda jest wszędzie!

Jest na planetach, księżycach, kometach a nawet… w mgławicach. Dość powszechnie panująca opinia o tym, że woda jest obecna tylko na Ziemi, jest kompletnie błędna. Wody w kosmosie jest bardzo dużo. Ale to wcale nie musi znaczyć, że wszędzie tam jest życie.

Dość powszechnie panująca opinia o tym, że woda jest obecna tylko na Ziemi, jest kompletnie błędna. Choć w kolejnym odcinku „Megaodkryć” na National Geographic Channel będzie mowa o „Wodnej apokalipsie” to okazuje się, że ta wspomniana apokalipsa to nasz ziemski problem.

>> Polub FB.com/NaukaToLubie i pomóż mi tworzyć stronę pełną nauki. 

Woda płynna jest na przynajmniej kilku obiektach Układu Słonecznego. Kilka tygodni temu odkryto ją także na powierzchni Marsa. Co zaskakuje, obłoki pary wodnej „wiszą” także w przestrzeni kosmicznej. Kilka lat temu odkryto taki wokół kwazaru PG 0052+251. Póki co, to największy ze wszystkich znanych rezerwuarów wody w kosmosie. Dokładne obliczenia wskazują, że gdyby całą tę parę wodną skroplić, byłoby jej 140 bilionów (tysięcy miliardów) razy więcej niż wody we wszystkich ziemskich oceanach. Masa odkrytego wśród gwiazd „zbiornika wody” wynosi 100 tysięcy razy więcej niż masa Słońca. To kolejny dowód, że woda jest wszechobecna we wszechświecie.

Do wyboru: lód, woda i para

Naukowców nie dziwi sam fakt znalezienia wody, ale jej ilość. Cząsteczka wody (dwa atomy wodoru i jeden atom tlenu) jest stosunkowo prosta i występuje we wszechświecie powszechnie. Bardzo często łączy się ją z obecnością życia. Faktem jest, że życie, jakie znamy, jest uzależnione od obecności wody. Ale sam fakt istnienia gdzieś wody nie oznacza istnienia tam życia. Po to, by życie zakwitło, musi być spełnionych wiele różnych warunków. Woda wokół wspomnianego kwazaru jest w stanie gazowym, a woda niezbędna do życia musi być w stanie ciekłym. Nawet jednak ciekła woda to nie gwarancja sukcesu (w poszukiwaniu życia), a jedynie wskazówka.

Takich miejsc, którym badacze się przyglądają, jest dzisiaj w Układzie Słonecznym przynajmniej kilka. Woda może tu występować – tak jak na Ziemi – w trzech postaciach: gazowej, ciekłej i stałej. I właściwie we wszystkich trzech wszędzie jej pełno. Cząsteczki pary wodnej badacze odnajdują w atmosferach przynajmniej trzech planet Układu Słonecznego. Także w przestrzeni międzygwiezdnej. Woda w stanie ciekłym występuje na pewno na Ziemi. Czasami na Marsie, najprawdopodobniej na księżycach Jowisza, ale także – jak wykazały ostatnie badania – na księżycach Saturna. A na jednym z nich – Enceladusie – z całą pewnością. Gdy kilka lat temu amerykańska sonda kosmiczna Cassini-Huygens przelatywała blisko tego księżyca, zrobiła serię zdjęć, na których było wyraźnie widać buchające na wysokość kilku kilometrów gejzery. Zdjęcia tego zjawiska były tak dokładne, że badacze z NASA zauważyli w buchających w przestrzeń pióropuszach nie tylko strugi wody, ale także kłęby pary i… kawałki lodu. Skąd lód? Wydaje się, że powierzchnia Enceladusa, tak samo zresztą jak jowiszowego księżyca Europy, pokryta jest bardzo grubą (czasami na kilka kilometrów) warstwą lodu. Tam nie ma lądów czy wysp. Tam jest tylko zamarznięty ocean. Cały glob pokryty jest wodą.

061215_europa_02

Powierzchnia jowiszowego księżyca Europa

Nie tylko u nas

Skoro cała powierzchnia księżyców Jowisza i Saturna pokryta jest bardzo grubym lodem, skąd energia gejzerów? Skąd płynna woda pod lodem? Niektóre globy żyją, są aktywne. Ich wnętrze jest potężnym reaktorem, potężnym źródłem ciepła. Tak właśnie jest w przypadku zarówno Europy, jak i Enceladusa. Swoją drogą ciekawe, co musi się dziać pod kilkukilometrowym lodem, skoro woda, która wydrążyła sobie w nim lukę, wystrzeliwuje na wiele kilometrów w przestrzeń?

Może nie morza, jeziora czy chociażby bajora, ale lekka rosa – wodę znajduje się także na powierzchni naszego Księżyca. Zaskakujące odkrycie to dzieło indyjskiej sondy Chandrayaan-1, potwierdzone przez dwie amerykańskie misje (Deep Impact i Cassini).

Niejedna praca naukowa powstała też na temat wody na Czerwonej Planecie. Wiadomo, że jest na marsjańskich biegunach. Nie brakuje jednak danych, że woda, nawet w stanie ciekłym, pojawia się czasowo w różnych innych miejscach planety. Wyraźnie ją widać na zboczach kraterów, o ile padają na nie promienie letniego Słońca.

Z badań amerykańskiej sondy Messenger, która od 2004 roku badała Merkurego, wynika, że woda jest także w atmosferze pierwszej od Słońca gorącej planety. Co z innymi planetami spoza Układu Słonecznego? Na nich też pewnie jest mnóstwo wody. Tylko jeszcze o tym nie wiemy. Chociaż… Pierwszą egzoplanetą, na której najprawdopodobniej jest woda jest HD 189733b, która znajduje się 63 lata świetlne od nas. Ta planeta to tzw. gazowy gigant. Ogromna kula gorących i gęstych gazów z płynnym wnętrzem. Gdzie tutaj miałaby być woda? Wszędzie – twierdzą badacze. Dzięki aparaturze wybudowanej w California Institute of Technology, USA udało się odkryć, że mająca prawie 1000 st. C atmosfera zawiera duże ilości pary wodnej.

>> Polub FB.com/NaukaToLubie i pomóż mi tworzyć stronę pełną nauki. 

Czy któreś z tych kosmicznych źródeł wody będzie nas w stanie uchronić przez niedostatkiem pitnej wody na Ziemi? Tego jeszcze nie wiemy, choć problem braku podstawowej do życia substancji wydaje się być coraz bardziej palący. Przekonują o tym hollywoodzka gwiazda – Angela Basset – i jej goście – światowej sławy naukowcy, którzy próbują odpowiedzieć na pytanie czy czeka nas „Wodna Apokalipsa” w ostatnim już odcinku niezwykłej serii „Megaodkrycia” na National Geographic Channel. Jeśli chcecie wiedzieć, gdzie najtęższe umysły naukowe szukają teraz źródeł H2O, oglądajcie „Wodną Apokalipsę” – już w niedzielę, 13 grudnia, o 22.00 na National Geographic Channel.

 

 

Możliwość komentowania W kosmosie woda jest wszędzie! została wyłączona

Nowe zdjęcia Plutona!!!! Niesamowite.

Co tam się dzieje?!? Z najnowszych zdjęć powierzchni Plutona wynika, że ta planeta jest niezwykle zróżnicowana. Są góry, ogromne kratery i lodowe pustynie!

Co tam się dzieje?!? Z najnowszych zdjęć powierzchni Plutona wynika, że ta planeta jest niezwykle zróżnicowana. Są góry, ogromne kratery i lodowe pustynie!

>> Polub FB.com/NaukaToLubie. Pomóż mi tworzyć miejsce w którym komentuję i popularyzuję naukę.

To moje ulubione zdjęcie. Wygląda tak jak gdyby lodowiec „wylewał się” na pustynię. 2-newhorizonsr

Nadesłane obrazy zrobiła sonda New Horizons. Fotografowała powierzchnię Plutona z odległości dwunastu tysięcy kilometrów. Nigdy wcześniej nie udało się zrobić tak dokładnych zdjęć powierzchni planety karłowatej. Co na niej można zobaczyć? Góry, lodowe pustynie i kratery o średnicy wielu kilometrów.

vVpYaZs

Choć zdjęcia zostały zrobione kilka miesięcy temu, dopiero teraz znalazły się na Ziemi. Fotografie musiały „czekać w kolejce” na przesłanie. Szybkość transmisji pomiędzy New Horizons a Ziemią jest bardzo wolna. Pluton znajduje się średnio 40 razy dalej od Słońca niż Ziemia, a to oznacza, że światło (a więc i fala radiowa) potrzebuje kilku godziny by dotrzeć do Ziemi.

>> Polub FB.com/NaukaToLubie. Pomóż mi tworzyć miejsce w którym komentuję i popularyzuję naukę.

nh-craters-mountains-glaciers

Wszystkie zdjęcia należą do NASA.

 

 

5 komentarzy do Nowe zdjęcia Plutona!!!! Niesamowite.

100 lat abstrakcji

Czas jest względny, a masa zakrzywia czasoprzestrzeń. To jedno zdanie jednych przyprawia o ból głowy, dla innych jest źródłem nieograniczonej fascynacji. Fascynacji, która trwa dokładnie 100 lat.

>>> Polub FB.com/NaukaToLubie to miejsce w którym komentuję i popularyzuję naukę.

Pióra i ołówki na teorii grawitacji połamało już wielu badaczy. To co wiemy, to prosty wzór, którego dzieci uczą się w szkole. Że siła grawitacji zależy od masy obiektów, które są jej źródłami (im obiekt cięższy, tym większa siła), oraz że słabnie wraz z zwiększającą się odległością pomiędzy tymi obiektami. Dzięki tej prostej zależności, udaje się doskonale przewidywać ruchy planet, satelitów, także zachowanie sporej części gwiazd w galaktyce. Sporej, ale nie wszystkich.

Tymi, których wytłumaczyć się nie da są np. kolizje gwiazd neutronowych, pulsary, czarne dziury czy wybuchy supernowych. Grawitacji nie sposób także „dopasować” do wielkiego wybuchu. A skoro od niego swój początek wziął czas i przestrzeń, nasze braki w rozumieniu grawitacji stają się kłopotliwe.

Dokładnie 100 lat temu Albert Einstein ogłosił (a konkretnie odczytał) Ogólną Teorię Względności. Jej manuskrypt (ma 46 stron) można dzisiaj zobaczyć w Bibliotece Narodowej Izraela. Dla postronnego obserwatora, niespecjalisty , notatki Einsteina mogą sprawiać wrażenie niewyraźnych bazgrołów zrobionych na pożółkłych kartkach. Są napisane bardzo drobnym maczkiem, często poprawiane, miejscami podkreślone, w innych miejscach przekreślone. Sporo w nich matematycznych wzorów. Niesamowite, jak wiele w fizyce czy w ogóle w postrzeganiu świata (wszechświata) zmieniło to, co 100 lat temu zostało zaprezentowane światu.

Ogólna Teoria Względności została ogłoszona w 1915 roku, gdy Albert Einstein przebywał w Niemczech. Już wtedy Einstein był znanym człowiekiem, a jego prace – choć przez bardzo nielicznych rozumiane – były w pewnym sensie kultowe. Stworzenie OTW nie było olśnieniem, jak wielu innych teorii fizycznych. Einstein pracował nad nią 9 lat. Czasami błądził, czasami się mylił. To była żmudna praca. OTW jest – jak sama nazwa wskazuje – uogólnieniem Szczególnej Teorii Względności Einsteina. Choć teoria Ogólna i Szczególna są dwoma najbardziej znanymi jego pracami, Einstein największe naukowe zaszczyty (Nagrodę Nobla) odebrał za prace nad zupełnie innym problem (konkretnie nad efektem fotoelektrycznym).

Ogólna Teoria Względności (OTW) jest w zasadzie teorią opisującą najbardziej namacalne dla nas oddziaływanie – grawitację. Z nią wiążą się takie wielkości jak masa, przestrzeń i czas. OTW jest bardzo skomplikowana. Nie sposób jej zrozumieć bez ogromnej wiedzy czysto matematycznej. Wynika z niej, że każda masa jest źródłem zakrzywienia otaczającej ją przestrzeni. Czym większa masa, tym większa siła grawitacji, czyli większe zakrzywienie przestrzeni. Jak to rozumieć? Gdy dwie osoby trzymają za rogi obrus jego powierzchnia jest płaska. Ale gdy na sam środek obrusu wrzucimy piłkę, obrus w miejscu w którym się ona znajduje lekko się „naciągnie” czy inaczej „zakrzywi”. Czym większa piłka, tym większe zakrzywienie. Gdy położymy na skraju obrusu mniejsza piłeczka, stoczy się do tego zakrzywienia, tak jak przyciągana grawitacyjnie asteroida „stoczy” się w kierunku Słońca. Tyle tylko, że obrus ma dwa wymiary, a przestrzeń wokół nas ma ich trzy. Ta nieintuicyjność (nie mylić z nielogicznością) to jeden z powodów dla których dwie teorie względności tak trudno zrozumieć. Drugim jest bardzo zaawansowana matematyka, której Einstein musiał użyć do rozwiązania swoich równań.

Gdy Einstein referował swoje pomysły na względność, był znany z zupełnie innych badań teoretycznych. Słuchano go więc z zaciekawianiem. Ale to zaciekawienie wynikało z szacunku do znanego fizyka a nie ze zrozumienia tego o czym mówił. W pewnym sensie tak jest do dzisiaj. Albert Einstein jest postacią kultową. Ale nie dlatego, że tak wielu ludzi rozumie Szczególną czy Ogólną Teorię Względności.  Tak naprawdę zaledwie garstka fizyków wie o co w niej chodzi. Nieco większa grupa rozumie co wynika z teorii Einsteina. Całkiem sporo fizyków na codzień wykorzystuje w swojej pracy naukowej zjawiska, które udało się dzięki teoriom Einsteina zrozumieć. Jednym z takich zjawisk są soczewki grawitacyjne. W zakrzywionej przestrzeni światło nie porusza się po liniach prostych, tylko krzywych. To dlatego światło dalekich galaktyk biegnące w okolicach dużych mas (czarnych dziur czy innych galaktyk) jest zakrzywione, tak samo jak światło przechodzące przez szklane soczewki. Dla astrofizyków i astronomów soczewki grawitacyjne to coś w rodzaju naturalnego teleskopu dzięki któremu mogą obserwować obiekty i zjawiska których inaczej nie udałoby się zaobserwować. Zakrzywiane światło to jednak dopiero początek wchodzenia w świat abstrakcji. Z równań Einsteina wynika także, że czas jest pojęciem względnym, że nie płynie dla nas wszystkich tak samo. Jego bieg jest zależny bowiem od siły grawitacji i od prędkości z jakim porusza się ciało. To z kolei wykorzystuje się w systemach globalnej lokalizacji (np. GPS).

Einstein był teoretykiem. Nie sprawdzał eksperymentalnie tego co wyliczył na drodze matematyki. Zresztą wtedy kiedy dokonywał swoich odkryć, nie było możliwości sprawdzenia ich poprawności. Urządzenia pomiarowe nie były dość czułe, a człowiek jeszcze nie latał w kosmos. To właśnie w przestrzeni pozaziemskiej wielokrotnie testowano wyliczenia Alberta Einsteina. Wszystkie dokładnie się zgadzają. No może za wyjątkiem jednej. Przewidywanych w Teorii Względności fal grawitacyjnych. Ale o nich napiszę innym razem 🙂 Tak samo jak o największej naukowej pomyłce Einsteina.

>>> Zapraszam na profil FB.com/NaukaToLubie (kliknij TUTAJ). To miejsce w którym staram się na bieżąco informować o nowościach i ciekawostkach ze świata nauki i technologii.

Możliwość komentowania 100 lat abstrakcji została wyłączona

Myśląca maszyna

Na samą myśl o tym, że komputer mógłby myśleć, myślącemu człowiekowi włosy stają dęba. A może wystarczy nauczyć maszynę korzystania z naszych myśli?

Myślenie maszyn to temat, który wywołuje sporo emocji. Czy zbudujemy kiedykolwiek sztuczny mózg? Czy maszyny (komputery, programy) mają świadomość? A może w przyszłości nas zastąpią? Cóż, zastępują już dzisiaj. I dobrze, że zastępują, w końcu po to je budujemy. Czy myślą? Nie da się odpowiedzieć na to pytanie, zanim nie sprecyzujemy dokładnie co to znaczy „myśleć”. Jeżeli oznacza „podejmować decyzje”, to tak, komputery potrafią to robić. Potrafią też się uczyć i wyciągać wnioski z przeszłości. Nie potrafią robić rzeczy abstrakcyjnych. I przede wszystkim nie mają poczucia osobowości, nie mają poczucia swojej odrębności i swoich własnych celów. Owszem maszyny robią wiele rzeczy celowych, ale realizują nie swoje cele, tylko cele konstruktora czy programisty.

Deep brain stimulator.

(credit:  Asylum Entertainment)

Deep brain stimulator.

(credit: Asylum Entertainment)

Łowienie sygnałów

Samoświadomość czy kreatywność wydają się być barierą, która jeszcze długo nie zostanie złamana. To czy powinna być złamana, to zupełnie inny temat. Ale być może nie ma potrzeby na siłę nadawać maszynom cech ludzkich mózgów, może wystarczy w jakiś sposób je z naszymi mózgami zintegrować? Różnice pomiędzy tym, jak działa nasz mózg i „mózg” maszyny są spore. Może warto się zastanowić nad tym, czy maszyna nie mogłaby w pewnym sensie skorzystać z tego co MY mamy w głowie. Ten sam problem można postawić inaczej. Czy nasz mózg jest w stanie dogadać się bezpośrednio z maszyną? Czy jest bezpośrednio w stanie przekazywać jej informacje albo nią sterować?

Słowo „bezpośrednio” ma tutaj kluczowe znaczenie. Nasze mózgi dogadują się z komputerem, ale pomiędzy umysłem a procesorem w maszynie jest cała masa stopni pośrednich. Np. palce piszącego na klawiaturze, sama klawiatura. W końcu język, w którym piszemy komendy (albo tekst). Te stopnie pośrednie powodują, że czas pomiędzy myślą, która zakwita nam w mózgu a jej „materializacją” bywa długi. Każdy stopień pośredni jest potencjalnym miejscem pojawienia się błędu. W końcu ile razy wpisywana przez klawiaturę komenda czy tekst zawierał literówki? Jest jeszcze coś. Nie każdy fizycznie jest w stanie obsługiwać komputer czy jakiekolwiek inne urządzenie elektroniczne. Zwłaszcza dla takich ludzi stworzono interfejs mózg – komputer (IBC). Urządzenie, które pozwala „zsynchronizować” mózg z komputerem, pozwalające wydawać komendy urządzeniom elektronicznym za pomocą fal mózgowych. Dzisiaj z IBC korzystają nie tylko niepełnosprawni, ale także gracze komputerowi. W przyszłości być może będzie to standardowy sposób obsługi elektroniki.

Jak to działa? Komórki nerwowe w mózgu człowieka porozumiewają się pomiędzy sobą poprzez przesyłanie impulsów elektrycznych. Te można z zewnątrz, czyli z powierzchni czaszki, rejestrować. W ostatnich latach nauczyliśmy się je także interpretować. To istne szukanie igły w stogu siana. Mózg każdej sekundy przetwarza miliony różnych informacji, przesyła miliony impulsów do mięśni rozlokowanych w całym ciele. Każdy taki sygnał pozostawia „ślad”, który można podsłuchać.

Neural net firing reversed.

(credit:  Asylum Entertainment)

Neural net firing reversed.

(credit: Asylum Entertainment)

Czujnik w okularach

Nie powiem, że potrafimy podsłuchać wszystko. To byłaby nieprawda. Mówiąc szczerze, jesteśmy dopiero na samym początku drogi. W przypadku IBC bardzo pomocna jest  świadomość użytkownika (pacjenta?) korzystającego z interfejsu. Człowiek ma bowiem zdolności do takiego aktywizowania mózgu, by sygnały z tym związane, można było wyraźniej „usłyszeć” na powierzchni czaszki. Dzięki temu, osoby sparaliżowane, myślami są w stanie poruszać mechanicznymi nogami (czyli tzw. egzoszkieletem) albo wózkiem inwalidzkim. W ten sam sposób człowiek ze sprawnie działającym mózgiem jest w stanie komunikować się z otoczeniem chociażby poprzez pisanie na ekranie, nawet gdy jest całkowicie sparaliżowany. Myśli o literach, a te wyświetlają się na odpowiednim urządzeniu.  W podobny sposób, w przyszłości być może będzie wyglądało sterowanie telefonem komórkowym czy jakimkolwiek innym urządzeniem. Pewną trudnością jest to, że – przynajmniej dzisiaj – po to, by wspomniane impulsy można było zarejestrować, do skóry głowy muszą być przyłożone elektrody. Albo korzystający z interfejsu człowiek musi mieć ubrany specjalny czepek z czujnikami. Ale w przyszłości być może wystarczą czujniki w okularach? Okularach, w których zainstalowana będzie kamera, a na szkłach wyświetlane będą dodatkowe informacje. Takie okulary już są i nazywają się GoogleGlass.

Złożony i skomplikowany

Interfejs mózg – komputer odbiera sygnały z powierzchni skóry, rejestruje je i interpretuje. Czy możliwe jest przesyłanie informacji w odwrotną stronę, czyli z jakiegoś urządzenia do mózgu? Na razie tego nie potrafimy, ale nie mam wątpliwości, że będziemy próbowali się tego nauczyć (znów, czy powinniśmy to robić, to zupełnie inny temat). To znacznie bardziej skomplikowane niż sczytywanie potencjałów elektrycznych z powierzchni czaszki. W którymś momencie tę barierę może przekroczymy i wtedy będziemy mieli dostęp do nieograniczonej ilości informacji nie poprzez urządzenia dodatkowe takie jak komputery, tablety czy smartfony. Wtedy do tych informacji będzie miał dostęp bezpośrednio nasz mózg. Na to jednak zbyt szybko się nie zanosi. Nie z powodu samej elektroniki, raczej z powodu naszego mózgu. Panuje dość powszechna zgoda, że to najbardziej skomplikowany i złożony system jaki znamy. Nie tylko na Ziemi, ale w ogóle. Choć od lat na badania mózgu przeznacza się ogromne kwoty pieniędzy, choć w ostatnich latach poczyniliśmy ogromne postępy, wciąż niewiele wiemy o CZYMŚ co waży pomiędzy 1,2 a 1,4 kg

>>> Zapraszam na profil FB.com/NaukaToLubie (kliknij TUTAJ). To miejsce w którym staram się na bieżąco informować o nowościach i ciekawostkach ze świata nauki i technologii.

Możliwość komentowania Myśląca maszyna została wyłączona

Marsjanin okiem naukowca ;-)

Film Marsjanin jest niezły, choć książka 100 razy lepsza. Ale do rzeczy. Czy możliwa jest historia astronauty Marka Watneya, którego  gra Matt Damon? Postanowiłem popastwić się nad scenariuszem.

Wiem, że piszę to nico późno (w większości kin film już zszedł z ekranów), ale potraktujcie to jako pewien rodzaj próby. W polskim internecie naukowcy (dziennikarze naukowi) zwykle nie recenzują filmów. Ciekaw jestem jaka będzie reakcja na moją recenzję.

Film warto zobaczyć, a jeszcze bardziej warto przeczytać książkę. Piękne krajobrazy, dobre efekty specjalne i ciekawa historia nie zmieniają jednak tego, że opowiedziana w nim historia nie ma prawa się zdarzyć i to z wielu różnych powodów. Ja wspomnę o czterech. Jeżeli nie oglądałaś, jeżeli nie oglądałeś filmu, za chwilę zdradzę kilka szczegółów jego fabuły.

Burza piaskowa, ewakuacja załogi. Zdjęcie z filmu

1.Załogowa misja na Marsa musi w trybie natychmiastowym ewakuować się z planety z powodu silnej burzy piaskowej. Ta nadchodzi tak szybko, że astronauci mają dosłownie kilka minut na spakowanie się i wystrzelenie na orbitę. Tymczasem marsjańska burza byłaby dla sprzętu i ludzi  niegroźna. Marsjańska atmosfera jest z grubsza 200 razy rzadsza od ziemskiej. Nawet jak mocno wieje, niewiele ma to wspólnego z niszczycielskim żywiołem. Marsjańskie burze po prostu nie mają mocy którą mają burze na Ziemi. Marsjańska burza nie może przewracać metalowych konstrukcji. Poza tym da się ją przewidzieć z dużym wyprzedzeniem. Jeżeli w ogóle mówić o niebezpieczeństwach związanych z burzami piaskowymi na Czerwonej Planecie, to nie z powodu siły wiatru tylko znacznie mniejszych niż na Ziemi ziarenek pyłu. Te wcisną się wszędzie powodując uszkodzenia sprzętu. No ale tego w filmie nie było.

martian-gallery13-gallery-image

Uprawa ziemniaków w marsjańskim habitacie. Zdjęcie z filmu

2.Główny bohater ulega wypadkowi, a ewakuująca się załoga święcie przekonana o jego śmierci zostawia go samego na planecie. Mark Watney oczywiście się nie załamuje, tylko szybciutko liczy że na pomoc będzie musiał czekać kilka lat. Sprawdza racje żywnościowe i wychodzi mu, że tych ma za mało. Postanawia więc uprawiać w habitacie ziemniaki. Nawozi do wnętrza labu marsjański grunt i… no i tutaj zaczynają się kolejne kłopoty. Warstwa gruntu jaką przenosi do habitatu jest za mała żeby cokolwiek na niej wyrosło. Ale nie to jest najciekawsze. Z jakiś powodów astronauta postanawia nawozić ekskrementami ziemię po to by ziemniaki szybciej rosły. Po pierwsze nie wiem po co jakikolwiek nawóz. Marsjański grunt jest bardzo bogaty w mikroelementy i minerały. Nawet jeżeli chcieć go nawozić, to ludzkie odchody to nienajlepszy pomysł. Znacznie lepiej byłoby używać odpadków organicznych. Totalnym odlotem jest produkcja wody dla uprawy ziemniaków. Do tego Mark używa hydrazyny, czyli paliwa rakietowego. W teorii reakcja którą przeprowadza jest możliwa, w praktyce cały habitat wyleciałby w powietrze. Po to żeby z hydrazyny odzyskać wodór, po to by po połączeniu z tlenem powstała woda, musi zachodzić w ściśle kontrolowanych warunkach. A nie w namiocie zrobionym z worka.

Habitat, ściana na której główny bohater zaznacza liczbę spędzonych na Marcie dni. Zdjęcie z filmu

3.Największe moje wątpliwości budzi jednak nie burza, ani nie uprawa ziemniaków, tylko długi czas przebywania człowieka na Czerwonej Planecie. O ile dobrze liczę Mark Watney przebywał tam około 20 miesięcy. Nawet gdyby miał wodę i pożywienie wróciłby stamtąd chory. Do powierzchni Marsa z powodu bardzo cienkiej i rzadkiej atmosfery dochodzi dużo więcej promieniowania kosmicznego niż do powierzchni Ziemi. Z szacunków wynika, że po to by człowiek mógł czuć się na Marsie równie bezpieczny co na Ziemi, na Czerwonej Planecie musiałby przebywać pod osłoną około 2 metrów litej skały. Tymczasem w filmie nie widzimy bunkrów czy podziemnych schronów, tylko pomieszczenia wykonane z dość cienkich materiałów. Także kombinezon głównego bohatera jest cieniutki. Mark spaceruje, podziwia widoki a nawet wypuszcza się w dość dalekie trasy w pojeździe, który zresztą wygląda na zbyt ciężki jak na marsjańskie warunki. Jeden z łazików marsjańskich, nieporównywalnie mniejszy i lżejszy, kilka lat temu zakopał się w wydmie a wyciąganie go zajęło kilka tygodni.

Dalekie wycieczki piesze. Dość niebezpieczna rozrywka na Marsie. Zdjęcie z filmu

4.Natomiast najwiekszy odlot – dosłownie i w przenośni – to powrót z Marsa na Ziemię, a szczególnie jego początkowa faza, czyli opuszczenie Marsa. Nic tu się nie zgadza. Proca grawitacyjna pomiędzy Ziemia i Marsem zadziała tylko w dość specyficznych warunkach, na pewno nie takich jak te pokazane w filmie. Rozebranie rakiety, którą astronauta Mark Watney wydostaje się z powierzchni Marsa na jego orbitę spowodowałoby jej rozbicie. Pomijam już fakt, że okna zatkane materiałem z zużytego spadochronu to już nawet nie fikcja rodem z gwiezdnych wojen, tylko raczej z Hi-Mena… (dla młodszych Czytelników, He-Men to taka bajka rysunkowa, którą oglądali Wasi rodzice 😉 ). No i w końcu manewry na orbicie. Hamowanie przez wysadzenie w powietrze części stacji, przedziurawienie kombinezonu po to by używać go jak silniczka manewrowego. W końcu spotkanie… no i happy end. Nie o to chodzi że ostatnie sceny filmu sa mało prawdopodobne. One są nierealne i przeczą zasadom fizyki.

Podsumowując.

P1000471

Pustynia Atacama, Chile. Zdjęcie: Tomasz Rożek

Oczywiście takich filmów jak Marsjanin nie ogląda się po to by uczyć się fizyki. To jasne. Lubię się jednak czasami poznęcać nad filmami. Mnie najbardziej podobały się w tym filmie plenery. Spora część z nich była wykreowana komputerowo, ale część scen była grana na Chilijskiej pustyni Atacama. Byłem na niej jakiś czas temu i jeżeli Mars wygląda choć trochę jak ona… warto tam polecieć. Chociażby dla widoków. No i niebieskiego zachodu Słońca, którego akurat w filmie nie było. No bo wiecie, że na Ziemi, czyli niebieskiej planecie słońce zachodzi na czerwono, ale na czerwonej planecie na niebiesko.

P1000318_Fotor

Pustynia Atacama, Chile. Niedaleko tego miejsca testuje się marsjańskie łaziki. Zdjęcie: Tomasz Rożek

>>> Zapraszam na profil FB.com/NaukaToLubie (kliknij TUTAJ). To miejsce w którym staram się na bieżąco informować o nowościach i ciekawostkach ze świata nauki i technologii.

15 komentarzy do Marsjanin okiem naukowca ;-)

Jesteśmy w centrum?

Czy Ziemia leży w centrum wszechświata? To pytanie w XXI wieku może u niektórych wywołać  uśmiech politowania. Ale czy powinno?

Jesteśmy jedynym gatunkiem na Ziemi, który współtworzy środowisko w którym żyje. To ciekawe, bo to środowisko, które sami kreujemy, ma ogromny wpływ na kolejne pokolenia. Choć na Ziemi żyją tysiące, dziesiątki tysięcy gatunków zwierząt i roślin, tylko człowiek ma umiejętności, choć chyba powinienem napisać możliwości, by ziemię w tak ogromnym stopniu przekształcać. Jesteśmy niezwykłym gatunkiem, który żyje na niezwykłej planecie.

CopernicSystem

Rysunek Układu Słonecznego jaki pojawił się w dziele De revolutionibus orbium coelestium.

Przez setki lat, odpowiedź na tytułowe pytanie nie budziła żadnych wątpliwości. Ziemia była w centrum wszystkiego i centrum wszystkiego. Obiekty niebieskie (ze Słońcem i Księżycem włącznie) krążyły wokół naszej planety, a sama Ziemia była rusztowaniem o które opierała się cała reszta. Ten obraz runął około połowy XVI wieku. W 1543 roku w Norymberdze ukazało się dzieło kanonika Mikołaja Kopernika – astronoma, matematyka, ale także prawnika, lekarza i tłumacza. W De revolutionibus orbium coelestium – o obrotach sfer niebieskich – Kopernik obalił geocentryczną wizję świata i całkiem sprawnie (choć ze sporymi błędami) przedstawił system heliocentryczny. Ziemia przestała być w centrum. Jej miejsce zajęło Słońce. Oczywiście nikt wtedy nie myślał nawet o galaktykach, gwiazdach supernowych czy czarnych dziurach.

Dla Kopernika sytuacja była w zasadzie dosyć prosta. Słońce w centrum, a wszystko inne krążące wokoło. Mechanizm wszechświata wyglądał podobnie z tą tylko różnicą, że w samym jego centrum znajdowała się nie jak u starożytnych Ziemia, ale nasza dzienna gwiazda. Kilkadziesiąt lat po Koperniku, na początku XVII wieku obserwacje tego co znajduje się poza naszym układem planetarnym rozpoczął Galileusz. Pierwszą osobą, która przedstawiła koncepcję budowy galaktyki był urodzony w Królewcu filozof i matematyk, Immanuel Kant. Była połowa XVIII wieku i nikt poważny nie uznawał już Ziemi za geometryczne centrum wszechświata. Inaczej było jednak ze Słońcem. Wiedziano już o tym, że gwiazd w naszej galaktyce jest bardzo wiele. Wiedziano nawet że krążą one wokół jednego punktu. Bardzo długo uznawano jednak, że tym centralnym punktem jest właśnie Słońce i nasz układ planetarny.

BN-IB371_0424hu_J_20150423201321

Edwin Hubble z negatywem jednej z zaobserwowanych przez siebie galaktyk. źródło: www.wsj.com

Choć w XIX wieku Ziemia od wielu setek lat nie była już traktowana jako geometryczne centrum wszechświata, była jedyną znaną planetą co do której istniała pewność, że jest kolebką życia. Była też częścią jedynego znanego układu planetarnego. Poza Układem Słonecznym nie obserwowano żadnych planet. Ziemia nie leżała w centrum, ale była symbolicznym centrum. Na przełomie XVIII i XIX wieku najpierw Charles Messier, a później William Herschel skatalogowali setki i tysiące mgławic, które później, dzięki pracy amerykańskiego astronoma Edwina Hubble’a (lata 20te XX wieku) okazały się odległymi galaktykami. Odkrywano wiele, zaglądano coraz głębiej i dalej, ale jedno nie ulegało zmianie. W całym ogromnym wszechświecie, wszechświecie w którym istnieją miliardy galaktyk a każda jest domem dla setek miliardów gwiazd do 1990 roku istniało tylko dziewięć planet. Niesamowita historia !

Sytuacja uległa zmianie dokładnie 9 stycznia 1992 roku. To wtedy ukazała się w prestiżowym czasopiśmie Nature praca polskiego astronoma Aleksandra Wolszczana. Opisywała ona dokonane dwa lata wcześniej odkrycie trzech pierwszych planet poza Układem Słonecznym. Krążyły wokół pulsara PSR B1257+12, niecały 1000 lat świetlnych od Ziemi. Dzisiaj, 23 lat po tym odkryciu znanych jest prawie 2000 planet poza Układem Słonecznym, a planety pozasłoneczne, tzw. egzoplanety są odkrywane wręcz hurtowo.

The artist's illustration featured in the main part of this graphic depicts a star and its planet, WASP-18b, a giant exoplanet that orbits very close to it. A new study using Chandra data has shown that WASP-18b is making the star that it orbits act much older than it actually is.  The lower inset box reveals that no X-rays were detected during a long Chandra observation.  This is surprising given the age of the star, suggesting the planet is weakening the star's magnetic field through tidal forces.

To nie zdjęcie, tytlko artystyczna wizja ogromnej planety WASP-18b, która krąży bardzo blisko powierzchni swojej gwiazdy.

Planet jest sporo, ale czy one są takie jak Ziemia ? Nie! Po pierwsze przeważająca większość z nich jest dużo większa od Ziemi. To gazowe giganty takie jak „nasz” Jowisz i Saturn. Dużych planet odkrywamy tak dużo, bo znacznie łatwiej je wykryć. Ziemia różni się od innych jednak tym, że tutaj jest życie, a „tam” – niewiadomo. Co do tego, że proste bakteryjne życie istnieje w przestrzeni kosmicznej, praktycznie możemy mieć pewność, ale z życiem inteligentnym nie jest wcale tak prosto. Jest w tym pewien paradoks. Czym więcej wiem o życiu, tym chętniej przyznajemy, że to proste, jednokomórkowe jest wszechobecne i wszędobylskie. Proste formy mają niesamowitą zdolność do adaptowania się i do zasiedlania miejsc, które – jeszcze do niedawna byliśmy tego pewni – absolutnie nie nadają się do życia. Z życiem złożonym, nie mówiąc już o jego inteligentnej wersji, jest dokładnie na odwrót. Czym więcej wiemy, tym dłuższa staje się lista czynników, warunków, które muszą zostać spełnione, by życie jednokomórkowe wyewoluowało do wersji złożonej. Dzisiaj ta lista ma już kilkaset pozycji, wśród nich takie jak odpowiednia wielkość planety, odpowiednia odległość od gwiazdy i odpowiedni skład atmosfery. Te wspomniane warunki są w sumie logiczne. Ale dalej na tej liście jest pole magnetyczne i gorące jądro planety, siły pływowe, a więc tektonika płyt. Bardzo ważna jest aktywność wulkaniczna oraz wyładowania atmosferyczne.

Kiedyś powszechnie uważano, że Ziemia w skali kosmicznej jest ewenementem. Potem takie myślenie zarzucono. Gdybym napisał, że dzisiaj wraca się do tego, chyba bym przesadził. Ale faktycznie, coraz częściej zdajemy sobie sprawę z tego, że inteligentne istotny w kosmosie mogą być wielką rzadkością. I to pomimo tego, że planet we wszechświecie jest niepoliczalnie dużo. Czyżby więc Ziemia z ludźmi „na pokładzie” była egzemplarzem niepowtarzalnym? Na razie jest. Wiele, bardzo wiele wskazuje na to, że tak pozostanie jeszcze przez dość długi czas. A może nawet na zawsze.

2 komentarze do Jesteśmy w centrum?

Zdjęcia z eksplozji Antaresa

NASA ujawniła 85 zdjęć ze startu i eksplozji rakiety Antares. Niektóre zapierają dech w piersiach.

Kilka tygodni temu, na FB.com/NaukaToLubie informowałem, że Amerykańska Agencja Kosmiczna NASA udostępniła w serwisie zdjęciowym Flickr zdjęcia wysokiej jakości zrobione w trakcie trwania programu lotów księżycowych Apollo.

Tym razem NASA udostępniła 85 zdjęć na których widać nieudany start zakończony eksplozją rakiety Antares. Zdjęć nie powstydził by się najlepszy scenarzysta filmów science-fiction. Niestety fotografie, które pokazuję poniżej nie zostały stworzone na komputerze.

Rakieta Antares eksplodowała 15 sekund po starcie, który miał miejsce 28 października 2014. Zapasy, które przewoziła miały być dostarczone na pokład Międzynarodowej Stacji Kosmicznej. W sumie stracono ponad 2 tony zaopatrzenia dla ISS, a także sprzęt naukowy i eksperymenty studenckie. Zniszczeniu uległ także satelity Arkyd 3, RACE, GOMX 2 i 26 nanosatelitów Flock-1d.

>>> Przy okazji zapraszam na profil FB.com/NaukaToLubie (kliknij TUTAJ). To miejsce w którym staram się na bieżąco informować o nowościach i ciekawostkach ze świata nauki i technologii.

6_33_gallery_wide 7_25_gallery_wide 8_25_gallery_wide 9_19_gallery_wide 10_15_gallery_wide 11_17_gallery_wide 12_8_gallery_wide-2  13_7_gallery_wide 14_6_gallery_wide 15_4_gallery_wide

 

>>> Zapraszam na profil FB.com/NaukaToLubie (kliknij TUTAJ). To miejsce w którym staram się na bieżąco informować o nowościach i ciekawostkach ze świata nauki i technologii.

Możliwość komentowania Zdjęcia z eksplozji Antaresa została wyłączona

Wszechświaty równoległe?

Pracujący w Kalifornii astrofizyk, analizując mapę mikrofalowego promieniowania tła zauważył na niej dziwne struktury. Naukowiec uważa, że to światło które pochodzi z wszechświatów równoległych.

Pracujący w Kalifornii astrofizyk, Ranga-Ram Chary, analizując mapę mikrofalowego promieniowania tła zauważył na niej dziwne struktury. Tam gdzie na mapie miało być ciemno, pojawiały się jasne plamy. Naukowiec uważa, że najbardziej prawdopodobnym wytłumaczeniem jest to, że światło które widzi pochodzi z wszechświatów równoległych.

Czy to możliwe? Tak. Żadna teoria nie zabrania istnienia wszechświatów równoległych do naszego. Nie zabrania także istnienia wszechświatów starszych od tego w którym my żyjemy. Tyle tylko, że to nie jest żaden dowód za tym, że takie światy rzeczywiście istnieją.

Czym jest mikrofalowe promieniowanie tła, zwane inaczej promieniowaniem reliktowym? To echo Wielkiego Wybuchu. Brzmi abstrakcyjnie. Około 380 tysięcy lat po Wielkim Wybuchu, a więc w bardzo BARDZO wczesnej fazie rozwoju naszego wszechświata, temperatura materii obniżyła się do około 3000 Kelwinów a to spowodowało, że zupa materii i energii (a tym właśnie był wczesny wszechświat) zaczęła się rozdzielać. Fotony oddzieliły się od materii, a ta zaczęła się skupiać w pragalaktyki. Od tego czasu te pierwotne fotony przemierzają wszechświat we wszystkich kierunkach, a my dzięki temu jesteśmy w stanie zobaczyć, jak ten wczesny wszechświat wyglądał. Na mapie mikrofalowego promieniowania tła widać bowiem mniejsze i większe skupiska materii. To są miejsca w których zaczęły powstawać galaktyki i ich gromady. Promieniowania reliktowego jest bardzo mało (w każdym centymetrze sześciennym świata jest około 300 tworzących go fotonów), ale za to jest ono wszędzie. Otacza nas ze wszystkich stron. W skrócie mówiąc to promieniowanie to nic innego jak resztki światła, które emitował rozgrzany i potwornie ściśnięty młody wszechświat. Tak jak żarzące się włókno żarówki czy rozgrzany do czerwoności rozpalony w ogniu metalowy pręt. Poświata Wielkiego Wybuchu wydostała się z gorącej zupy materii dopiero, gdy zaczął się z niej formować przezroczysty gaz atomów. Szacuje się, że było to ok. 380 tyś lat po Wielkim Wybuchu.

A wracając do wszechświatów równoległych. Ich istnienia nie możemy wykluczyć, ani potwierdzić. Przynajmniej na razie. Tajemnicze plamy o których wspomniałem wcześniej nie są żadnym dowodem. W najlepszym wypadku będą argumentem za tym, by jeszcze raz, jeszcze dokładniej przeanalizować wyniki badań, które przeprowadza się nieustannie od kilkudziesięciu lat. Zdaniem naukowca, który zauważył tajemnicze plamy, są to ślady materii, która pochodzi z innego świata, na dodatek takiego w którym mają obowiązywać inne niż u nas prawa fizyki. To ostatnie stwierdzenie jest – delikatnie mówiąc – słabo udokumentowane. Badacza poniosła chyba fantazja. Dobrze jest pamiętać, że w XXI wieku nie jesteśmy w stanie powiedzieć z czego zbudowane jest ponad 90 proc. Naszego własnego wszechświata. Ciemna energia i ciemna materia to ogromne znaki zapytania dla kosmologów. Zanim więc zaczniemy dowodzić istnienia innych wszechświatów, będzie trzeba rozwikłać zagadkę tego w którym my żyjemy.

>>> Zapraszam na profil FB.com/NaukaToLubie (kliknij TUTAJ). To miejsce w którym staram się na bieżąco informować o nowościach i ciekawostkach ze świata nauki i technologii.

3 komentarze do Wszechświaty równoległe?

Bolid – kilka mitów, kilka faktów

Bolid, jasny ślad na nocnym niebie, jaki pojawił się przedwczoraj nad Polską, wywołał ogromne emocje. I nie ma się co dziwić. Przy okazji warto wyjaśnić kilka nieporozumień.

Bolid, jasny ślad na nocnym niebie, jaki pojawił się przedwczoraj nad Polską wywołał ogromne emocje. I nie ma się co dziwić. Tak dobrze udokumentowane na zdjęciach zdarzenie to jednak rzadkość. Przy okazji tego zdarzenia warto wyjaśnić kilka nieporozumień.

  1. Czy to dało się przewidzieć?

NIE. Bolidy to wbrew pozorom małe obiekty (piszę o tym w kolejnym punkcie), a takich nie da się obserwować przez teleskopy a tym bardziej śledzić ich trajektorii. W efekcie, choć są okresy kiedy szansa na zaobserwowanie bolidu jest większa, nie da się przewidzieć kiedy i gdzie go zauważymy. Jeżeli tak, skąd wzięło się tyle zdjęć tego zjawiska? Bolid pozostawia na nocnym niebie (w niektórych przypadkach także na dziennym niebie) ślad, który „trwa” kilkanaście, a nawet kilkadziesiąt sekund. Jeżeli ktokolwiek był na zewnątrz, jeżeli ktokolwiek miał w dłoni aparat fotograficzny (np. w telefonie), miał ogromne szanse by zrobić zdjęcie mimo tego, że nie spodziewał się niczego szczególnego. Wiele ze zdjęć bolidu było robionych na cmentarzach. Cóż, mieliśmy Wszystkich Świętych, a pogoda w sporej części Polski była perfekcyjna. Noc, liście na drzewach, znicze na grobach, łuna światła i … bolid w tle. Bonus dla artystycznych dusz.

  1. Czy to był duży obiekt?

NIE. Ludzkie oko jest w stanie zobaczyć krótkotrwały błysk światła wtedy gdy w ziemską atmosferę wchodzi obiekt wielkości ziarenka piasku. W czasie deszczy (rojów) meteorów, których w ciągu roku jest kilkanaście, przeważającą większość świetlnych efektów powodują właśnie ziarenka wielkości główki od szpilki. Gdy meteor ma wielkość kostki do gry, ślad jaki pozostawia po sobie utrzymuje się na kilka sekund. Bolidy mają wielkość kilku, górka kilkunastu centymetrów. Kilkunastocentymetrowe nie tylko mogą świecić jaśniej niż Księżyc w pełni, ale także być źródłem efektów dźwiękowych. Te przypominają charakterystyczny pisk hamującego na dworcu pociągu, albo wyładowanie atmosferyczne. Szczególnie duże bolidy mogą być widoczne także w ciągu dnia.

  1. Czy bolid mógł dolecieć do Ziemi?

NIE. Ten konkretny, który w sobotę wieczorem wywołał takie poruszenie, nie doleciał do powierzchni gruntu. Był za mały. Skąd o tym wiemy? Pierwszym wskazaniem jest to, że w pewnym momencie świetlny ślad jakiego bolid był źródłem urywa się. To nie jest wskazanie jednoznaczne, bo w przypadku niektórych obiektów świetlny ślad kończy się w miejscu w którym obiekt ma za mało energii (powietrze wyhamowało go) by rozgrzewać otaczające go powietrze. O tym czym jest świetlny ślad piszę w kolejnym punkcie. Jest jednak argument drugi za tym, że nic do powierzchni ziemi nie doleciało. Sobotni obiekt nie był duży, bo świadkowie przelotu nie słyszeli efektów dźwiękowych. Obiekty o średnicy rzędu centymetrów (a nawet te o średnicy dziesiątków centymetrów) spalają się całkowicie w atmosferze. Niektóre najpierw rozpadają się na mniejsze kawałki, a potem spalają.

  1. Czy świetlisty ślad na niebie zostawił rozgrzany do białości kawałek skały?

NIE. Powszechnie uważa się, że to co widzimy na niebie, to rozgrzany do białości kawałek meteoru. Tymczasem to nieprawda. Po pierwsze – jak wspominałem wcześniej – te obiekty są bardzo małe a efekty świetlne powstają na znacznych (kilkadziesiąt kilometrów) wysokościach. Po drugie, gdyby źródłem światła był meteor, nie widzielibyśmy utrzymującego się przez kilkanaście sekund śladu, tylko bardzo szybko poruszający się punkt świetlny. Co zatem świeci jeżeli nie rozgrzany meteor?

Powierzchnia meteoru nagrzewa się rzeczywiście bo tego typu obiekty poruszają się z bardzo dużymi prędkościami (nawet ponad 100 000 km/h), ale powodem tego nagrzewania nie jest ocieranie się o atomy ziemskiej atmosfery, tylko sprężenie powietrza przed czołem meteoru. Kosmiczna „skała” działa jak szybko poruszający się spychacz, który pcha przed sobą gaz. W ten sposób wytraca prędkość, ale „zyskuje” energię. W ten sposób może się rozgrzać do temperatury kilku tysięcy st. C. Tak, jest źródłem światła, ale to nie to światło widzimy na powierzchni ziemi. Rozgrzany meteor przekazuje część swojej energii otoczeniu przez które przelatuje, czyli powietrzu atmosferycznemu. Te rozgrzane zaczyna intensywnie świecić. I to to światło widzimy. Meteor przelatuje dalej, ale gaz świeci tak długo aż się nie ochłodzi co czasami trwa kilkanaście sekund. W pewnym momencie świetlny ślad urywa się. To znak, że w tym miejscu meteor całkowicie się spalił albo rozpadł na fragmenty mniejsze niż ziarenka piasku.

  1. Czy można się spodziewać większej ilości bolidów?

TAK. Przelot bolidu nie jest jednorazowym wydarzeniem. Wbrew pozorom na danym obszarze zdarza się kilka razy w roku. Trzeba jednak pamiętać, że średnio połowę doby mamy dzień. Bolidy dzienne, czyli na tyle duże by zobaczyć je na jasnym niebie, są rzadkością. Ponadto bolidów nie widać gdy na niebie są chmury bo świetlne ślady powstają dużo wyżej. No i kwestia świadków. Gdyby ten sam przelot miał miejsce nie w godzinach wczesno wieczornych tylko nad ranem, nie byłoby pięknych zdjęć, ani ogromnej liczby świadków.

Podsumowując. Gdyby wziąć to wszystko pod uwagę, piękna pogoda, wczesny wieczór i jasny bolid zdarza się raz wiele miesięcy. Co nie znaczy, że kolejny nie pojawi się jutro. Szanse na pojawienie się bolidów rosną w czasie deszczów meteorów. Obecnie Ziemia przechodzi przez pozostałości po komecie 2P/Encke, czego efektem jest dość rzadki (średnio 5 „spadających gwiazd” na godzinę) rój Taurydów Północnych. Jest bardzo prawdopodobne, ze sobotni bolid był kiedyś częścią komety 2P/Encke.

>>> Zapraszam na profil FB.com/NaukaToLubie (kliknij TUTAJ). To miejsce w którym staram się na bieżąco informować o nowościach i ciekawostkach ze świata nauki i technologii.

7 komentarzy do Bolid – kilka mitów, kilka faktów

Orionidy nadlatują !!!

Już za chwileczkę, już za momencik… a tak właściwie od kilku dni Ziemia w swoim ruchu wokół Słońca przelatuje przez chmurę kawałków komety Halley’a. Maksimum tych zderzeń nastąpi z środy na czwartek.

Ziemia z resztkami komety Halley’a „spotyka się” kilka razy w roku. W październiku skutkuje to deszczem Orionidów, na przełomie kwietnia i maja Eta Akwadydów, a w pierwszych dniach sierpnia Akwarydów. Dzisiaj w nocy jest maksimum roju Orionidów.

Poruszająca się w kierunku Słońca kometa (nie tylko kometa Halley’a) topiąc się pozostawia na swojej drodze niewielkie skalne kawałki, z których jest posklejana. Powstaje wtedy ślad, który znaczy drogę po której kometa się poruszała. W ciągu roku Ziemia wielokrotnie wlatuje w tak pozostawioną „ścieżkę” (u dołu tego wpisu wypisałem listę największych rojów meteorytów jakie można oglądać w Polsce).

Pozostałości komet z którymi Ziemia się „zderza” to pył i małe okruchy skalne. W ziemskiej atmosferze pozostawiają widoczny gołym okiem świetlny ślad nawet te, które są wielkości ziarenek pisaku. To dzięki grubej ziemskiej atmosferze możemy oglądać – o ile pogoda na to pozwoli – ciekawe widowisko. Nie musimy przy tym chować się pod dach 😉 , choć gdyby nie chroniąca nas atmosfera byłoby to konieczne, bo drobne cząstki pyłu i większe okruchy skalne wpadają w nią nawet z prędkością 75 km/s. Wtedy ocierając się i zderzając z cząsteczkami powietrza silnie rozgrzewają swoją powierzchnię. Zderzenia te są tak intensywne i jest ich tak dużo, że powierzchnia obiektu zaczyna się topić i wrzeć. Część w ten sposób „nabytej” energii przekazana zostaje do otaczającego meteor powietrza. To nagrzewa się i świeci a my widzimy „spadającej gwiazdy”.

Znakomita większość „spadających gwiazd” spala się całkowicie w ziemskiej atmosferze. Co więcej to co obserwujemy gołym okiem, to zaledwie ułamek wszystkich spadających na Ziemię meteorów. Większość z nich  jest na tyle mała, że ich „spalania” nie widać gołym okiem. Szacuje się, że w ciągu doby na powierzchnię Ziemi spada aż 100 ton tego niezauważalnego pyłu. Corocznie – w ściśle określonych porach – różnych rojów pojawia się na naszym niebie ok. 20. Niektóre z nich widoczne są na jednej półkuli a inne – tak jak Orionidy – na obydwu. Do ich obserwacji nie trzeba kosztownych urządzeń i o ile pogoda dopisze – i dodatkowo noc będzie bezksiężycowa – powinno być widać spadające gwiazdy. Uważny obserwator może ich zauważyć nawet 15 w ciągu jednej godziny.

Najobfitsze roje meteorytów występujące na półkuli północnej (w Polsce).  
Nazwa i okres występowania    
Kwadrantydy (1-6 I)    
Eta Akwarydy (24 IV – 20 V)    
Delta Akwarydy (15 VII – 20 VIII)    
Geminidy (7-16 XII)    
Perseidy (23 VII – 20V III)    
Orionidy (16-27 X)    
Taurydy (20 X- 30XI)    
Leonidy (15-20 XI)    

 

>>> Zapraszam na profil FB.com/NaukaToLubie (kliknij TUTAJ). To miejsce w którym staram się na bieżąco informować o nowościach i ciekawostkach ze świata nauki i technologii.

Możliwość komentowania Orionidy nadlatują !!! została wyłączona

Co tam się dzieje? Komety czy Obcy?

Wokół jednej z setek tysięcy gwiazd, które obserwuje teleskop Kepler krążą duże obiekty. Naukowcy nie widzą czym one są, ani jak powstały. Internety już mówią o tworach obcych cywilizacji.

Wiecie co to jest Brzytwa Ockhama? To zasada zgodnie z którą przy „wyjaśnianiu zjawisk należy dążyć do prostoty, wybierając takie wyjaśnienia, które opierają się na jak najmniejszej liczbie założeń i pojęć”. Trudno obcą cywilizację uznać za najbardziej oczywisty powód niezrozumiałych obserwacji astronomicznych. Oczywiście nie można jej też całkowicie wykluczyć.

Co konkretnie tak zadziwiło astronomów? W 2009 roku Teleskop Kosmiczny Keplera wśród setek tysięcy gwiazd wypatrzył KIC 8462852. Ta nie świeciła jednak tak jak inne słońca. Coś w sposób nieregularny zakłócało jej obserwację. Tym „czymś” jest duża ilość niewielkich, ale bardzo gęstych obiektów. – Prawdę mówiąc, światło emitowane przez KIC 8462852 było najdziwniejszą rzeczą, jaką zaobserwował Kepler od początku swojego istnienia – powiedziała badaczka z Yale Tabetha Boyajian. Kepler pracuje na orbicie od kilku lat. Inny badacz, Jason Wright, astronom z Penn State University powiedział, że był pod wrażeniem tego, jak niesamowicie to wyglądało. – Obca cywilizacja to ostatnia hipoteza, jaką powinniśmy w takim przypadku rozpatrywać, ale to coś wyglądało tak, jak gdyby stworzyli to właśnie kosmici. (oryginał wypowiedzi : „I was fascinated by how crazy it looked”. “Aliens should always be the very last hypothesis you consider, but this looked like something you would expect an alien civilization to build.”).

Jako że zdjęcia pochodzą sprzed kilku lat, badacze twierdzą, że bardzo dokładnie sprawdzili sprzęt i nie ma mowy o usterce czy pomyłce. – Tam na prawdę krąży ogromna ilość obiektów, ściśniętej materii – powiedziała Boyajian. Czym te obiekty mogą być? No właśnie tutaj zaczyna się kłopot. Bo lista naturalnych wytłumaczeń tego fenomenu jest bardzo krótka. W zasadzie, choć i to jest bardzo mało prawdopodobne, podobny efekt dałyby tylko komety. Być może inna gwiazda przyciągnęła w stronę KIC 8462852 sznur komet. Trudno nawet oszacować prawdopodobieństwo takiego zdarzenia, bo… nigdy wcześniej niczego podobnego nie zaobserwowano.

I co teraz? Dane są analizowane, a gwieździe wokół którejś coś krąży od stycznia będą się przyglądały ziemskie radioteleskopy. Gwiazda KIC 8462852 na nocnym niebie znajduje się pomiędzy gwiazdozbiorami łabędzia i lutni. Patrząc tam można sobie przez chwile pomyśleć…. że ktoś patrzy stamtąd w naszym kierunku. Nie, no błagam, musi być jakieś bardziej przyziemne wytłumaczenie 😉

Zapraszam na profil FB.com/NaukaToLubie (kliknij TUTAJ). To miejsce w którym staram się na bieżąco informować o nowościach i ciekawostkach ze świata nauki i technologii.

2 komentarze do Co tam się dzieje? Komety czy Obcy?

Skąd jesteśmy, kim jesteśmy i dokąd zmierzamy?

O człowieku można mówić na wiele różnych sposobów. Inaczej opisują go atlasy anatomiczne, inaczej podręczniki do biochemii czy antropologii. Książka „Człowiek” nie jest atlasem opisującym każdą cząstkę ludzkiego ciała. Nie jest też podręcznikiem, który opowiada o reakcjach biochemicznych, które zachodzą w ludzkich komórkach. Jest próbą odpowiedzi na trzy krótkie pytania. Skąd jesteśmy, kim jesteśmy i dokąd zmierzamy? Łatwo takie pytania zadać, znacznie trudniej znaleźć na nie odpowiedzi.

Po „Kosmosie” przyszedł czas na „Człowieka” , czyli drugą część mojej trylogii. Opowieść o tym skąd jesteśmy, kim jesteśmy i dokąd zmierzamy?

rozkładówka - wstęp

O człowieku można mówić na wiele różnych sposobów. Inaczej opisują go atlasy anatomiczne, inaczej podręczniki do biochemii czy antropologii. Organizm człowieka jest „kosmicznie” skomplikowany i właśnie dlatego jest tak niezwykły. Książka „Człowiek” nie jest atlasem opisującym każdą cząstkę ludzkiego ciała. Nie jest też podręcznikiem, który opowiada o reakcjach biochemicznych, które zachodzą w ludzkich komórkach. Jest próbą odpowiedzi na trzy krótkie pytania. Skąd jesteśmy, kim jesteśmy i dokąd zmierzamy? Łatwo takie pytania zadać, znacznie trudniej znaleźć na nie odpowiedzi.

rozkładówka_Konarzewski

Kiedyś przeprowadzałem wywiad z neuropsychologiem. Zapytałem go, ile tak właściwie wiemy o ludzkim mózgu. Intuicja podpowiadała mi, że niewiele. Zakładałem, że profesor odpowie, że poznaliśmy nie więcej niż kilka procent wszystkich zagadnień związanych z mózgiem. A tymczasem odpowiedział: „gdyby zapytał mnie pan o to kilka lat temu, powiedziałbym, że nie więcej niż 10 procent, ale dzisiaj, po uruchomieniu kilku dużych międzynarodowych programów dotyczących badania mózgu, po ogromnej liczbie publikacji, jakie pojawiły się w ostatnich latach, twierdzę, że wiemy nie więcej niż 3-4 procent”. Ta odpowiedź jest zaskakująca tylko pozornie. W nauce bardzo często wraz ze wzrostem wiedzy, wzrasta także świadomość naszej niewiedzy. Naukowców i pasjonatów na całym świecie napędza nie to co jest znane, tylko właśnie to, co jest tajemnicą. Jako dziennikarz naukowy przyglądam się tym tajemnicom i czuję podekscytowanie. Ta książka jest pełna moich ekscytacji i fascynacji oraz prób znalezienia odpowiedzi na nurtujące mnie pytania.

rozkładówka_kaczmarzyk

Książka podzielona została podzielona na trzy części. W każdej z nich, oprócz mojego tekstu, znajduje się fascynujący wywiad z naukowcem. Rozmawiam o przeszłości, teraźniejszości i przyszłości człowieka. W wywiadach staram się uzyskać odpowiedzi na tytułowe pytania: skąd jesteśmy, kim jesteśmy i dokąd zmierzamy? Czy je uzyskuję? O tym każdy Czytelnik przekona się sam.

rozkładówka - tadeusiewicz

Człowiek to drugi tom trylogii, którą wymyśliłem w ubiegłym roku. Pierwszy tom, który ukazał się w 2014 roku był zatytułowany Kosmos. Opisuję w nim wszystko to, co jest większe od człowieka. Od Wszechświata począwszy, poprzez galaktyki i układy planetarne, a na planetach, w tym planecie Ziemi, skończywszy. Trzeci tom trylogii – Mikrokosmos – ukaże się w przyszłym roku.

Książka Człowiek została wydana nakładem Grupy Wydawniczej Foksal sp. z o.o.

Zapraszam do lektury

2 komentarze do Skąd jesteśmy, kim jesteśmy i dokąd zmierzamy?

Nobel z fizyki – abstrakcja goni abstrakcję

W ciągu każdej sekundy, przez nasze ciała przenika kilkadziesiąt bilionów neutrin. Abstrakcyjnie dużo. Masa każdego z nich jest mniejsza niż miliardowa część masy atomu wodoru. Abstrakcyjnie mało. Takie właśnie są neutrina. Abstrakcyjne. Za ich badania przyznano tegorocznego Nobla z fizyki.

Neutrina są najbardziej chyba nieuchwytnymi cząstkami badanymi przez fizyków. Prawie w ogóle nie oddziałują z materią. Po prostu przez nią przenikają. Zupełnie tak, jak gdyby była dla nich przezroczysta. Nie stanowią dla nich żadnej przeszkody ciała niebieskie jak i olbrzymie odległości (które pokonują z prędkością zbliżoną do prędkości światła). Powstają w czasie reakcji jądrowych, nie mają ładunku i posiadają nieskończenie małą masę. Neutrina występują w trzech odmianach. Najlepiej poznane są tzw. neutrina elektronowe, ale oprócz nich istnieją jeszcze neutrina taonowe i mionowe. I to właśnie różne odmiany tej samej cząstki były przez 30 lat powodem zamieszania nazwanego tajemnicą neutrin słonecznych. Ale zanim o tajemnicy.

PH20-water-withboat-apr23-wm-small

Wnętrze ogromnego detektora neutrin Super-Kamiokande. Wydrążony we wnętrzu góry mieści 50 000 ton superczystej wody. Widoczne na zdjęciu bańki to fotopowielacze, które rejestrują subtelne błyski światła. Te powstają wtedy, gdy neutrino zderzy się z jądrem atomowym.

Dlaczego ich badanie jest tak ważne? Na prawdę zasługuje aż na Nagrodę Nobla?  Neutrina są być może najliczniejszą grupą cząstek jakie „zasiedlają” nasz wszechświat. W ciągu każdej sekundy, przez nasze ciała przenika ich kilkadziesiąt miliardów. Abstrakcyjnie dużo. Skoro chcemy poznać wszechświat, skoro mamy ambicje by go zrozumieć, nie poradzimy sobie bez wiedzy o neutrinach. Przez lata uważano, że są to cząstki bezmasowe, czyli, że w ogóle nie mają masy. W rzeczywistości ważą, choć tyle co nic. W przypadku tak małych i ulotnych obiektów trudno mówić o precyzyjnym pomiarze masy, ale szacunkowo masę neutrin określa się na dziesiąte części elektronowolta, a to mnie niż jedna miliardowa część masy atomu wodoru. Abstrakcyjnie mało.

A wracając do tajemnicy neutrin słonecznych. Naukowcy doskonale wiedzą w wyniku jakich reakcji we wnętrzu Słońca powstaje jeden z rodzajów neutrin, czyli neutrina elektronowe. Z dużą precyzją można policzyć ile neutrin elektronowych powinno trafiać na Ziemię i ile powinno być rejestrowanych. Przez lata problem polegał jednak na tym, że te przewidywania teoretyczne nijak się miały do danych eksperymentalnych. Neutrin elektronowych na Ziemi rejestrowano o wiele mniej (aż o ok. 70 proc. mniej) niż powinno ich być. Możliwości były dwie. Albo reakcje, które wg. fizyków powinny zachodzić w jądrze Słońca wcale tam nie zachodzą i dlatego o wiele mniej neutrin elektronowych dociera do Ziemi, albo w czasie swojej podróży pomiędzy gwiazdą a naszą planetą coś z neutrinami się dzieje. Ostatecznie okazało się, że fizycy mieli rację co do procesów zachodzących w Słońcu. One po prostu oscylują – czyli zmieniają swoje właściwości. Zamieniają się pomiędzy sobą postaciami. Jedne neutrina spontanicznie, zmieniają się w inne. W naszym świecie dużych przedmiotów to zdolność mocno abstrakcyjna. Jak można ją sobie wyobrazić? A można sobie wyobrazić spadające z drzewa jabłko, które w czasie lotu ku powierzchni gruntu spontanicznie zamieni się w śliwkę, po to by ostatecznie upaść na trawę jako gruszka? Takie właśnie są neutrina. Abstrakcyjne.  Zamiast badać jeden rodzaj neutrin docierających do Ziemi,  zaczęto przyglądać się im wszystkim na raz. Tym razem, wszystko się zgadzało. To było ostateczne potwierdzenie tzw. oscylacji neutrin.

Zapraszam na profil FB.com/NaukaToLubie (kliknij TUTAJ). To miejsce w którym staram się na bieżąco informować o nowościach i ciekawostkach ze świata nauki i technologii.

 

 

 

Tomasz Rożek

3 komentarze do Nobel z fizyki – abstrakcja goni abstrakcję

A co gdyby Mars zzieleniał?

Wiadomo, Ziemia jest niebieska a Mars czerwony. Tak przynajmniej te planety wyglądają z kosmosu. Ale czy tak było zawsze? Mars mógł być kiedyś zielony. W końcu wiemy ponad wszelką wątpliwość, że była tam i wciąż jest płynna woda. Jak wyglądałbym Mars, gdyby były na nim rzeki, jeziora, morza i oceany?

Kilkanaście dni temu świat obiegła wiadomość, że na Marsie znaleziono ciekłą wodę. O tym, że na Czerwonej Planecie jest woda – wiedzieliśmy od dawna. Widzieliśmy ją zamarzniętą na biegunach planety. Podejrzewaliśmy, że jest także pod powierzchnią w formie wiecznej zmarzliny. Co więcej, podejrzewaliśmy, że czasami ta woda wypływa małymi strumyczkami z oświetlonych promieniami Słońca zboczy gór i kraterów. Podejrzenia jednak to nie to samo co fakty i niezbite dowody. Dzisiaj wiemy jednak, że – przynajmniej tym razem – podejrzenia były słuszne. Tam rzeczywiście nie tylko była, ale wciąż jest całkiem sporo wody.

Mars jest czerwony, bo pokrywający planetę pył jest bogaty w rdzawego koloru tlenki żelaza. Jeżeli planeta boga wojny kiedykolwiek była zielona to nie z powodu odbijających zielone światło minerałów, tylko z powodu życia. O ile było ono takie samo jak to ziemskie. Życie potrzebuje płynnej wody. Z tym akurat – jak się okazuje – w przypadku Marsa nie ma problemu i najpewniej nigdy nie było. Skąd przypuszczenie, że wody na Marsie kiedyś było znacznie, znacznie więcej niż tej, która znajduje się tam dzisiaj? Wystarczy sprawnym (naukowym) okiem rzucić na powierzchnię Czerwonej Planety. Pełno tam struktur do złudzenia przypominających wyschnięte koryta rzek, wąwozy, strumyki a nawet wodospady. Sam amerykański łazik Curiosity, wylądował w dawnym korycie rzeki, w którym głębokość wody sięgała dwóch metrów. Są też ogromne przestrzenie położone znacznie poniżej średniego poziomu gruntu planety. Te do złudzenia przypominają wyschnięte morza i oceany. Te mniejsze zagłębienia to wypisz wymaluj puste jeziora. A teraz zamknijmy oczy i pofantazjujmy. Jak wyglądałby Mars, gdyby, tak jak na Ziemi, płynnej wody było na nim pod dostatkiem?

mars-kevin-gill-01Wygląda jak Ziemia

Na pewno nie byłby czerwony. Może byłby niebieski, może zielony. Spróbujmy wyobrazić sobie Marsa sprzed miliardów lat. Kevin Gill, amerykański informatyk i entuzjasta astronomii wykorzystując zaawansowaną technologię cyfrową, trójwymiarowe zdjęcia Marsa oraz dokładne pomiary jego topografii stworzył obrazy planety z czasów, gdy – tak jak Ziemia – był ona planetą pełną płynnej wody. Gill poszedł w swoim fantazjowaniu o krok dalej. W swoim komputerowym modelu założył, że na Marsie – gdy była na nim woda – rosła bujna roślinność. I znowu z pomocą przyszła mu technologia cyfrowa. Posiłkując się danymi z Ziemi, marsjańskie drzewa i rośliny „posadził” tam, gdzie dostęp do wody i światła był najłatwiejszy. Autor symulacji wziął nawet pod uwagę wysokość nad poziomem marsjańskiego morza (w wysokich partiach gór roślin nie ma) oraz fakt, że najwyższa średnioroczna temperatura panuje na równiku, a najniższa na biegunach. Także od tego zależy wegetacja. Jeżeli jest woda, jeżeli jest atmosfera, muszą być także chmury. I one zostały naniesione na obraz Marsa z przeszłości. Jak więc wyglądał Mars kiedyś? Jak mógł wyglądać? Prawdę mówiąc prawie tak samo jak Ziemia. Trzeba się mocno przyglądać wirtualnemu obrazowi Marsa by zorientować się, że nie patrzy się na zrobione z orbity zdjęcie Ziemi. Wyżyny i niziny na Marsie występują w podobnych proporcjach co na Ziemi. Na stworzonych w komputerze obrazach widać wyraźnie najdłuższą dolinę w układzie słonecznym – Vallis Marineris – oraz szczyty ogromnych wulkanów Olympus Mons, Pavonis Mons, Ascraeusa Mons i Arsia Mons.

mars-water-2A może go dostosować?

Praca Gill’a nie może być uznana za w pełni naukową. Ale nie ma wątpliwości, że bardzo porusza wyobraźnię. Mars rzeczywiście mógł kiedyś wyglądać tak, jak „zaprojektował” go Kevin Gill. Jego praca w pewnym sensie pokazuje jednak nie tylko przeszłość (przy spełnieniu kilku warunków), ale może pokazywać także przyszłość. Być może w przyszłości ludzie skolonizują Czerwoną Planetę. Jej zaludnienie będzie niemożliwe jeżeli wcześniej planetę odpowiednio dostosujemy. Oczywiście można sobie wyobrazić budowę systemu szklarni w których ludzie, zwierzęta i rośliny będą żyły w równowadze podobnej do tej jaka panuje na Ziemi, ale jednak łatwiej chyba będzie taką równowagę stworzyć nie pod szklanym sufitem, tylko na powierzchni całej planety. Sprawa nie jest prosta i jest całkowicie poza zasięgiem naszych dzisiejszych możliwości, ale może warto zastanowić się nad czymś co niektórzy nazywają terraformowaniem obcych globów. Chodzi o takie ich „przerobienie” czy dostosowanie, by człowiek mógł na nich funkcjonować bez urządzeń technicznych takich jak sztuczna atmosfera w zamkniętej przestrzeni, kombinezony i maski. Jak Marsa przekształcić w Ziemię? Przede wszystkim trzeba na nim stworzyć atmosferę. To – przynajmniej teoretycznie – mogłyby zrobić żyjące na powierzchni gruntu bakterie. Trzeba je więc tam wysłać. Gdyby po setkach tysięcy lat atmosfera rzeczywiście na Marsie powstała, trzeba byłoby ją ogrzać. Wprowadzić do niej gazy cieplarniane tak, by energia słoneczna była na Czerwonej Planecie zatrzymywana. To spowodowałoby wzrost temperatury i „wypłynięcie” spod gruntu lub spłynięcie z biegunów ciekłej wody. Teraz pozostaje obsadzenie planety roślinami i gotowe. Proste prawda? 😉

PS. Woda, która dzisiaj płynie na Marsie jest słona. Prawdę mówiąc, znaleziono ją właśnie po śladach soli. Czy byłaby ona zdatna do picia? Gdyby ją oczyścić, jak najbardziej. Gdyby tego nie zrobić, gdyby spróbować wypić ją taką jaka wypływa ze zboczy, skończyłoby się… jeszcze większym pragnieniem. Spróbuj wypić szklankę mocno posolonej wody.

Zapraszam na profil FB.com/NaukaToLubie (kliknij TUTAJ). To miejsce w którym staram się na bieżąco informować o nowościach i ciekawostkach ze świata nauki i technologii.

 

 

1 komentarz do A co gdyby Mars zzieleniał?

Jak fotografować Krwawy Księżyc?

Tegoroczne całkowite zaćmienie Księżyca (28.09 nad ranem) jest niezwykłe, bo połączone z zbliżeniem Srebrnego Globu do Ziemi. Kolejna szansa na sfotografowanie go dopiero za kilkanaście lat. Jak zrobić zdjęcie Krwawemu Księżycowi?

Tegoroczne całkowite zaćmienie Księżyca (28.09 nad ranem) jest niezwykłe, bo połączone z zbliżeniem Srebrnego Globu do Ziemi. Kolejna szansa na sfotografowanie go dopiero za kilkanaście lat. Jak zrobić zdjęcie Krwawemu Księżycowi?

Na początku zdanie wyjaśnienia. Fotografowania Księżyca nie jest trudne. Szczególnie Księżyc w pełni jest obiektem tak dużym i jasnym, że nie będzie problemu ani z jego znalezieniem na nocnym niebie, ani z ustawieniem na nim ostrości. Z tym poradzi sobie każdy aparat. W zasadzie jedynym sprzętem o jaki warto się zatroszczyć, jest statyw. Zachęcam do ustawienia aparatu w tryb manualny. W trybie automatycznym wszystkie zdjęcia będą bardzo do siebie podobne. Na „manualu” możesz poeksperymentować. Zanim przeczytasz dalej, rzuć okiem na mój poprzedni wpis, może Ci się przydać.   KLIKNIJ TUTAJ

No to do rzeczy:

Ostrość. Jeżeli mamy aparat w trybie manualnym, ostrość trzeba ustawić na nieskończoność. W trybie manualnym powinna się ustawić automatycznie (autofocus).

Czułość. Jeżeli aparat umożliwia ustawianie czułości (ISO), tym parametrem można się nieco pobawić, uzyskując czasami bardzo ciekawe efekty. Czym niższa czułość tym wyraźniejsze będzie zdjęcie (niższy poziom szumów). Niestety czym niższa czułość, tym dłuższy musi być czas naświetlania, a to może być problemem np. gdy nie mamy statywu albo gdy w kadrze są szybko poruszające się obiekty. Ich rozmazanie może być dodatkowy atutem zdjęcia. No ale to już kwestia gustu fotografa. Jeżeli chcemy by czas otwarcia migawki był jak najkrótszy, trzeba ustawić wysoką czułość. W takim wypadku na zdjęciu pojawiają się szumy („ziarno”). Może ono dodać artyzmu, ale znowu, to kwestia gustu. Dobra rada: zjawisko zaćmienia Księżyca trwa na tyle długo, że bez problemu można zrobić więcej niż jedno zdjęcie. Poeksperymentuj, ustawiaj różne wartości czułości.

Czas naświetlania. Bardzo trudno zrobić zdjęcie „z ręki” gdy czas otwarcia migawki wynosi mniej niż 1/30 s. Tym bardziej że mówimy o fotografowaniu bardzo odległego obiektu. Stąd jeszcze raz sugestia, by zaopatrzyć się w statyw, nawet gdyby miał być najprostszy. Jeżeli nie masz, obserwuj zaćmienie z miejsca w którym możesz oprzeć aparat o drzewo, krzesło czy chociażby słup od ogrodzenia.

Podobnie jak w przypadku ustawiania czułości, warto poeksperymentować ustawiając różne wartości czasów otwarcia migawki. Zdziwisz się jak różne mogą być zdjęcia tego samego obiektu. Czym krótszy czas migawki, tym bardziej otwarta musi być przysłona aparatu, gdy czas jest długi, przysłona musi być „domknięta”. I tylko z pozoru nie robi to różnicy. Gdy Księżyc będzie nisko nad horyzontem, gdy w kadrze będzie nie tylko jego tarcza ale także np. drzewa albo budynki, domknięta przysłona (wartości od 11 w górę) umożliwi zrobienie zdjęcia na którym ostre będą wszystkie obiekty. Otwarta przysłona (o wartości do 4,5) spowoduje że ostre będą tylko te obiekty na które ustawiona zostanie ostrość. Reszta będzie rozmazana. Jeżeli nie czujesz się na siłach operować przysłoną, ustaw jej automatykę i operuj czasem migawki. Zdziwisz się jak różne zdjęcia uzyskasz.

Ogniskowa. Wszystko zależy od kompozycji zdjęcia, a wiec od tego co chcesz na nim mieć. Jeżeli tylko tarczę Księżyca, ustaw jak najdłuższą ogniskową (jak najbardziej przyzoomuj). Unikaj zoomu cyfrowego, zdjęcie zawsze możesz skadrować na komputerze.

Napisałem to już tutaj kilka razy, ale napisze jeszcze raz. EKSPERYMENTUJ. Masz sporo czasu, zjawisko całkowitego zaćmienia Księżyca trwa kilka godzin. Nie ma sensu robienie kilkunastu czy kilkudziesięciu zdjęć przy takich samych parametrach. Baw się ustawieniami czasu, baw przysłoną i czułością. Jeżeli masz zmienne obiektywy, korzystaj z tego. Ponadto:

– Robiąc zdjęcie korzystaj z samowyzwalacza albo ze zdalnie uruchamianej migawki. W ten sposób nie poruszysz aparatu w czasie robienia zdjęcia.

– Spróbuj zrobić kilka zdjęć przy tych samych parametrach po to by potem nałożyć je na siebie. Zobaczysz, że uzyskasz ciekawy efekt.

– Spróbuj zrobić kilka tak samo skadrowanych zdjęć na różnych etapach zaćmienia. Nakładając je na siebie udokumentujesz na jednym zdjęciu przebieg całego zjawiska.
A jak już zrobisz dobre zdjęcie, pochwal się nim na FB.com/NaukaToLubie

Powodzenia !!!

 

2 komentarze do Jak fotografować Krwawy Księżyc?

Kiedy, gdzie i jak obserwować Krwawy Księżyc?

Gdzie zwrócić wzrok, o której godzinie rozpocznie się najciekawsze i czy trzeba do obserwacji krwawego Księżyca mieć z sobą jakikolwiek sprzęt?

Kiedy?

W najbliższy poniedziałek, od godziny 2 w nocy. Choć najciekawsze będzie się działo dopiero dwie godziny później. Kilka minut po godzinie 3 nad ranem tarcza Księżyca w całości będzie znajdowała się w tzw. strefie półcienia”. Ale na prawdę widowiskowo zacznie być dopiero o 4:11. Wtedy cały Księżyc będzie w cieniu Ziemi. Nie zniknie jednak tylko będzie się stawał coraz bardziej czerwony (z domieszką brązu). Do 4:47 tarcza Księżyca będzie stawała się coraz ciemniejsza, a od tego momentu z każdą chwilą będzie się rozjaśniała. O 5:23 nastąpi koniec fazy całkowitego zaćmienia. Strefę pełnego cienia, Księżyc opuści o 6:27.  W skrócie mówiąc to co najciekawsze wydarzy się pomiędzy 4:11 a 5:23 i potrwa 72 minuty.

Gdzie?

lunar_201509Krwawy Księżyc będzie w Polsce widoczny wszędzie. Zresztą nie tylko w Polsce, ale także w całej Ameryce Południowej, w prawie całej Ameryce Północnej i Afryce. Księżyc, a szczególnie Księżyc w pełni to bardzo duży i jasny obiekt, stąd będzie widoczny także w miejscach „zanieczyszczonych” sztucznym światłem, a więc np. w centrach miast. Oczywiście obserwacje będą lepsze, gdy będą prowadzone z dala od sztucznych świateł.

Całkowite zaćmienie Księżyca nastąpi w chwili gdy Srebrny Glob będzie nisko nad horyzontem. Oznacza to, że niczego nie zobaczymy np. górskich dolinach, albo w mieście, w otoczeniu wysokich budynków. Do obserwacji trzeba więc wybrać miejsce, w którym nie będzie przeszkód patrząc w kierunku zachodnim i południowo-zachodnim i zachodnim. Optymalnie, gdyby takie miejsce było na wzniesieniu.

To, że Księżyc będzie nisko nad horyzontem spowoduje, że obserwacje będą ciekawsze. Oczywiście pod warunkiem, że niebo nie będzie przysłonięte chmurami.

Jak?

Księżyc jest tak dużym i jasnym obiektem, że bez problemu można do obserwować gołym okiem. Zwykłą lornetka, nie mówiąc o nawet najprostszym teleskopie będzie można zjawisko „zacieniania” Księżyca zobaczyć bardzo dokładnie. Tak samo jak będzie można z dużymi detalami oglądać obiekty na powierzchni Księżyca.

Dobrym pomysłem jest fotografowanie i filmowanie zjawiska. Podobnie jak z obserwacją, nie potrzeba do tego żadnego specjalistycznego sprzętu. Wystarczy zwykły aparat fotograficzny (nawet kompaktowy automat). Jedyne o co warto się zatroszczyć to statyw. Z reki obraz będzie nieatrakcyjny.

Zainteresowanym obserwacją i fotografowaniem Krwawego Księżyca polecam mój kolejny wpis. KLIKNIJ TUTAJ !!!

5 komentarzy do Kiedy, gdzie i jak obserwować Krwawy Księżyc?

Pluton jak Biedronka

Wczorajszy przelot sondy New Horizons w pobliżu Plutona natchnął mnie do pewnych przemyśleń. Po co badać coś tak odległego jak Pluton? Po co badać delfiny, motyle czy orangutany? Po co zajmować się gwiazdami, płytami tektonicznymi i DNA?

Wczorajszy przelot w pobliżu Plutona i związanych z nim sporo pytań natchnął mnie do pewnych przemyśleń. Niemal za każdym razem, gdy w nauce dochodzi do jakiegoś odkrycia, do wysłania sondy, do zbudowania nowego rodzaju mikroskopu czy znalezienia nowej cząstki elementarnej, pada pytanie, po co to wszystko? Po co wydawać miliony dolarów by dowiedzieć się co słychać np. na globie, który oddalony jest od nas o miliardy kilometrów. Dajmy na to na takim Plutonie. Wczoraj udało się sfotografować jego powierzchnię z odległości nieco ponad 12 tysięcy kilometrów. To 30 razy mniej niż odległość pomiędzy Ziemią i naszym Księżycem. Sonda która tego dokonała to New Horizons. Leciała w kierunku Plutona prawie 10 lat przebywając w tym czasie 5 miliardów kilometrów. No i po co to wszystko? Po co lecieć tak daleko, po co wydawać niemałe przecież pieniądze, po co zaangażowanie ogromnej grupy ludzi przez długi okres czasu?

Zacznijmy od pieniędzy. Całkowity koszt misji New Horizons, wszystkich urządzeń sondy, jej wystrzelenia, ale także analizy danych a nawet obsługi medialnej wydarzenia to około 700 milionów dolarów, czyli nieco ponad 2 miliardy i 600 milionów złotych. To dziesięć razy mniej (!!!) niż wynosi roczny przychód supermarketów Biedronka w Polsce. To mniej niż budowa 20 kilometrowego odcinka autostrady A1. W końcu to mniej niż zakup i 13 letnia obsługa 4 samolotów F16, które służą w polskiej armii (w sumie kupiliśmy ich 48). Tyle jeżeli chodzi o koszty. Tak, te są duże… dla przeciętnego obywatela. Niewielu byłoby stać na wybudowanie i wysłanie w kosmos sondy New Horizons (choć np. Jan Kulczyk, najbogatszy Polak, mógłby takich sond wysłać 7), ale w skali państwa, dla budżetu państwa rozwój nauki to grosze. Grosze zainwestowane najlepiej jak można sobie wyobrazić. Grosze, które w przyszłości przyniosą miliony poprzez rozwój technologii a w dalszej perspektywie rozwój przemysłu. Każda ekspansja to wyzwanie i konieczność znajdowania rozwiązań na problemy z których nie zdawaliśmy sobie sprawy. Przecież loty w kosmos mają bezpośrednie przełożenie na komunikację, elektronikę i materiałoznawstwo. Rozwój technik obrazowania (nieważne czy w astronomii czy w biologii) od razu jest wykorzystywany w medycynie. Nasze miasta byłyby skażonymi pustyniami gdyby nie powstawały zaawansowane technologicznie silniki i komputery, które tymi silnikami sterują.

A wracając do Plutona, delfinów, motyli i orangutanów. Po co je badać? Bo one są częścią nas, a my częścią świata którego różnorodność – przynajmniej mnie – powala na kolana. Wszystkie lekkie atomy, które nas budują powstały w czasie Wielkiego Wybuchu. Wszystkie ciężkie w czasie wybuchu gwiazdy. Warto rozwijać zarówno kosmologię, astrofizykę jak i fizykę cząstek. Nasze DNA to uniwersalny język całej przyrody, a gatunki (zarówno zwierzęce jak i roślinne), które zamieszkują Ziemię (a pewnie także inne globy) powstawały jedne z drugich. To dlatego nie można zaniedbywać biologii (w tym egzobiologii) i medycyny. Oddychamy powietrzem w którego skład wchodzą różne gazy. To dlatego warto rozwijać chemię i interesować się tym jak zmieniały się atmosfery na innych planetach. Ta wiedza może być bezcenna gdy zacznie zmieniać się nasza atmosfera. Bo to że wszystko jest wokoło nas zmienne – to oczywiste. Kontynenty są w ruchu (nie tylko zresztą na Ziemi) i dzięki temu mogło powstać życie. Ale to nie powstałoby, gdyby Ziemia nie miała swojego pola magnetycznego. A tego by nie było gdyby jądro planety nie było gorące i półpłynne. Ale nawet gdyby było, Ziemia byłaby martwa, gdyby nie było Księżyca, który stabilizuje ruch Niebieskiej Planety wokół Słońca. A Księżyc powstał w kosmicznej katastrofie w której w Ziemię uderzyła planetoida wielkości Marsa. Geologia, geografia, fizyka, astronomia, biofizyka i biochemia… Mam dalej wymieniać? Czy jest sens wymieniać? Czy jest sens pytać, po co badamy coś tak odległego jak Pluton? Po co badamy delfiny, motyle czy orangutany, a nawet biedronki (chodzi o owada, nie o sieć sklepów)? Moim zdaniem szkoda na to czasu. Lepiej go wykorzystać na zaspokajanie swojej ciekawości. Bo to ciekawość idzie przed odkryciami. Tak było zawsze i tak będzie zawsze.

3 komentarze do Pluton jak Biedronka

Co powiedzieli na Księżycu?

Wreszcie wiadomo, co powiedział pierwszy człowiek, stawiając stopę na Księżycu. Przez cztery dziesięciolecia byliśmy w błędzie, choć złe tłumaczenie na polski wpadkę Armstronga tuszowało. A było tak.

Wreszcie wiadomo, co powiedział pierwszy człowiek, stawiając stopę na Księżycu. Przez cztery dziesięciolecia byliśmy w błędzie, choć złe tłumaczenie na polski wpadkę Armstronga tuszowało. A było tak.

Apollo 11 wystartował 16 lipca 1969 roku. Po 4 dniach, 4 godzinach i 20 minutach lądownik LM z Nailem Armstrongiem i Edwinem Aldrinem odłączył się od modułu dowodzenia, który przez następnych ponad 27 godzin orbitował wokół Srebrnego Globu. 20 lipca „Orzeł wylądował” w okolicach Morza Spokoju. Odpoczynek, posiłek, kontrola wszystkich systemów lądownika oraz ustawienie ich do pozycji startowej – w końcu po 6 godzinach i 40 minutach od wylądowania astronauci wyszli na zewnątrz, a świat usłyszał… I tutaj zaczynają się rozbieżności. Na Ziemi, w kwaterze NASA, wśród trzasków i gwizdów transmisji radiowej usłyszano: that’s one small step for man, one giant leap for mankind. Ale to zdanie nie ma sensu. Oznacza mniej więcej tyle co: to mały krok dla ludzkości, ale ogromny skok dla ludzkości. Czyżby Armstrong czegoś zapomniał? W jego wypowiedzi brakuje jednej litery. Litery „a”. Bo gdyby powiedział: „that’s one small step for a man, one giant leap for mankind”, oznaczałoby: „to mały krok dla człowieka, ale ogromy skok dla ludzkości”.

– Mam nadzieję, że historia wybaczy mi zgubienie jednej sylaby – mówił Armstrong. Równocześnie podkreślał, że wydaje mu się, że pechowe „a” powiedział, stawiając lewą nogę na Księżycu. I miał rację. Wymyślone przez sztab ludzi zdanie (choć Armstrong twierdzi, że sam na nie wpadł) zostało wypowiedziane prawidłowo, tylko usłyszane błędnie. Winę ponosi transmisja radiowa, której jakość w 1969 roku była co najmniej wątpliwa. Zgubioną literkę znalazł Peter Ford, informatyk z Australii i właściciel firmy Control Bionics. Jego praca polega na tworzeniu systemów, które osobom głuchoniemym umożliwiają porozumiewanie się ze światem. Według Forda, pierwsza część sławnego zdania trwała 3,5 sekundy, a to przy ówczesnej technologii komunikacji radiowej przynajmniej o 10 razy za szybko, żeby „a” na Ziemi zostało usłyszane. To że nie było słyszalne, nie oznacza jednak, że nie było „obecne” w ścieżce dźwiękowej. Po dwóch tygodniach poszukiwań, Ford znalazł ślad niesłyszalnego „a”. – Nie mieściło mi się w głowie, że osoba tak opanowana i precyzyjna jak Armstrong mogła nie zapamiętać poprawnie jednego zdania – powiedział pytany o powody rozpoczęcia analizy słów z Księżyca. Jedna litera może czasami bardzo dużo zmienić.

kamera

Choć od lądowania na Księżycu minęło już ponad 45 lat, do dzisiaj misje Apollo mogą być źródłem zaskoczenia. Kilkanaście dni temu dokonano odkrycia niemalże archeologicznego. Takie odkrycia zwykle kojarzą się z wykopaliskami czy przeszukiwaniem ruin, ale na pewno nie z porządkami w szafie. Tym razem było jednak inaczej. Wdowa po astronaucie Neilu Armstrongu, tym samym, który jako pierwszy człowiek stawiał nogę na Księżycu, znalazła w jego szafie kamerę, którą zarejestrowano pierwsze kroki ludzi na Srebrnym Globie. Kamera nie była elektroniczna jak te dzisiaj używane, a obraz rejestrowała na 16mm taśmie filmowej. Urządzenie i wiele innych pamiątek z lotu Apollo 11 kobieta znalazła na dnie szafy w płóciennej torbie. Zanim Armstrong wyszedł z lądownika, trzymaną w ręku kamerą rejestrował moment zbliżania się lądownika „Eagle” (Orzeł) do powierzchni Księżyca. – Ta kamera zarejestrowała jedne z najważniejszych zdjęć XX wieku – powiedział Allan Needell z National Air and Space Museum, instytucji, której wdowa po Armstrongu przekazała cenne znalezisko.

Neil Armstrong zmarł w 2012 r.

10 komentarzy do Co powiedzieli na Księżycu?

Żyć albo nie żyć

Na Marsie znajdowane są kolejne dowody na to, że nie tylko było tam sporo wody, ale występowało także życie. Niewykluczone, że wciąż tam się znajduje.

Na Marsie znajdowane są kolejne dowody na to, że nie tylko było tam sporo wody, ale występowało także życie. Niewykluczone, że wciąż tam się znajduje.

Badania kosmosu bardzo rzadko dają jednoznaczną odpowiedź na postawione pytanie. To raczej sztuka zbierania skrawków informacji, z których żadna nie jest rozstrzygająca, ale wszystkie razem dają obraz sytuacji.

Woda była czy nie?

Tak jest niemal ze wszystkim. Ale zatrzymajmy się na Marsie. Czy jest woda na Marsie? Tak, jest. Wiemy to dzisiaj, ale musiały minąć długie lata, by móc tak jednoznacznie na to pytanie odpowiedzieć. Bo czy dowodem jest to, że z orbity widać struktury, które wyglądają jak wyschnięte koryta rzek? Czy dowodem jest to, że gdzieniegdzie – na zdjęciach z orbity – widać pojawiające się jak gdyby strużki wody? Szczególnie na nasłonecznionych zboczach gór. Czy dowodem na istnienie zamarzniętej wody są czapy czegoś białego na marsjańskich biegunach albo po prostu teoria, która mówi, że woda na Marsie być powinna? Żaden z wyżej wymienionych faktów sam w sobie o niczym nie świadczy. Ale wszystkie one razem powodują, że dzisiaj fakt istnienia wody na Czerwonej Planecie nie jest podawany w wątpliwość. Do tego dochodzi jeszcze jeden eksperyment, a mianowicie wykrycie pary wodnej w bardzo rzadkiej marsjańskiej atmosferze. A co z życiem?

Tym dawnym i tym obecnym? Sytuacja wygląda bardzo podobnie. To, że w znalezionym na Ziemi meteorycie pochodzącym z Marsa są ślady funkcjonowania żywych organizmów, o niczym nie musi świadczyć. Bakterie mogły do niego wejść, gdy skała była już na Ziemi. Istnienie wody i warunków (temperatura, promieniowanie, ciśnienie), które umożliwiały istnienie życia, także nie jest żadnym dowodem. Podobnie jak to, że na Marsie znajdowane są skały niemal identyczne jak skały osadowe pochodzenia biologicznego na Ziemi. Na to nakłada się teoria, która mówi, że w części, a być może nawet w całości życie czy elementy składowe życia na Ziemię przyniosły komety. Ale czy z tego faktu wynika, że na Marsie było życie? Może rzeczywiście komety tam uderzały, ale nie da się sprawdzić, czy najprostsze komórki tam się rozwinęły. I podobnie jak z wodą: żaden z tych argumentów sam z siebie o niczym nie świadczy, ale wszystkie równocześnie… Badania kosmiczne są jak puzzle – żaden nie zdradzi, co kryje cały obraz, ale im więcej mamy ich w ręku, tym więcej wiemy o świecie, który opisują. Właśnie znaleziono kolejny klocek. Niezwykle ważny i pasujący do poprzednich. Tym klockiem jest metan.

Co z tym życiem?

Ściślej rzecz biorąc, nie tyle metan, ile szybkie zmiany jego stężenia. O tym, że w niezwykle rzadkiej marsjańskiej atmosferze znajdują się niewielkie ilości metanu, wiedziano od dawna. Problemem było jego pochodzenie. Metan może powstawać na wiele różnych sposobów, ale na Ziemi niemal wszystkie związane są z działalnością organizmów żywych. Metan – zwany czasami gazem błotnym – składa się z atomu węgla i czterech połączonych z nim atomów wodoru (jego wzór to CH4). Jest bezwonny i bezbarwny. Skąd się wziął na Marsie? To jest właśnie pytanie za milion dolarów. A może nawet za 100 milionów. Amerykański łazik marsjański Curiosity nad wywierconym przez siebie otworem wykrył dziesięciokrotny wzrost stężenia metanu. Otwór nie był zbyt głęboki, metan zaczął się ulatniać z gruntu, który znajduje się zaraz pod powierzchnią. Do odkrycia doszło podczas badań wewnątrz 154-kilometrowego krateru Gale. W warunkach ziemskich metan jest w 95 proc. pochodzenia organicznego i związany ściśle z cyklem życiowym roślin i zwierząt. Ten fakt o niczym jeszcze nie przesądza. Po pierwsze dlatego, że pozostałe 5 proc. to produkcja metanu w procesach geologicznych. A po drugie kto powiedział, że znamy wszystkie procesy produkcji metanu? Być może na Marsie mają miejsca takie, których na Ziemi nie ma. – Te okresowe znaczne wzrosty zawartości metanu w atmosferze, tj. szybki wzrost, a później spadek, wskazują, że ich źródło musi być stosunkowo niewielkie – przypuszcza Sushil Atreya z Uniwersytetu Stanu Michigan, który bierze udział w projekcie Curiosity. – Może być wiele źródeł, biologicznych i niebiologicznych, takich jak np. reakcje zachodzące między wodą i skałami – dodał.

Podsumowując. Co wiemy nowego? Jeden z marsjańskich łazików wykrył szybko zmieniające się stężenie metanu. Czy to znaczy, że znaleziono tam życie? Nie! Czy to znaczy, że było tam kiedyś życie? Nie! W takim razie co to znaczy? Tylko tyle, albo aż tyle, że mamy kolejny kawałek układanki. Nie znamy jeszcze pełnego obrazu, ale wydaje się, że jest na nim planeta, która kiedyś obfitowała zarówno w płynną wodę, jak i w życie. Planeta, na której to życie przetrwało do dzisiaj.

Możliwość komentowania Żyć albo nie żyć została wyłączona

Teleportuj się !!!

Powiem szczerze: bałbym się teleportacji, skoro mamy kłopot z tradycyjnymi środkami transportu. A tymczasem naukowcom udała się teleportacja na odległość 25 km!

Może więc i dobrze, że teleportacja ludzi jest (na razie) niemożliwa. O co w ogóle chodzi? Teleportacja to przenoszenie obiektów z miejsca na miejsce, ale – jak mówią fizycy – bez zachowania ciągłości istnienia. Brzmi nie najlepiej, ale w największym skrócie polega na tym, że obiekt w jednym miejscu znika, a w drugim się pojawia.

Mielonka

Teleportacja jest dość popularna np. w filmach science fiction. Szczególnie w tych, których akcja dzieje się w przestrzeni kosmicznej. To jeden z dwóch sposobów radzenia sobie z ogromnymi odległościami, jakie w kosmosie są faktem. Nie chcąc narażać się na śmieszność, trzeba znaleźć w miarę prawdopodobny sposób szybkiego przemieszczania się. Jednym ze sposobów radzenia sobie z tym kłopotem jest zamontowanie w statkach kosmicznych napędów nadświetlnych, czyli takich, które rozpędzają obiekt do prędkości wyższej niż prędkość światła. Drugim ze sposobów jest teleportowanie. Napędów nadświetlnych nie ma i nie wiem, czy kiedykolwiek będą. Jeżeli zaś chodzi o teleportację, to problemu nie ma. Naukowcy potrafią teleportować… choć na razie nie ludzi. Na razie nie mamy ani urządzenia, ani nawet pomysłu, jak powinno wyglądać urządzenie do teleportowania większych i bardziej złożonych obiektów. Pisząc „większych i bardziej złożonych”, nie mam na myśli słonia afrykańskiego czy fortepianu. Mam na myśli większe atomy, nie mówiąc już nawet o najprostszej cząsteczce chemicznej.

Problemy z teleportowaniem przewidzieli także futurolodzy. Od czasu do czasu także w produkcjach science fiction nielubiany bohater korzystał z uszkodzonego „portalu” i w efekcie pojawiał się „po drugiej stronie” w kawałkach albo w formie przypominającej – brutalnie mówiąc – mielonkę. I także tutaj scenarzyści mieli nosa i nie bardzo minęli się z prawdą. Z definicji przy przesyłaniu cech zwanych stanami kwantowymi cząstki A do oddalonej cząstki B, niszczony jest stan kwantowy A. Trochę to skomplikowane, ale w zasadzie da się prosto wytłumaczyć. Nie może być tak, że teleportacja polega na skopiowaniu obiektu. Wtedy istniałyby dwa takie same obiekty. Teleportacja polega na „sczytaniu” obiektu A i przesłaniu w oddalone miejsce. Ale w czasie tego przesyłania obiekt A przestaje istnieć („znika”). Gdy przychodzi do jego odtworzenia, a coś pójdzie nie tak jak trzeba, wychodzi… w największym skrócie mielonka.

W czym jest problem?

Dzisiaj nikt ludzi oczywiście nie próbuje teleportować. Poza zasięgiem naukowców jest nawet teleportacja najprostszych cząsteczek. Nawet tak prostych jak chociażby trzyatomowa cząsteczka wody. Więcej, dzisiejsza technika nie pozwala teleportować nawet pojedynczego atomu, o ile mówimy o większym atomie, np. uranu, który składa się z kilkuset protonów, neutronów i elektronów. Jak to wygląda w praktyce? Każda cząstka ma tzw. stany kwantowe, czyli swoją specyfikę. Cząstki różnią się od siebie właśnie stanami kwantowymi, tak jak obiekty makroskopowe różnią się od siebie np. kolorem, zapachem, smakiem czy fakturą. Teleportacja polega na odczytaniu tych „cech”, przesłaniu ich w nowe miejsce i tam nadaniu ich innej cząstce. Przy okazji niszczy się stany kwantowe cząstki pierwotnej, stąd nie ma mowy o kopiowaniu czegokolwiek, tylko rzeczywiście o przesyłaniu.

Skoro to takie proste, w czym problem, żeby teleportować duże obiekty? Nie da się przesłać takich cech jak kolor, kształt, smak czy zapach po to, by w drugim teleporcie je odtworzyć… Te wspomniane cechy makroskopowe są wypadkową stanów kwantowych miliardów, bilionów cząstek, z których duże obiekty się składają. Problem teleportowania dużych czy większych od pojedynczych cząstek obiektów jest więc problemem skali. Na razie ledwo radzimy sobie ze stanami kwantowymi maleńkich obiektów, ale przyjdzie czas na te większe. I może wtedy pojawi się problem, czy da się teleportować wiedzę, czy da się teleportować duszę…

Wróćmy jednak na Ziemię (albo ziemię). Pierwszą teleportację kwantową przeprowadzono w 1997 r., ale już 7 lat później zespół badaczy z USA i Austrii opublikował dane, z których wynikało, że teleportowano najmniejszy atom, czyli wodór. Tym razem w piśmie „Nature Photonics” ukazała się publikacja, z której wynika, że dzięki badaczom z Uniwersytetu w Genewie, należącego do NASA Jet Propulsion Laboratory, oraz z National Institute of Standards and Technology w USA, udało się teleportować cząstkę na rekordową odległość 25 kilometrów. Informacja o stanach kwantowych została przesłana światłowodem, ale w przyszłości być może uda się ją przesłać falami radiowymi albo promieniem lasera. Tylko 25 kilometrów? Tak, wiem, wiem. W ten sposób na Księżyc czy Marsa się nie dostaniemy, ale od czegoś trzeba zacząć

Tekst ukazał się w tygodniku Gość Niedzielny

32 komentarze do Teleportuj się !!!

Ład czy chaos?

Chaos i ład – choć wydają się przeciwstawne, w naturze pięknie się przenikają. Ład wynika z chaosu, a chaos kroczy przed harmonią. Wystarczy spojrzeć na piaskową wydmę, płatek śniegu czy którykolwiek układ planetarny.

Co było pierwsze: ład czy chaos? W życiu codziennym chaos powstaje z ładu, ale we wszechświecie w różnych skalach kolejność może być odwrotna. Gwiazdy i układy planetarne powstają z chaotycznej chmury drobinek, ta zaś z eksplozji gwiazdy. Tylko czy taka chmura jest rzeczywiście chaotyczna? Nie da się przewidzieć ruchu każdego z jej atomów, ale to nie znaczy, że nie działają w niej prawa fizyki. Z czasem to one wprowadzają porządek. Z tego porządku rodzą się nowe światy. Ale czy w nich panuje ład i porządek?

Góra piasku

Z naszego punktu widzenia niekoniecznie. Na przykład ruch planet, księżyców i wszystkich innych obiektów w Układzie Słonecznym wydaje się uporządkowany i przewidywalny. Ale gdyby tak było, jak należałoby tłumaczyć, skąd wzięły się kratery, które świadczą o kolizjach, do jakich dochodziło w przeszłości i wciąż dochodzi? Skąd pojawiające się co jakiś czas „alarmy”, że do Ziemi zbliża się groźna asteroida albo planetoida? Czy to wszystko rzeczywiście działa jak w szwajcarskim zegarku? Tak, ale złożoności tego mechanizmu nie jesteśmy (jeszcze?) w stanie pojąć. Zdarzenia w kosmosie, a wśród nich zderzenia między kosmicznymi obiektami, są elementem porządku, którego my nie dostrzegamy. Ta swego rodzaju ślepota to problem nie tylko kosmicznych skal. Mamy kłopot z ogarnianiem świata w każdej skali. Z tych ograniczeń wynika to, że dość często mylimy chaos z porządkiem. Jak to możliwe?

Wyobraźmy sobie niewielki fragment pustyni i wietrzny dzień. Pojedyncze ziarenka piasku są unoszone i opadają. Jedne blisko siebie, inne dalej. Jedne w powietrzu przebywają chwilę, inne przez długi czas. Nie ma najmniejszych szans, by przewidzieć ruch wspomnianych ziarenek. On zależy od tak wielu czynników, że największe komputery na Ziemi nie poradziłyby sobie z takim wyzwaniem. Gdy patrzy się na ten obraz, aż ciśnie się na usta słowo „chaos”. Czy ruch ziarenek piasku podrywanych przez wiatr jest przypadkowy? Na pewno jest (dla nas) nieprzewidywalny, ale nie chaotyczny. Jest w nim porządek i rządzą nim prawa fizyki. Nie trzeba wierzyć na słowo, wystarczy poczekać, aż wiatr ustanie, a wtedy naszym oczom ukaże się wydma. Ta potrzebuje swego rodzaju nieporządku. Wydma nigdy nie powstanie na idealnie płaskiej powierzchni. Potrzebna jest przeszkoda. Lokalne zaburzenie porządku. Po co? By wyhamować wiatr. Tylko wtedy niesiony przez niego piasek opadnie. Jedno ziarenko, później drugie, kolejne…

(Nie)porządek na zimno

Wystarczy rzut oka na wydmę, by zobaczyć porządek. Wydmy zawsze mają jedno zbocze łagodne, a drugie strome. Łagodnym odwrócone są w kierunku wiejącego wiatru. Rozpoznajemy wydmy poprzeczne, seify, barchany czy wydmy gwiaździste. Ich kształt zależy od wielu czynników. Wśród nich są ukształtowanie terenu, siła i kierunek wiatru oraz rodzaj (właściwości) piasku. Zależności między tymi czynnikami są tak skomplikowane, że nawet największe komputery nie są w stanie tego ogarnąć. Ale o żadnym chaosie nie ma tu mowy. Tak samo jak nie ma mowy o chaosie w procesie tworzenia się kryształów. Chyba najlepszą ilustracją jest powstawanie płatków śniegu. Nie mogłyby się pojawić w idealnie czystym powietrzu, w którym nie byłoby chociażby najmniejszego pyłku. Woda w pewnej temperaturze zamarza – to jasne – ale może przechodzić w stan stały na dwa sposoby. Lód to cząsteczki wody, które zamarzły w nieuporządkowaniu. Śnieg to kryształy wody, a więc cząsteczki, które zamarzając, zdążyły się uporządkować, znaleźć się na swoich miejscach. Płatek śniegu to nieprzewidywalny porządek. Nie ma dwóch takich samych śnieżynek, ale to nie zmienia faktu, że wszystkie są stworzone według konkretnego wzoru. Każdy płatek śniegu ma kształt sześciokąta foremnego, figury, która ma sześć kątów (wierzchołków) i której wszystkie boki są równej długości. Dlaczego? Bo cząsteczki wody w krysztale łączą się ze sobą szóstkami. Połączenie „na płasko” sześciu cząsteczek wody musi utworzyć sześciokąt, w którym w wierzchołkach są atomy tlenu. I choć płatki śniegu są sześcioramiennymi gwiazdkami, każda jest nieco inna, bo każdy płatek ma inną historię, przechodzi inną drogę w chmurze. Nie da się jej przewidzieć ani odtworzyć. Rządzi nią zbyt wiele zmiennych, ale czy można powiedzieć, że w chmurze śniegowej panuje chaos? Idealnie regularne, symetryczne i uporządkowane płatki śniegu świadczą o czymś zupełnie innym. Tak samo jak idealnie „dostrojone” do siebie planety w systemach planetarnych, które powstały z chmury materii. Czy istnieją dwie takie same gwiazdy? Czy istnieją dwa takie same układy planetarne? Nie. Każdy jest inny, mimo że wszystkie powstały na podstawie tych samych zasad fizyki.
Za mało wiemy

Co ciekawe, nie do przewidzenia czy nie do opisania jest nie tylko proces, w którym coś powstaje (układ planetarny, wydma, kryształ…), ale także sam moment, w którym to powstawanie się zaczyna. Zainicjowanie wielu procesów wiąże się z nieprzewidywalną sytuacją. W przypadku płatka śniegu musi być pyłek, jakieś zanieczyszczenie. Podobnie sprawa się ma ze wszystkimi kryształami. Woda w garnku nie zacznie się gotować, o ile na ściankach garnka nie znajdzie się jakaś mała rysa. W idealnie gładkim garnku idealnie czysta woda może być w stanie ciekłym nawet wtedy, gdy jej temperatura dawno przekroczyła 100 st. C. Lawina rozpoczyna się od niewielkiego zaburzenia. Podobnie jak burza. Pioruny uderzają w sposób nieprzewidywalny, ale na pewno nie przypadkowy. Choć kształt błyskawic zdaje się na to nie wskazywać, w rzeczywistości ładunki elektryczne obierają drogę, która gwarantuje najmniejszy opór elektryczny. Skąd ładunki wiedzą, w którą stronę się przemieszczać? Przed właściwym wyładowaniem z chmury wylatuje niewielka „paczka” ładunków, która sprawdza drogę o najmniejszym oporze. Ładunki z błyskawicy, którą widzimy, są prowadzone niemalże jak po sznurku. Wszystko w idealnym porządku, według ściśle określonych reguł. Choć z zewnątrz wygląda to na chaos i przypadek.

Układ Słoneczny potrzebuje 250 mln lat, by zrobić pełny obrót wokół centrum galaktyki Drogi Mlecznej. Ten ruch ma oczywiście swoje konsekwencje. Zmieniające się kosmiczne otoczenie powoduje, że naruszana jest subtelna równowaga między Słońcem a pozostałymi obiektami w naszym układzie planetarnym. Tego oczywiście nie da się przewidzieć, ale zdarza się, że to naruszenie równowagi skutkuje wzmożoną aktywnością komet. Te częściej niż zwykle wylatują w kierunku Słońca. Zwiększa się przez to szansa na kolizję z Ziemią. Co oznaczałoby takie zderzenie? Chaos? To chyba nie jest dobre słowo. Dzięki takim kolizjom w przeszłości dzisiaj na Ziemi jest woda. Patrząc na przepiękny krajobraz z wodą, piaskiem i palmami w tle, warto sobie zdać sprawę, że tę wodę przyniosły komety, piasek to skruszone skały, a palma czy jakikolwiek inny żywy organizm na tej planecie są zbudowane z cząsteczek chemicznych, których ruch wciąż jest dla nas chaotyczny i nieprzewidywalny. Z chaosu w pewnym sensie wynika porządek. Widząc ten porządek, harmonię, warto sobie zdać sprawę z tego, że w naszym świecie tak naprawdę nic nie jest chaotyczne. Wszystko jest podporządkowane prawom natury. Wszystko jest uregulowane i przewidywalne. Kłopot w tym, że my tego porządku często nie dostrzegamy.

 

Tekst ukazał się w Tygodniku Gość Niedzielny

 

2 komentarze do Ład czy chaos?

UWAGA KONKURS!!!

Pytanie jest w zasadzie proste. Popatrzcie na to zdjęcie i zgadnijcie o czym będzie kolejny filmik. Odpowiedzi wpisujcie na FBkowym profilu Nauka. To lubię. Pierwsza osoba, która zgadnie, dostanie ode mnie bożonarodzeniowy prezent, którym jest – do wyboru – któraś z moich książek: „Kosmos” albo „Nauka. To lubię. Od ziarnka piasku do gwiazd”. Książki oczywiście z dedykacją dla wskazanej osoby.

Rozstrzygnięcie konkursu !!!

Zanim ogłoszę wyniki, chcę napisać, że to pierwszy, ale nie ostatni konkurs jaki tutaj ogłoszę. Zachęcam Was do włączenia funkcji „obserwowania” na facebookowym profilu Nauka. To lubię, a wtedy nic Was już nie ominie.

*********

Nagrodą w konkursie była jedna z dwóch moich książek. Z dedykacją oczywiście.
W sumie padło ponad 50 odpowiedzi, choć niektóre były tak rozbudowane, że właściwie powinno się je uznać za wielokrotne.

Prawidłowa padła jedna odpowiedź, ale o tym na końcu. Przede wszystkim BARDZO serdecznie Wam dziękuję za wzięciu udziału w zabawie. Szczególnie chciałem podziękować: Pawłowi Grychowi, Tadeuszowi Marek i Maciejowi Mrowcowi. Tych trzech Panów próbowało powiązać temat przewijania niemowląt (puder) z magnetyzmem. Myślę, że to b.ciekawy kierunek badań. W wolnej chwili zajmę się tematem.

Mirosławowi Dworniczkowi dziękuję za totalnie abstrakcyjne (jak dla mnie) skojarzenie, że „talk” to po angielsku rozmowa. A więc tematem filmiku będzie rozmowa o magnetyzmie. 🙂

And the winner is… Beata Pawłowska za odpowiedź: „o ludziach-magnesach”. Pani Beato, GRATULUJĘ, będę się z Panią kontaktował na priv.

Jeszcze raz wszystkim dziękuję za wzięcie udziału w konkursie.

 

 

Od kilkunastu miesięcy, średnio raz w tygodniu, dodaję nowy filmik na kanał Nauka. To lubię. Przy okazji BARDZO zachęcam do subskrypcji tego kanału. Często, zanim wrzucę nowy filmik, na FBkowy profil kanału wrzucam zdjęcie albo zagadkę związaną z tematem filmiku. Zwykle temat zgadujecie od razu, ale tym razem może być trochę trudniej.

DSC_0168

Przyglądnijcie się dokładnie temu zdjęciu i powiedzcie o czym będzie najnowszy filmik. Żeby nie było wątpliwości. Na zdjęciu jest kompas i dziecięcy puder (talk). Propozycje wpisujcie na FBkowym profilu.

Pierwsza osoba, która udzieli poprawnej odpowiedzi (jeżeli nie będzie poprawnych odpowiedzi nagrodę dostanie najbardziej oryginalna) dostanie w prezencie – do wyboru – którąś z moich dwóch książek „Kosmos” lub „Nauka. To lubię. Od ziarnka piasku do gwiazd”. Książkę zadedykuję wskazanej osobie i prześlę.

okładka - Kosmos   okładka - piasek

Rozwiązanie konkursu jutro (w środę) przed południem. Wtedy też „uwolnię” filmik.

Powodzenia 🙂

 

 

1 komentarz do UWAGA KONKURS!!!

Bombardowanie z kosmosu

Małe asteroidy o średnicy około 1 metra wpadają w naszą atmosferę zadziwiająco często. NASA właśnie opublikowała raport dotyczący „bombardowania Ziemi” w latach 1994 – 2013.

Jednometrowe obiekty wpadają w atmosferę średnio co dwa tygodnie! Mniejszych obiektów nawet nie sposób policzyć. Miejsca w których dochodzi do kolizji są rozrzucone mniej więcej równomiernie po całej planecie. Z trwających 20 lat badań wynika, że w tym czasie zarejestrowano przynajmniej 556 przypadków bolidów, czyli dużych obiektów kosmicznych w atmosferze. Ich energia wynosi czasami setki miliardów dżuli. Jednym z nielicznych – w ostatnich latach – takich przypadków o którym mamy świadomość był meteor czelabiński, który w połowie lutego 2013 roku wywołał panikę nie tylko w Czelabińsku na Syberii. Jego energia wynosiła mniej więcej tyle ile energia pół miliona ton trotylu.

Meteor czelabiński zanim wszedł w ziemską atmosferę miał wielkość około 20 metrów. Rosnąca gęstość gazowej powłoczki Ziemi spowodowała jednak, że obiekt rozpadł się na mniejsze. To samo dzieje się z większością obiektów o średnicy około metra. Choć ich resztki nie „spalają” się w atmosferze całkowicie, zwykle nie są groźne dla ludzi. A wracając do wydarzenia z Czelabińska. Nawet eksperci uważali wtedy, że częstotliwość takich zdarzeń jest niewielka. Tymczasem okazuje się, że jest inaczej. Z danych NASA wynika, że obiekt podobny do czelabińskiego wchodzi w naszą atmosferę co kilka (a nie kilka tysięcy) lat. Obiekt wielkości boiska sportowego wchodzi w atmosferę średnio raz na 5000 lat. Obiekty wielkości samochodu osobowego „nawiedzają nas” średnio raz w roku. Obiekty mniejsze, o średnicy rzędu jednego metra wpadają średnio co dwa tygodnie. Te mniejsze, jeszcze częściej. Na powierzchnię Ziemi każdej doby spada ponad 100 ton kosmicznej materii. To, że mniejsze obiekty nie docierają do powierzchni planety to jasne. Ziemska atmosfera działa jak mechanizm hamujący. Ogromna energia kosmicznego obiektu jest „wytracana” ale nie znika, tylko zamieniana jest na ciepło, na ogrzewanie obiektu, a ten albo rozpada się na drobny maczek, albo po prostu topi się i wyparowuje. To dotyczy także obiektów dużych, tych metrowych. Przeważająca większość z nich rozpada się w górnych warstwach atmosfery pod wpływem dużej zmiany ciśnienia przy wchodzeniu atmosfery. Mniejsze obiekty albo topią się, albo spadają jako niegroźnie małe. Poza tym, 2/3 powierzchni planety pokryta jest oceanami, a całkiem spora pustyniami i lasami, w skrócie tereny niezamieszkałe stanowią dużą większość  obszarów Ziemi. Jakiekolwiek uderzenie pozostaje tam niezauważone.

Obiekty wielkości ziarenka piasku, o ile wejdą w ziemską atmosferę w nocy, są łatwo zauważalne nawet gołym okiem. Większe to tzw. bolidy, świecą jaśniej niż Wenus. Co ciekawe, to świecenie nie wynika z tarcia obiektu kosmicznego o cząsteczki gazów w atmosferze, tylko z silnego sprężenia powietrza przed czołem bolidu. Ogromny wzrost ciśnienia powoduje podniesienie temperatury nie tylko obiektu, ale także gazu. I to świecący gaz, a nie meteor jest tym co widać w nocy. Bolid czy meteor nagrzewa się do temperatury kilku tysięcy stopni Celsjusza. Szybkiej zmianie ciśnienia często towarzyszy także grom dźwiękowy.

NASA od wielu już lat obserwuje obiekty, które potencjalnie mogą zagrozić Ziemi (to tzw. NEO – Near Earth Object). Jako takie definiuje się te, które znajdują się w odległości mniejszej niż 50 milionów kilometrów od orbity Ziemi.Dla porównania średnia odległość Ziemia – Słońce wynosi około 150 mln kilometrów, a średnia odległość Ziemia Księżyc około 350 tys. kilometrów.

W obszarze szczególnego zainteresowania obserwatorów z NASA, tylko obiektów o średnicy 1km lub większej znajduje się około tysiąca. Ponad 950 z nich jest przez agencję (w ramach programu NEO) obserwowana. W najbliższym sąsiedztwie Ziemi ilość obiektów, których średnica wynosi 150 metrów i więcej, szacuje się na około 25 tysięcy, z czego ponad 22 tys. jest pod obserwacją.

 

Lista potencjalnie groźnych obiektów:

http://neo.jpl.nasa.gov/risks/

Więcej informacji:

http://science.nasa.gov/planetary-science/near-earth-objects/

 

 

Możliwość komentowania Bombardowanie z kosmosu została wyłączona

Uderzy czy nie?

19 października, o godzinie 20:28 czasu polskiego w pobliżu Marsa przeleci kometa C/2013 A1. Będzie tak blisko, że niewykluczona jest kolizja. Te w przeszłości się zdarzały. W lipcu 1994 roku z Jowiszem zderzyły się reszki komety Shoemaker-Levy 9. Nigdy wcześniej nie oglądaliśmy jednak zderzenia komety z Marsem.

Kometa C/2013 A1 została odkryta 3 stycznia 2013 roku przez Roberta McNaughta z Siding Spring Observatory w Australii. Jak wszystkie komety i ta narodziła się na samym skrawku Układu Słonecznego, w Obłoku Oorta. Nigdy wcześniej się stamtąd nie ruszała. W naszych okolicach pojawia się po raz pierwszy. Pierwszy i być może ostatni. Obliczenia trajektorii komety, które są prowadzone od momentu jej odkrycia, wskazują, że obiekt zbliży się do powierzchni Marsa na bardzo BARDZO małą odległość zaledwie 140 tysięcy kilometrów. Nigdy wcześniej żadna kometa nie zbliżyła się tak bardzo do którejś z planet wewnętrznych Układu Słonecznego. To tak, jak gdyby w pobliżu Ziemi przeleciał obiekt w odległości 1/3 odległości Ziemia – Księżyc!

PIA17833-CometSidingSpring-C2013A1-MarsEncounter-20140128

Okazji tak bliskiego przejścia nie można zmarnować, stąd niektóre sondy i łaziki pracujące na powierzchni albo na orbicie Marsa już są przygotowywane do wstrzymania swoich zwykłych zajęć i „zajęcia” się przelatującą kometą. I tak łazik Curiosity ma robić zdjęcia komecie z powierzchni Marsa, orbitalna sonda MAVEN zbada gazy pochodzące z jądra komety i jej warkocza oraz ich wpływ na górne warstwy marsjańskiej atmosfery. Mars Odyssey Orbiter zmierzy właściwości termiczne jądra, komy i warkocza.

Badanie komety może być (dla sond i łazików) niebezpieczne. W warkoczu komety lecą bowiem mniejsze odłamki, które mogą uszkodzić znajdujące się w ich polu rażenia urządzenia. Dlatego właśnie – o ile było to możliwe – orbity tych sond, które nie biorą udziału w badaniu komety, przeprogramowano tak, by w chwili największego zbliżenia komety z Marsem, były po drugiej stronie planety. Tak zmieniono orbitę np. sondy Mars Reconnaissance Orbiter.

Kometa, której wielkość ocenia się na od kilku do kilkudziesięciu kilometrów, w pobliżu Marsa przeleci z prędkością ponad 200 tys km/h. Czy grawitacja Marsa wystarczy by tak szybko poruszający się obiekt ściągnąć na swoją powierzchnię? To okaże się dopiero w niedzielę wieczorem. Gdyby jednak kometa uderzyła w powierzchnię Czerwonej Planety, biorąc pod uwagę jej masę, wielkość i energię, wybiłaby krater o średnicy ok. 800 km (odległość większa niż z Gdańska do Zakopanego) i głębokości 10 kilometrów (prawie tak głęboko jak największa głębia na Ziemi czyli Rów Mariański na Pacyfiku). W skrócie mówiąc, już w niedzielę, może powstać jeden z największych znanych nam kraterów w Układzie Słonecznym! O tym jakie byłyby skutki uderzenia takiej komety w Ziemię, nawet trudno mówić.

W momencie w którym kometa ewentualnie zderzy się z Marsem, planeta będzie z terenu Polski już niewidoczna. Zdąży zajść za horyzont. Krótko po zachodzie Słońca – o ile pogoda pozwoli – Marsa będzie można oglądać spoglądając w kierunku południowo – zachodnim. Może lepiej zerknąć, kolejnej nocy Mars, może już być inną planetą 🙂

Jedna z całkiem prawdopodobnych teorii mówi, że to komety z granic Układu Słonecznego przyniosły m.in. na Ziemię wodę. Być może wraz z wodą, przyniosły także zalążki życia.

Zobacz mój filmik na temat wody, komet i życia:

Możliwość komentowania Uderzy czy nie? została wyłączona

Jesteśmy dziećmi gwiazd

My i całe nasze otoczenie, jesteśmy zbudowani z atomów różnych pierwiastków. Te pierwiastki – w przeważającej części – powstały we wnętrzu gwiazdy, która w naszej okolicy wszechświata kiedyś świeciła. Innymi słowy, jesteśmy zbudowani z popiołów gwiazd.

Najlżejsze atomy powstały zaraz po Wielkim Wybuchu. Te cięższe, powstają cały czas we wnętrzach świecących gwiazd. Atomy najcięższe powstają w czasie śmierci dużych słońc.

Na początku był…

Wielki Wybuch. To początek wszystkiego co fizyczne. Materii, czasu i przestrzeni. Nie ma sensu rozważać gdzie miał miejsce. Zdarzył się wszędzie równocześnie. Wtedy cała przestrzeń skupiona była w jednym punkcie, nie było nic na zewnątrz, nie było nic poza. Od tego momentu zaczął się także liczyć czas. Nie ma sensu rozważanie co było przed Wielkim Wybuchem, bo nie istniało … przed. Już kilkadziesiąt sekund po Wielkim Wybuchu z kwarków powstały protony i neutrony. Po kolejnych kilku minutach te cząstki wraz z elektronami (które nie składają się z kwarków) powstał wodór, jego cięższa odmiana – deuter oraz hel, lit i beryl. Z tej grupy najcięższy jest beryl. Składa się z 4 protonów i 5 neutronów w jądrze i 4 elektronów krążących wokoło. Powstawanie najlżejszych atomów trwało nie więcej niż kilkanaście minut. W bardzo szybko rozszerzającym się wszechświecie cięższe niż beryl pierwiastki nie miały szans powstać, bo energia za bardzo zdążyła się już rozproszyć.

Przez kolejnych kilkaset milionów lat, cała materia we wszechświecie była zbudowana z zaledwie kilku pierwiastków. Gdyby tak pozostało do dzisiaj, układ okresowy pierwiastków miałby zaledwie kilka pozycji.

I wtedy pojawiły się gwiazdy

Choć na początku swojego istnienia wszechświat był jednorodny, po jakimś czasie zaczęły w nim powstawać lokalne zagęszczenia. Te grawitacyjnie przyciągały swoje otoczenie. W środku tak zagęszczającej się materii rosło ciśnienie i temperatura. Im więcej materii się ze sobą zlepiało, tym większe ciśnienie (a więc i temperatura). Temperatura rosła aż do chwili gdy przyszła gwiazda „zapalała się”. Co to oznacza ? Gwiazdy czerpią energię z reakcji w której małe atomy łączą się w większe. Żeby jednak ta reakcja zastartowała, potrzeba bardzo wysokiej temperatury. Gdy ta została osiągnięta, gwiazda zaczynała świecić. Lekkie atomy łączyły się w cięższe, co dawało ogromną ilość energii. Ta energia daje gwiazdom życie, to dzięki niej gwiazdy świecą.

I tak, czasami przez miliardy lat lekkie atomy łączą się w gwiazdach w cięższe, te cięższe w jeszcze cięższe i jeszcze cięższe. Z wodorów powstaje hel, potem węgiel. Później tworzy się tlen, krzem, neon czy magnez. Każdy cięższy pierwiastek powstaje z połączenia się (fuzji albo inaczej syntezy) tych lżejszych. Ale we wnętrzu gwiazd nie powstają wszystkie znane z układu okresowego pierwiastki. Czym większy atom, tym więcej energii potrzeba do jego stworzenia. Ostatnim jaki może powstać we wnętrzu gwiazdy jest żelazo. Ma 26 protonów i 30 neutronów w jądrze, oraz 26 elektronów krążących wokoło. Gwiezdny piec jest za mały, by wytworzyć cokolwiek cięższego. Jak zatem powstają te naprawdę wielkie pierwiastki ?

Potrzebna jest śmierć

Duża gwiazda kończy swój żywot jako kula żelaza (żelaza, bo to ono jest najcięższym pierwiastkiem jaki może powstać w gwieździe). Ale to nie koniec życia gwiazdy. Przed nami najlepsze! Następuje największy bodaj kataklizm z jaki można sobie wyobrazić. Gwiazda wybucha jako supernowa. To dzieje się w zaledwie kilka sekund. Eksplozja jest tak duża, że zewnętrzne warstwy gwiazdy wyrzucane są w przestrzeń z prędkością rzędu dziesiątków tysięcy kilometrów na sekundę. To chwila, w której gwiazda może świecić jaśniej niż cała galaktyka w której się znajduje. Z zapisków w starych kronikach wynika, że w 1054 roku na dziennym niebie, oprócz Słońca, widoczny był efekt wybuchu jednej z supernowych. Przez 23 doby ludzie widzieli dwa „słońca”! Ten efekt równocześnie obserwowali chińscy astronomowie, arabscy mędrcy i Indianie Nimbres mieszkający na terenie obecnego Meksyku. Dzisiaj po tej supernowej został rozszerzający się obłok rozżarzonego gazu tworzący Mgławicę Kraba.

Crab_NebulaW czasie samego wybuchu energia eksplozji jest tak wielka, że dochodzi do produkcji najcięższych z występujących we wszechświecie pierwiastków. Także w tym przypadku powstają one z połączenia elementów lżejszych. To właśnie w czasie tylko niezwykle krótkich chwil powstaje np. ciężki, bo składający się aż 238 neutronów i protonów uran. Ale także ołów czy złoto. To ostatnie, choć wydobywane jest na Ziemi, powstało w czasie wybuchu gwiazdy, której teraz już nie ma. Te najcięższe pierwiastki w wyniku eksplozji zostają rozrzucone wokół eksplodującej gwiazdy. Wokół w kosmicznej skali. Wspomniana Mgławica Kraba ma średnicę około 11 lat świetlnych ( 100 bilionów kilometrów) i co sekundę powiększa się o 1500 kilometrów.

Człowiek, ale także wszystko to co wokoło widzimy zbudowane jest z cegiełek – dosłownie – wypalonych we wnętrzu gwiezdnego pieca. Te cięższe budujące nas elementy nie zaistniałyby gdyby nie dochodziło do gwałtownego i widowiskowego wybuchu gwiazdy supernowej. Jesteśmy – nie tylko w przenośni – dziećmi gwiazd. Korzystamy z tego co one wytworzyły, a gdy nasza dzienna gwiazda Słońce dożyje wieku sędziwego, budujące nas cegiełki na powrót zostaną rozsypane w kosmosie. Może wykorzysta je kto inny?

4 komentarze do Jesteśmy dziećmi gwiazd

Wahadła Foucaulta w Polsce

Wahadła Foucaulta w Polsce

Woda spływając tworzy wir. Nie tylko woda skręca w czasie ruchu. Także prądy powietrza, które tworzą wiry w atmosferze. Podobnie dzieje się np. z krążkiem uderzonym przez hokeistę, albo z kulą wystrzeloną z pistoletu.

To efekt Coriolisa, który występuje w obracających się układach odniesienia. Dobrze widać to na wahadle Foucault. W 1851 roku francuski fizyk i astronom Jean Foucault zaprezentował w Paryskim Obserwatorium Astronomicznym wahadło, które zmieniając płaszczyznę wahania dowodziło wirowania Ziemi wokół własnej osi.

O co chodzi? Gdy na długiej linie zawiesimy spory obciążnik i wahniemy nim, z czasem zauważymy, że zmienia on płaszczyznę wahania. Tak jak gdyby coś ją przesuwało. Najłatwiej to zauważyć rozstawiając wokół wahadła znaczniki, które z czasem będą się jeden po drugim przewracać. Dlaczego ma to świadczyć o ruchu wirowym Ziemi? Jeżeli wahadło jest odpowiednio długie, a jego obciążnik wystarczająco ciężki, wpływ otoczenia na ruchy wahadła są znikome. Z punktu widzenia kogoś, kto stoi na Ziemi, wahadło wyraźnie zmienia płaszczyznę wahania. Ruchu Ziemi nie widać, bo na niej stoimy, jesteśmy względem niej w spoczynku. Z innego punktu widzenia kogoś, kto znajduje się w innym układzie odniesienia sprawa wygląda jednak zupełnie inaczej. Tutaj płaszczyzna wahania jest cały czas taka sama.

Gdyby Ziemia była w spoczynku płaszczyzna wahania nie zmieniałaby się. Skoro płaszczyzna się zmienia, znaczy to, że Ziemia wiruje. Zresztą ruch wirowy nie jest jedynym. Ziemia krąży wokół Słońca z prędkością ponad 100 000 km/h, cały Układ Słoneczny krąży wokół centrum galaktyki z prędkością prawie miliona km/h, a galaktyka w której się znajdujemy porusza się z prędkością ponad 2 mln km/h.

Czytając ten tekst pokonałaś / pokonałeś kilkadziesiąt tysięcy kilometrów… siedząc cały czas w tym samym miejscu 🙂

 

Najdłuższe wahadło Foucaulta w Polsce znajduje się w krakowskim Kościele św. św. Piotra i Pawła. Demonstracje odbywają się w każdy czwartek.

Miejsce Miasto Długość (m) Masa (kg)
Kościół św. Piotra i Pawła Kraków 46,5 25
Centrum Nowoczesności Młyn Wiedzy Toruń 33,5 35
Wieża Radziejowskiego – dawna dzwonnica Frombork 28,5 46
Wieża Dzwonów na Zamku Książąt Pomorskich Szczecin 28,5 76
Wydział Matematyczno-Przyrodniczy Uniwersytetu Jana Kochanowskiego Kielce 27
Dziedziniec Politechniki Gdańskiej Gdańsk 26 64
Centrum Nauki Kopernik Warszawa 16 242
Wydział Fizyki, Astronomii i Informatyki Stosowanej Uniwersytetu Mikołaja Kopernika Toruń 16 29
Wydział Fizyki Uniwersytetu im. Adama Mickiewicza Poznań 10 52
Planetarium Śląskie Chorzów

źródło: Wikipedia

 

 

 

 

 

3 komentarze do Wahadła Foucaulta w Polsce

Type on the field below and hit Enter/Return to search

Skip to content