Nauka To Lubię

Oficjalna strona Tomasza Rożka

Tag: wszechświat

Uwaga: Spadające gwiazdy! Rój meteorów Perseidy

Przez najbliższych kilkanaście godzin Ziemia będzie nieustannie bombardowana przez rój meteorów – Perseid. Na nocnym niebie można będzie wtedy zaobserwować nawet kilkaset „błysków” na godzinę.

Przez najbliższych kilkanaście godzin Ziemia będzie nieustannie bombardowana przez rój meteorów – Perseid. Na nocnym niebie można będzie wtedy zaobserwować nawet kilkaset „błysków” na godzinę. Szczyt zjawiska widoczny bedzie we środę 12.08.2020!

4 komentarze do Uwaga: Spadające gwiazdy! Rój meteorów Perseidy

Polecimy na Trytona?

Amerykańska Agencja Kosmiczna NASA zaproponowała przeprowadzenie misji na Trytona, największy księżyc Naptuna. Na tym globie, pod grubą warstwą lodu, mogą znajdować się wodne oceany a w nich życie.

Amerykańska Agencja Kosmiczna NASA zaproponowała przeprowadzenie misji na Trytona, największy księżyc Naptuna. Na tym globie, pod grubą warstwą lodu, mogą znajdować się wodne oceany a w nich życie.

Tryton jest jednym z najmniej zbadanych globów Układu Słonecznego. W zasadzie mamy jego zdjęcia tylko dzięki misji Voyager2. Widać na nich lodowy świat, który jest… aktywny geologicznie. Sonda odkryła bowiem, że na księżycu funkcjonują kriowulkany (lodowe gejzery). Zdjęcia o których mowa zostały jednak zrobione 30 lat temu (w 1989 roku) przez urządzenie zaprojektowane i wybudowane prawie 50 lat temu. Najwyższy więc czas na zaktualizowanie danych, które mamy.

Kilka dni temu przedstawiciele NASA, na specjalnie zwołanej konferencji prasowej, zaproponowali wysłanie na Trytona niewielkiej (i co podkreślano – taniej) sondy, która zbadałaby niektóre parametry księżyca. Wśród nich możliwość istnienia na Trytonie (a w zasadzie pod jego powierzchnią) prostego, bakteryjnego życia.

Z powodu zestalonego azotu i dwutlenku węgla, Tryton jest bardzo jasny (odbija bardzo dużo światła słonecznego) i… wygląda jak melon. Przynajmniej na niektórych obszarach. Oprócz nich, powierzchnia księżyca poprzecinana jest głębokimi i długimi na setki kilometrów bruzdami. Księżyc jest aktywny geologicznie (a to w Układzie Słonecznym ewenement) i to właśnie z powodu tej aktywności powstają wspomniane bruzdy. A także lodowe wulkany. Tryton jest największym księżycem Neptuna, ale licząc od powierzchni planety, jest dopiero ósmy w kolejności. Co ciekawe, jest jedynym – z tych dużych – księżycem w naszym układzie, który porusza się ruchem wstecznym. Innymi słowy, obraca się w przeciwnym kierunku do kierunku obrotu planety. To znaczy, że Tryton nie powstawał razem z Neptunem, tylko został przez niego grawitacyjnie przechwycony później. Nie dość, że Tryton nie powstał razem ze swoją planetą, najpewniej, Neptun go „przeżyje”. Tryton powoli zbliża się do powierzchni planety i za od 1,5 do 3,5 mld lat zderzy się z nią. Księżyc w 25 proc. składa się z wody, a w pozostałych 75 proc. z materiału skalnego. W chwili zderzenia rozsypie się jak potłuczona szyba na wiele małych kawałków, tworząc wokół Neptuna pierścienie podobne do tych, które posiada np. Saturn.

 

Tryton jest jednym z najzimniejszych miejsc Układu Słonecznego. Co do wielkości, w zasadzie nie różni się od Plutona i jest tylko trochę mniejszy od naszego Księżyca. Wokół Neptuna porusza się w podobnej odległości co Księżyc od Ziemi. Ze zdjęć wykonanych przez sondę Voyager2 wynika, że pióropusze lodowych kawałków, płynnego azotu i metanu wyrzucane są na wysokość nawet 8 km ponad powierzchnię księżyca. Z tych lodowych erupcji pochodzą także gazy (metan, amoniak i dwutlenek węgla), które tworzą bardzo rzadką atmosferę. Jej skład bardzo różni się w zależności od pory roku. A te na Trytonie zmieniają się jednak dość rzadko, bo co kilkadziesiąt ziemskich lat.

Brak komentarzy do Polecimy na Trytona?

Chiny na Marsie, Mars w Chinach

Cóż tam, panie, w polityce? Chińczyki trzymają się mocno!? Oj mocno.
I to nie tylko w polityce, ale także w nauce. Chiny właśnie otwarły zaawansowany ośrodek w który będą symulowali warunki marsjańskie, kilka tygodni temu chiński lądownik Cheng4 wylądował na „odwrotnej” stronie Księżyca, a to dopiero początek!

W chińskim mieście Mang, położonym tuż przy granicy z Birmą, powstała bardzo zaawansowana makieta marsjańskiego miasta (bazy). W zasadzie tak zaawansowanej bazy nie ma chyba nigdzie indziej. Celem budowy tego ośrodka jest z jednej strony przyciągnięcie turystów i edukacja, z drugiej ćwiczenie ekspertów i symulowanie tego co czeka nas na czerwonej Planecie. W ośrodku będą także prowadzone badania naukowe, w tym badania człowieka. Równocześnie może w nim pracować około 60 osób.

Ośrodek otwarto w zeszły piątek, a koszt jego budowy wyniósł prawie 25 milionów dolarów. Pieniądze nie pochodziły jednak z kasy państwa. Wyłożył je prywatny donator.

Miejsce w którym ośrodek powstał, jego otoczenie, przypomina to czego można się będzie spodziewać na Marsie. Sucha, piaszczysto-kamienista okolica ułatwi prowadzenie treningów i urealni symulacje. Oczywiście na powierzchni Marsa będzie znacznie, znacznie trudniej, z powodu bardzo rzadkiej atmosfery, niskiego ciśnienia i nieporównywalnie większej amplitudy temperatury. I być może najważniejsze. na Marsie panuje wysoki poziom promieniowania kosmicznego, przed którym, na Ziemi chroni nas atmosfera i pole magnetyczne planety. Te różnice nie zmieniają jednak tego, że zdobycie Marsa przez człowieka musi być poprzedzone budowaniem ośrodków szkoleniowych i baz na Ziemi. Jest jeszcze jeden cel ich budowy. Takie miejsca inspirują młodych ludzi. A to bardzo ważne przy budowaniu planu podboju kosmosu. Te inspiracje u niektórych zostaną wykorzystane i rozwinięte w życiu zawodowym, a u innych przekonają że rozwój nauki i technologii ma ogromny sens.

Odwrócona strona Księżyca. Zdjęcie zrobione z pokładu lądownika Cheng4. Widać na nim łazik Yutu-2 zmierzający w kierunku krateru Aitken.

Kto pierwszy będzie na Marsie? Amerykanin? Chińczyk? A może zostanie zorganizowana wspólna misja? W to ostatnie najtrudniej mi uwierzyć. Chiński program kosmiczny rozwija się w zawrotnym tempie. Sukces goni sukces. Żeby to zrozumieć, musimy zdawać sobie sprawę z tego, że pierwszy Chińczyk znalazł się na orbicie dopiero w 2003 roku, 42 lata później niż pierwszy Rosjanin (Gagarin) i pierwszy Amerykanin (Shepard). Dzisiaj, Chiny dawno wyprzedziły Rosję i gonią Amerykę. Kilka tygodni temu, chiński lądownik Cheng4, wylądował na „odwrotnej” stronie Księżyca. W miejscu w którym wcześniej nikt nie lądował. To nie był błachy sukces. Odwrócona od Ziemi strona Księżyca jest jedynym miejscem w całym Układzie Słonecznym (a może i całym kosmosie), do którego nigdy bezpośrednio nie dotrą fale radiowe z Ziemi. A to oznacza, że komunikacja z Cheng4 musiała się odbywać za pomocą satelitów pośredniczących.

To lądowanie pokazuje, że dzisiaj Chińczyków stać już na oryginalność. Nie budują swojego programu kosmicznego na wzór i podobieństwo innych (choć na początku ich rozbiegu tak właśnie było). To jasne jak Słońce, że chcąc lądować na obcych globach, trzeba to poćwiczyć na naszym Księżycu. Jest najbliżej, więc jest oczywistym poligonem testowym. W kierunku Księżyca swoje sondy wysyłali Amerykanie, Rosjanie, ale także Chińczycy, Japończycy, Irańczycy, a w przyszłym miesiącu ma tam lecieć sonda izraelska. Na powierzchni globu lądowali Amerykanie i Rosjanie (Japończycy i Irańczycy swoje sondy rozbijali o powierzchnię Księżyca). Wszyscy jednak wybierali widoczną stronę naszego satelity. Choć nie wszystkie jej kawałki zostały zbadane, generalnie jest ona bardzo dobrze poznana. Chińczycy swoje pierwsze lądowanie także odbyli po widocznej stronie Księżyca, ale kolejne, to sprzed kilku tygodni, postanowili zrobić po stronie niewidocznej. Amerykanie czy Rosjanie lądowali na Srebrnym Globie wielokrotnie. Chińczycy teraz zrobili to po raz drugi. I podnieśli sobie poprzeczkę lądując tam, gdzie nikt inny nie wylądował. Samo lądowanie to jedno, ale misja ma bardzo ciekawy i oryginalny program naukowy. Łącznie z testowaniem czy na Księżycu mogłyby się rozwijać rośliny i zwierzęta.

Tamta strona Księżyca jest wciąż zagadką i choć sam satelita jest blisko Ziemi a jego zdjęcia (a więc i mapy) są bardzo wysokiej jakości, odwrócona strona Księżyca jest niezbadana. Biorąc pod uwagę, że jest inna niż ta strona którą widzimy, w pewnym sensie, Chińczycy wylądowali na zupełnie innym globie.

Co teraz? Jeszcze w tym roku na Księżyc poleci kolejna sonda, której celem będzie przywiezienie księżycowych próbek. W kolejnym roku zaplanowane jest lądowanie na Marsie. Z kolei za 2,5 roku, jeżeli wszystko pójdzie zgodnie z planem, na orbitę zostaną wyniesione i złożone elementy chińskiej stacji orbitalnej Tiangong. Stacji, która będzie miała stałą załogę.

Program kosmiczny Chin to typowy przykład syndromu młodszego brata. Młodsze rodzeństwo rozwija się szybciej i często dochodzi dalej, bo przyglądając się starszemu, nie popełnia błędów i korzysta z doświadczeń. Ma też większy rozmach i stać je na większą fantazję i oryginalność. Zdarza się, że takie podejście pozwala młodszemu prześcignąć starszego. Mimo tego, że ten starszy ma większe doświadczenie.

Brak komentarzy do Chiny na Marsie, Mars w Chinach

Ile mamy planet?

Odpowiedź na pytanie o to ile mamy planet w Układzie Słonecznym, wcale nie jest prosta. Wydaje się, że 9. Z tym, że o tej ostatniej wiemy z matematycznych wyliczeń a nie z obserwacji.

W 2006 roku, Międzynarodowa Unia Astronomiczna, pozbawiła Plutona miana planety. W sumie, tak na chłodno, bez emocji, należało mu się. Jest inny niż wszystkie pozostałe. Na tyle inny, że są uzasadnione podejrzenia, że nie powstawał razem z resztą, że ma inna historię i przybył do nas „z zewnątrz”. 
I gdy już się wydawało, że wszystko jest jasne, kilka lat temu, odżyła stara koncepcja, która mówi, że na obrzeżach Układu jest dziewiąta planeta. Nikt jej nie widział, ale gdyby rzeczywiście tam była, tłumaczyłoby to „dynamikę Układu Słonecznego”. O co chodzi?
Obiektem, który rozdaje grawitacyjne karty u nas w Układzie jest Słońce. Jego masa wynosi ponad 99 proc. masy całego Układu. Od masy zależy siła grawitacji, więc nie dziwota, że grawitacja słoneczna kształtuje wszystko co dzieje się na naszym podwórku. No prawi wszystko. Bo gdyby dokładnie się przyjrzeć, szczególnie gdy patrzymy na obszary oddalone od Słońca, widać wyraźnie że na ruch obiektów (szczególnie tych małych) wpływ mają także pola grawitacyjne innych planet. Szczególnie Jowisza i Saturna. Gdy przyglądamy się jeszcze bliżej… coś nam się nie zgadza. Bo albo czegoś nie rozumiemy z lekcji grawitacji, albo daleko, na obrzeżach Układy znajduje się jeszcze jeden, dość masywny obiekt. Jest tak daleko, że nieprędko go zobaczymy, ale czujemy jego obecność. A właściwie widzimy efekty tej obecności w ruchach niewielkich obiektów na dalekich orbitach.
Teraz okazuje się, że z wyliczeń jakie przeprowadzili naukowcy z California Institute of Technology (Caltech) wynika, że jeżeli ta planeta rzeczywiście istnieje, jej masa może wynosić około 5 razy więcej niż masa Ziemi. To oczywiście znacznie, znacznie mniej niż wynosi masa Jowisza czy Saturna, ale więcej niż zsumowana masa Merkurego, Wenus, Ziemii i Marsa. Z tych samych wyliczeń wynika, że odległość Dziewiątej Planety od Słońca jest kilkaset razy większa niż odległość Ziemi od Słońca (dla porównania, dla Jowisza to 5x większa odległość, dla Saturna 10x większa).
 
Podobno to co najciekawsze w Układzie Słonecznym, jeszcze nie zostało odkryte. Peryferia, zawsze skrywają najwięcej tajemnic. Peryferia świata w którym żyjemy są zimne, mroczne i tak odległe, że w zasadzie długo jeszcze będą niedostępne. Przynajmniej dla naszych oczu. Całe szczęście matematyka może sięgać, gdzie wzrok nie sięga.
6 komentarzy do Ile mamy planet?

Co gdzie pada? Diamenty na Uranie!

U nas słowo deszcz, albo śnieg kojarzy się z wodą, bo w zasadzie tylko woda spada na naszą głowę. Na innych planetach i księżycach z nieba spada kwas siarkowy, metan, krople żelaza, ciekłe szkło, a nawet diamenty.

U nas słowo deszcz, albo śnieg kojarzy się z wodą, bo w zasadzie tylko woda spada na naszą głowę. W rzeczywistości sprawa jest bardziej złożona bo woda wodzie nierówna. Mamy grad, mamy śnieg, mamy szadź, szron, krupy no i kropelki ciekłej wody. To jednak tylko różne fizyczne postaci wody, z chemicznego punktu widzenia woda to woda. H2O. A co spada na powierzchnię innych globów? Na razie nie znaleźliśmy planety czy księżyca, na których byłyby wodne deszcze czy wodny śnieg. Ale to wcale nie znaczy, że poza Ziemia nie pada. Nie trzeba daleko szukać, wystarczy spojrzeć na naszą siostrzaną planetę Wenus na której z chmur pada kwas siarkowy 1.

Chmury

No właśnie. Z chmur. Po to żeby cokolwiek padało na powierzchnię globu, muszą być spełnione pewne warunki. Po pierwsze na takim globie musi istnieć atmosfera. A w niej chmury. W zależności od tego z czego te chmury się składają, jaki jest skład całej atmosfery, jakie panuje w niej ciśnienie oraz temperatura, mogą powstawać deszcze np. kwasu siarkowego. Tutaj warto zwrócić uwagę na pewien wyjątek. Gdy jakiś glob jest aktywny geologicznie czy sejsmicznie i występują na nim wulkany albo gejzery, możliwa jest sytuacja w której na niewielką powierzchnię tego globu, mimo braku atmosfery, pada to, co wyrzuciły gejzery. Tak jest np. na jednym z księżyców Saturna, Enceladusie 2. Na jego powierzchni wybuchają lodowe gejzery. Ale nie takie jak te ziemskie, z których na wysokość najwyżej kilkudziesięciu metrów strzela gorąca woda. W przypadku Enceladusa w przestrzeń – księżyc nie ma atmosfery – wylatują kryształki lodu. Tylko bardzo niewielka ich część opada na powierzchnię księżyca, większość zasila pierścienie Saturna. Konkretnie pierścień E Saturna. W dłuższej perspektywie, rzędu tysięcy lat, materiał wyrzucany przez Enceladusa opada na powierzchnię samego Saturna. Gejzery wyrzucają maleńkie kryształki lodu z prędkością ponad 1400 km/h na wysokość 1500 kilometrów nad powierzchnię księżyca.

Kwas na Wenus

A wracając do Wenus. Większość informacji o ukształtowaniu powierzchni Wenus czerpiemy ze zdjęć radarowych. Atmosfera Wenus jest prawie 100 razy cięższa niż ziemska, mimo że Ziemia i Wenus to planety o bardzo podobnej wielkości. Ciśnienie przy powierzchni planety jest ponad 90 razy wyższe niż ciśnienie przy powierzchni ziemi 3. Co ciekawe, uważa się, że kiedyś atmosfery ziemi i Wenus były do siebie bardzo podobne, a na powierzchni Wenus była ciekła woda 4. Z jakiegoś jednak powodu tam rozpoczął się galopujący efekt cieplarniany. Dzisiaj przy powierzchni planety panuje temperatura 460 st C, a atmosfera to głównie dwutlenek węgla i trochę azotu. Grube chmury, zakrywają Wenus tak szczelnie, że do jej powierzchni trafia zaledwie 1proc. światła słonecznego które pada na planetę. Te chmury zbudowane są z dwutlenku siarki. W wensujańskiej atmosferze zdarzają się burze a nawet wyładowania atmosferyczne. Wydaje się, że nawet jeżeli coś pada z tych chmur, nie dolatuje do powierzchni planety. Wyjątkiem są szczyty pasm górskich, gdzie panuje niższa temperatura 1.  Sonda Magellan wykryła na szczytach górskich jakąś odbijającą światło substancję. Coś, co na ziemi bez wątpienia byłoby śniegiem. Biorąc pod uwagę skomplikowaną chemię wenusjańskiej atmosfery nie ma pewności czy tym czymś jest siarczek ołowiu, metaliczny tellur czy właśnie kwas siarkowy.

Metan i diamenty

Na Wenus panuje prawdziwe gorące piekło, z kolei zimne piekło panuje na Tytanie, jednym z księżyców Saturna. To jedyny księżyc w naszym układzie planetarnym, który ma gęstą atmosferę. Ta atmosfera jest zresztą gęstsza od atmosfery ziemskiej. Jest jeszcze coś. Tytan jest jedynym nam znanym globem, na którym jest znajdują się zbiorniki ciekłej substancji 5. Tą substancją jest metan. Atmosfera Tytana składa się z azotu z niewielką ilością argonu, metanu, etanu i acetylenu . Ta niewielka ilość jednak wystarczy, by z gęstych chmur padał ciekły metan i etan. Na zdjęciach z powierzchni księżyca widać rzeki i kanały, widać dopływy do jezior a nawet delty rzek. Największy znany zbiornik Kraken Mare ma wielkość Morza Kaspijskiego. Tytan jest znacznie mniejszy od Ziemi i tylko trochę większy od naszego Księżyca, a to znaczy, że w skali globu Kraken Mare jest prawdziwym oceanem. Na powierzchni którego widać zresztą wyspy i całe atole. Gdyby na powierzchni księżyca był tlen, cały glob wyleciałby w powietrze… Tlenu tam jednak nie ma.

Obserwowanie opadów na Tytanie jest dość skomplikowane, bo najpewniej pojawiają się one sezonowo a pory roku zmieniają się tam co wiele ziemskich lat.  Jeszcze trudniejsza jest jednak obserwacja tego co dzieje się w atmosferze Naptuna. To gazowy olbrzym, o którego twardej powierzchni trudno nawet spekulować. Na Neptunie chmury zbudowane są w zależności od wysokości i ciśnienia z amoniaku, siarkowodoru, wodorosiarczku amonu, siarkowodoru i wody 6. Bardzo skomplikowana fizyka i chemia jaka stoi za procesami które dzieją się w grubych atmosferach gazowych olbrzymów takich jak Neptun, Saturn, Jowisz czy Uran nie jest jeszcze zrozumiała, ale przypuszcza się, że wchodząc coraz głębiej w atmosferę Neptuna temperatura wzrasta do bardzo wysokich wartości liczonych w tysiącach stopni. Przypuszcza się, że na głębokości kilku tysięcy kilometrów, w głąb atmosfery Neptuna wysokie ciśnienie i temperatura powodują rozkład metanu w wyniku którego powstają kryształy węgla, czyli diamenty7 . Te diamenty – zdaniem naukowców – opadają w kierunku twardego jądra planety tak jak kryształy wody, opadają na powierzchnię Ziemi jako śnieg.

Jeszcze głębiej atmosfery Neptuna jest woda jonowa, która jeszcze głębiej staje się przewodnikiem superjonowym i skrystalizowany tlen.  A wracając do deszczy diamentów, te mogą występować nie tylko w supergęstej atmosferze Neptuna ale także na Uranie. Atmosfery tych dwóch gigantów muszą się jednak od siebie różnić składem, bo choć w obydwu znajduje się sporo metanu, Neptun jest niebieski, a Uran ma kolor cyjanu.

Szkło i żelazo

I jeszcze dwie planety pozasłoneczne na koniec. Ich bezpośrednia obserwacja jest ekstremalnie trudna. Owszem możemy zarejestrować ich istnienie, masę, okres obiegu wokół swoich gwiazd i odległość od tych gwiazd. Z tych informacji można wyciągać pewne wnioski na temat warunków jakie panują na tych planetach. W przypadku niektórych planet udaje się o nich powiedzieć nieco więcej. Jedną z takich planet jest HD 189733 b, która znajdującej się w odległości około 60 lat świetlnych od Ziemi8. Obserwując spolaryzowane światło rozpraszane przez atmosferę tej planety odkryto w niej metan, dwutlenek węgla i krzem. Wiatr na powierzchni planety wieje z prędkością kilkukrotnie większą, niż prędkość dźwięku. Zdaniem naukowców z NASA na tej planecie padają deszcze płynnego krzemu, czyli w pewnym przybliżeniu deszcze roztopionego szkła9. I druga planeta OGLE-TR-56b odkryta zresztą przez Polaka Macieja Konackiego10. Planeta krąży wokół swojej gwiazdy w odległości 17 krotnie mniejszej niż odległość Merkurego od Słońca. Jest bez wątpienia gazowym olbrzymem, dużo większym od Jowisza. Została odkryta metodą tranzytu. Nie ma na to żadnych dowodów, ale naukowcy spekulują, że na planecie padają deszcze płynnego żelaza11.

Patrząc na to wszystko, żelazo, metan, kwas siarkowy, jakoś przestaje mi przeszkadzać wodny deszcz. Nawet jak leje kilka dni z rzędu 😉

 

źródła:

  1. phys.org/news/2016-12-weather-venus.html
  2. www.space.com/32844-saturn-moon-enceladus-surprising-plumbing-mystery.html
  3. hyperphysics.phy-astr.gsu.edu/hbase/Solar/venusenv.html
  4. www.universetoday.com/22551/venus-compared-to-earth/
  5. www.nasa.gov/feature/jpl/cassini-explores-a-methane-sea-on-titan
  6. https://www.space.com/18922-neptune-atmosphere.html
  7. https://www.sciencealert.com/scientists-recreate-the-diamond-rains-of-neptune-and-uranus-in-the-lab
  8. https://en.wikipedia.org/wiki/HD_189733_b
  9. https://www.nasa.gov/image-feature/rains-of-terror-on-exoplanet-hd-189733b
  10. https://en.wikipedia.org/wiki/OGLE-TR-56b
  11. https://www.astrobio.net/meteoritescomets-and-asteroids/new-world-of-iron-rain/

 

1 komentarz do Co gdzie pada? Diamenty na Uranie!

Fizyk który nie znał granic

14 marca, zmarł urodzony 76 lat temu fizyk, Stephen Hawking. Człowiek odważny i wybitny, znany na całym świecie nie tylko z powodu teorii fizycznych, którymi się zajmował. Gdyby chcieć powiedzieć o nim jedno zdanie. Brzmiałoby ono… człowiek, który nie znał granic.

14 marca, zmarł urodzony 76 lat temu fizyk, Stephen Hawking. Człowiek odważny i wybitny, znany na całym świecie nie tylko z powodu teorii fizycznych, którymi się zajmował. Gdyby chcieć powiedzieć o nim jedno zdanie. Brzmiałoby ono… człowiek, który nie znał granic.

A granice, akurat Hawking powinien znać doskonale. Od wczesnej młodości cierpiał na stwardnienie zanikowe boczne. Choroba doprowadziła go do stanu, w którym w żadnym aspekcie życia nie był samodzielny. W żadnym, z wyjątkiem myślenia. I tutaj znowu wracamy do braku granic. Stephen Hawking był matematykiem i fizykiem teoretykiem. Zajmował się tematami tak abstrakcyjnymi, że nawet dla kolegów po fachu jego prace były niezwykle skomplikowane. Przez 40 lat swojej naukowej kariery opracował hipotezę parowania czarnych dziur, zajmował się grawitacją kwantową i opracował twierdzenie dotyczące osobliwości. Czyli takich obszarów, miejsc w których przyspieszenie grawitacyjne, albo gęstość materii mają nieskończoną wartość. W osobliwości mają nie działać prawa przyrody które znamy z naszego nie-osobliwego otoczenia.

Jak wszyscy mylił się i błądził. Wielu z tych rzeczy którymi się zajmował, nie potwierdziło się eksperymentalnie. Ale tak właśnie działa nauka. Teoretycy szukają, fizycy eksperymentalni, próbują podważyć. Zresztą podważaniem zajmował się i sam Hawking. Wielokrotnie mówił, że zabawa sztuczną inteligencję jest bardzo groźna. Mówił też, że nie mamy wyjścia, w dłuższej perspektywie, musimy opuścić Ziemię. Zresztą uważał, że kosmos jest pełen życia. „Na mój matematyczny rozum, same liczby sprawiają, że myślenie o istotach pozaziemskich jest całkowicie racjonalne. Prawdziwym wyzwaniem jest dowiedzieć się, jak te istoty mogą wyglądać – powiedział kiedyś.

Dla szerszego odbiorcy Stephen Hawking nie był jednak znany ani z prac o czarnych dziurach, ani z rachunków dotyczących osobliwości, ani tym bardziej z hipotez dotyczących grawitacji kwantowej. Był znany jako autor książki Krótka Historia Czasu, którą wydał w 1988 roku. Krótko po jej wydaniu powiedział, że jego marzeniem było napisanie książki o fizyce, którą będą sprzedawali na lotniskach. I dopiął swego. Jego książka przez wiele tygodni nie schodziła z listy bestsellerów w wielu krajach świata.

Dziesięć lat temu, obchodząc swoje 65 urodziny Hawking powiedział, że weźmie udział w suborbitalnym locie, że chce poczuć nieważkość. I poczuł. Zaledwie kilka miesięcy później fizyk znalazł się na pokładzie specjalnie dostosowanego do tego typu eksperymentów Boeinga 727. Samolot 8 razy wznosił się na wysokość około 8 kilometrów, a następnie „wyłączał” silniki i spadał w dół. Dzięki temu, biorący udział w eksperymencie ludzie, czuli w nim nieważkość. W ten sposób szkoli się ludzi, którzy zostaną wysłani w kosmos. Hawking nie zdążył polecieć na orbitę, ale spełnił swoje marzenie. W wielu wywiadach później wspominał, że w nieważkości, po raz pierwszy od 40 lat mógł się poruszać bez wózka inwalidzkiego. I znowu przekroczył granicę, która dla osób całkowicie sparaliżowanych, byłą dotychczas nieprzekraczalna.

7 komentarzy do Fizyk który nie znał granic

Czerwony wulkan

Przeglądając internet, mignęło mi zdjęcie z powierzchni Marsa. Zdjęcie największego w Układzie Słonecznym wulkanu. Gdyby był na Ziemi, stożek pokryłby prawie całą Francję. Olympus Mons – prawdziwa Góra Olimp.

Przeglądając internet, mignęło mi zdjęcie z powierzchni Marsa. Zdjęcie największego w Układzie Słonecznym wulkanu. Gdyby był na Ziemi, stożek pokryłby prawie całą Francję. Olympus Mons – prawdziwa Góra Olimp.

Do niedawna uważano, że Mars od (niemal) zawsze jest martwy geologicznie. Niemal, znaczy od bardzo długiego czasu. Ale być może ta planeta wygasłych wulkanów, jeszcze tętniła (geologicznym) życiem jeszcze kilkadziesiąt milionów lat temu. To w skali geologicznej okres dość bliski. Być może płynęła tam lawa, a wulkany wyrzucały w przestrzeń pył i głazy. Do takich wniosków doszli badacze, którzy analizowali np. dane z sondy Mars Global Surveyor (MGS). Badacze z Planetary Science Institute w Tucson w Arizonie oraz z Uniwersytetu w Arizonie wiek lawy na zboczach wulkanu Elysium Mons ocenili na około 20 milionów lat. W innych miejscach lawa może być jeszcze młodsza. Trudno – bez pobrania próbek – oceniać dokładny wiek lawy. Pozostaje szacowanie.

Wspomniany wulkan Elysium Mons mierzy 700 kilometrów średnicy i ok. 13 kilometrów wysokości. W porównaniu z ziemskimi wulkanami, a nawet z najwyższymi szczytami, to gigant. Ale w porównaniu z innymi wulkanami na Marsie, to zaledwie średniak. Bo na przykład wulkan Olympus Mons ma aż 27 kilometrów wysokości ponad otaczającą go równinę (prawie 3 razy więcej niż Mont Everest). To największy – znany – wulkan w Układzie Słonecznym. Naukowcy oceniają, że wygasł około 100 milionów lat temu. I choć – z oczywistych względów – nie ma żadnych zdjęć z tamtego okresu, sama jego obserwacja daje całkiem sporo informacji. To, że jego zbocza są nachylone pod bardzo małym kątem (średnio 5 st) oznacza, że wyciek lawy był bardzo powolny i długotrwały. Nie jest wykluczone, że kiedyś wystawał z dna dużego zbiornika z wodą, bo stożek u podstawy zakończony jest skarpą o wysokości nawet 6 kilometrów. Na szczycie wulkanu znajduje się ogromny krater o średnicy około 70 kilometrów i głębokości 3 kilometrów.

Dlaczego na Marsie wulkany są znacznie wyższe niż te na Ziemi? Mars jest planetą mniejszą a więc jego wewnętrzna energia wyczerpała się dość szybko. Ziemia we wnętrzu ma wciąż bardzo dużo energii. To wychładzanie miało swoje ogromne konsekwencje. Jedną z nich był zanik pola magnetycznego planety i zniknięcie tarczy. To mogło spowodować zdmuchnięcie atmosfery Marsa i wyparowanie całej znajdującej się na powierzchni wody. Inną konsekwencją mogło być zatrzymanie ruchu płyt kontynentalnych. Na Ziemi erupcje nawet najbardziej aktywnych wulkanów trwają – w geologicznej skali – bardzo krótko. Na Marsie raz otwarty „kanał” mógł być drożny przez długi czas. Gdy wulkan zaczął „wylewać” lawę, ten proces nie miał końca. Być może właśnie dlatego stożki wulkanów na Czerwonej Planecie są tak wysokie. To jednak tylko nasze przypuszczenia. O aktywności wewnętrznej innych planet, nie wiemy zbyt wiele.

Brak komentarzy do Czerwony wulkan

Planety z innej galaktyki!

Naukowcom z Uniwersytetu w Oklahomie (USA) udało się znaleźć planety, które znajdują się poza galaktyką Drogi Mlecznej. To pierwsze takie odkrycie w historii.

Po raz kolejny pokazano jak potężną metodą badawczą jest mikrosoczewkowanie grawitacyjne. Naukowcy z University of Oklahoma, korzystając z danych zebranych przez orbitalny teleskop Chandra, po raz pierwszy w historii odkryli planety pozasłoneczne w innej galaktyce niż nasza Droga Mleczna. Te które znaleziono znajdują się w galaktyce odległej od nas o 3,8 miliarda lat świetlnych. Odkrycie zostało opisane w Astrophysical Journal Letters.

Mikrosoczewkowanie  grawitacyjne to jedna z kilku metod poszukiwania obiektów, które same nie są źródłem światła, ale same „zniekształcają” jego bieg. To też metoda, której udoskonalenie zawdzięczamy polskim uczonym z grupy profesora Andrzeja Udalskiego.

Promień światła niekoniecznie musi poruszać się po linii prostej. Gdy biegnie przez wszechświat i przelatuje w pobliżu dużej masy, zmienia swój bieg. Polscy uczeni tę metodę zastosowali w skali mikro. Tą masą, która ugina promień światła może być np. planeta. Metodą mikrosoczewkowania można odkrywać nawet planety mniejsze od Ziemi. Żadną z pozostałych znanych metod nie potrafimy wykrywać tak małych globów.

Uginanie promieni światła pod wpływem masy postulował Albert Einstein w opublikowanej w 1916 roku Ogólnej Teorii Względności . Eksperymentalnie ten efekt potwierdzono dopiero w 1979 roku, na podstawie obserwacji kwazaru Q0957+561. Dzisiaj mikrosoczewkowanie pomaga łowić planety, a soczewkowanie grawitacyjne pomaga ocenić np. rozkład ciemnej materii we wszechświecie. Czym większa masa, tym ugięcie światła będzie większe, ale nawet to bardzo subtelne, jest przez astronomów (a w zasadzie zaawansowane urządzenia astronomiczne) zauważalne.

A wracając do odkrytych planet. Zbyt wiele o nich nie wiadomo, poza tym, że ich masa mieści się pomiędzy masą Księżyca i Jowisza. Co więcej, na razie nie zanosi się na to, by dało się w jakikolwiek sposób powiększyć wiedzę o nowych planetach. Nie znamy technologii, która by to umożliwiała. – Ta galaktyka znajduje się 3,8 miliarda lat świetlnych stąd i nie ma najmniejszej szansy na obserwowanie tych planet bezpośrednio, nawet z najlepszym teleskopem, jaki można sobie wyobrazić w scenariuszu science fiction. Jednak jesteśmy w stanie je badać, odkrywać ich obecność, a nawet mieć wyobrażenie o ich masach – powiedział Eduardo Guerras, członek grupy badawczej, która dokonała odkrycia.

Wiele lat temu intuicja podpowiadała, że Układ Słoneczny nie może być jedynym miejscem w którym znajdują się planety. I rzeczywiście, badania polskiego astrofizyka, prof. Aleksandra Wolszczana z początku lat 90tych XX wieku pokazały, że Słońce nie jest jedyną gwiazdą z planetami. Dzisiaj planet innych niż słoneczne znamy wiele tysięcy. Ta sama intuicja podpowiadała, że w innych galaktykach niż nasza Droga Mleczna także muszą istnieć planety. No i właśnie – po raz pierwszy – takie odkryto.

 

Więcej informacji:

http://www.ou.edu/web/news_events/articles/news_2018/ou-discover-planets.html

http://iopscience.iop.org/article/10.3847/2041-8213/aaa5fb

For the First Time Ever, Scientists Found Alien Worlds in Another Galaxy

3 komentarze do Planety z innej galaktyki!

Odkryto najdalszą supermasywną czarną dziurę

Astronomom udało się zidentyfikować supermasywną czarną dziurę na krańcach obserwowalnego Wszechświata, z okresu 690 milionów lat po Wielkim Wybuchu – informuje NASA. Wyniki badań opublikowano w „Nature”. Naukowcy szacują masę…

Astronomom udało się zidentyfikować supermasywną czarną dziurę na krańcach obserwowalnego Wszechświata, z okresu 690 milionów lat po Wielkim Wybuchu – informuje NASA. Wyniki badań opublikowano w „Nature”.

Naukowcy szacują masę tej supermasywnej czarnej dziury na 800 milionów mas Słońca. To zaskakującą dużo jak na tak młody obiekt we wczesnej erze Wszechświata.

Gdy Wszechświat powstał w Wielkim Wybuchu, to w początkowej fazie był gorącą mieszaniną cząstek, która gwałtownie się rozszerzała w trakcie tzw. ery inflacji. Około 400 tysięcy lat po Wielkim Wybuchu uległ ochłodzeniu na tyle, że powstał neutralny gaz wodorowy. Ale zanim grawitacja spowodowała grupowanie się materii w pierwsze galaktyki, Wszechświat był ciemny, bez jasnych źródeł światła. Promieniowanie od pierwszych galaktyk powodowało sukcesywnie jonizowanie wodoru (tzw. epoka wtórnej jonizacji). Gdy proces ten objął wystarczająco duży obszar Wszechświata, fotony mogły wreszcie swobodnie podróżować przez przestrzeń kosmiczną – wtedy Wszechświat stał się przezroczysty dla światła. I to mniej więcej z tego okresu pochodzą najdalsze obserwowane kwazary i galaktyki.

Wiele wodoru wokół opisywanego kwazara ULAS J1342+0928 (w jego centrum znajduje się supermasywna czarna dziura) jest w stanie neutralnym. Oznacza to, że obiekt ten nie tylko jest najdalszym kwazarem, ale na dodatek jest przykładem czegoś, co widzimy z okresu zanim Wszechświat stał się w pełni przezroczysty.

W zidentyfikowaniu supermasywnej czarnej dziury pomogły obserwacje wykonane przy pomocy należącego do NASA komicznego obserwatorium Wide-field Infrared Survey Explorer (WISE), w połączeniu z danymi z naziemnych przeglądów nieba. Potem wykonano szczegółowe badania Teleskopami Magellana w Chile.

Supermasywna czarna dziura znajduje się w centrum kwazara (rodzaj aktywnej galaktyki). Dystans do obiektu wyznaczono na podstawie przesunięcia ku czerwieni, czyli pomiaru jak bardzo światło jest rozciągnięte poprzez ekspansję Wszechświata zanim dotrze do Ziemi. Im większe przesunięcie ku czerwieni, tym dalej znajduje się obiekt, a tym samym patrzymy coraz bardziej wstecz w historię Wszechświata. Omawiany kwazar ma przesunięcie ku czerwieni z = 7,54, wyznaczone na podstawie emisji zjonizowanego węgla. Przekłada się to na ponad 13 miliardów lat podróży światła do nas.

Naukowcy przewidują, że na niebie może znajdować się od 20 do 100 kwazarów tak jasnych i odległych, jak wspomniany. Być może więcej takich obiektów uda się odkryć przy pomocy kosmicznego teleskopu Wide-field Infrared Survey Telescope (WFIRST) szykowanego przez Europejską Agencję Kosmiczną (ESA) we współpracy z NASA.

Szczegółowe informacje są dostępne na stronie: https://www.jpl.nasa.gov/news/news.php?release=2017-312 (PAP)

cza/ ekr/

Źródło: www.naukawpolsce.pap.pl

1 komentarz do Odkryto najdalszą supermasywną czarną dziurę

Ukryta komnata

Ukryta komnata, promienie kosmiczne i piramidy. Nie, to nie jest streszczenie taniego filmu science-fiction. Streszczenie tekstu z Nature

To podobno pierwsze znalezisko w piramidzie Cheopsa od XIX. I to od razu z grubej rury. Magazyn Nature napisał, że w jednym z najbardziej monumentalnych grobowców odkryto tajemniczą komnatę. Jej długość jest szacowana na kilkadziesiąt metrów, a o tym, że w ogóle istnieje dowiedziano się dzięki analizie… promieni kosmicznych. Jak tego dokonano?

Czerwoną strzałką zaznaczyłem odkrytą komnatę 

Składnikiem  strumienia cząstek, które docierają do nas z kosmosu są miony. A ściślej mówiąc, miony powstają jako cząstki wtórne w wyniku rozpadu mezonów w wyższych warstwach ziemskiej atmosfery. Miony mają cechy elektronów, ale są ponad 200 razy od nich cięższe. Strumień mionów jest dość duży, bo w każdej sekundzie, przez metr kwadratowy powierzchni Ziemi przelatuje ich prawie 200. Miony nie omijają także nas, ale nie są dla nas groźne. Od jakiegoś czasu fizycy nauczyli się je wykorzystywać praktycznie.

 

Wiadomo ile mionów leci na nasze głowy. Jeżeli na ich drodze postawimy przeszkodę, część z nich, w niej ugrzęźnie. Im gęstsza ta przeszkoda, tym ugrzęźnie ich więcej. Ustawiając w odpowiedni sposób detektory mionów, jesteśmy w stanie wykonać trójwymiarowy obraz skanowanego obiektu. Zasada działania tego pomiaru jest identyczna co działania tomografu komputerowego. Jest źródło promieniowania (promienie Roentgena, zwane promieniami X) i są detektory. Robiąc odpowiednio dużo pomiarów pod różnymi kątami, jesteśmy w stanie z dużą precyzją określić kształt, budowę i strukturę tych części ludzkiego ciała, które dla oka lekarza są zakryte.

>>> Więcej naukowych informacji na FB.com/NaukaToLubie.

W przypadku piramidy Cheopsa w Gizie nie było lekarzy, tylko fizycy i archeologowie, nie było promieni X, tylko kosmiczne miony. Nie było tomografu medycznego, tylko zmyślny system detektorów. Ale udało się dokonać tego samego. Znaleziono obiekt, a właściwie pustą przestrzeń, która wcześniej była przed wzrokiem badaczy zakryta.

Nie wiadomo czym jest tajemnicza komnata. Rozdzielczość tej metody jest zbyt mała, by stwierdzić czy znajdują się w niej jakieś obiekty. Może więc być pusta. Ale może też być pełna skarbów. Pusta przestrzeń znajduje się nad tzw. Wielką Galerią, czyli korytarzem prowadzącym do Komory Królewskiej. Nie wiadomo też, czy komnata (pusta przestrzeń) była zamurowana na etapie budowy piramidy, czy ktokolwiek po jej wybudowaniu do niej zaglądał. Piramida Cheopsa powstała w okresie tzw. Starego Państwa, czyli około 2560 roku p.n.e. Budowano ją zaledwie przez 20 lat. Jak na metody i technologie jakimi wtedy dysponowano, to tempo ekspresowe.

>>> Więcej naukowych informacji na FB.com/NaukaToLubie.

7 komentarzy do Ukryta komnata

Nobel z fizyki za fale

Prace nad wykrywaniem i analizą fal grawitacyjnych musiały kiedyś zostać uhonorowane Nagrodą Nobla. No i stało się.

Kosmiczny detektor, kosmiczne zagadnienie. W świecie fizyków i kosmologów po raz kolejny będzie mówiło się o falach grawitacyjnych. Kilkanaście dni temu dzięki pracy kolaboracji LIGO/VIRGO zmarszczki przestrzeni były w czołówkach serwisów na całym świecie. Dzisiaj też będą. Z powodu Nagrody Nobla z fizyki.

Rainer Weiss, Barry C. Barich, Kip S. Thorne

„for decisive contributions to the LIGO detector and the observation of gravitational waves”

waves-101-1222750-1600x1200

Fale grawitacyjne to kompletny odlot. Człowiekiem który sprawę rozumiał, ba, który ją wymyślił, a w zasadzie wyliczył był nie kto inny tylko Albert Einstein (swoją drogą powinien dostać nagrodę za odkrycie najbardziej nieintuicyjnych zjawisk we wszechświecie). Z napisanej przez niego 100 lat temu Ogólnej Teorii Względności wynika, że ruch obiektów obdarzonych masą,  jest źródłem rozchodzących się w przestrzeni fal grawitacyjnych (lub inaczej – choć nie mniej abstrakcyjnie – zaburzeń czasoprzestrzennych). Jak to sobie wyobrazić? No właśnie tu jest problem. Bardzo niedoskonała analogia to powstające na powierzchni wody kręgi, gdy wrzuci się do niej kamień. W przypadku fal grawitacyjnych zamiast wody jest przestrzeń, a zamiast kamienia poruszające się obiekty. Czym większa masa i czym szybszy ruch, tym łatwiej zmarszczki przestrzeni powinny być zauważalne. Rejestrując największe fale grawitacyjne, tak jak gdybyśmy bezpośrednio obserwowali największe kosmiczne kataklizmy: zderzenia gwiazd neutronowych, czarnych dziur czy wybuchy supernowych. Trzeba przyznać, że perspektywa kusząca gdyby nie to… że fale grawitacyjne to niezwykle subtelne zjawiska. Nawet te największe, bardziej będą przypominały lekkie muśnięcia piórkiem niż trzęsienie ziemi. W książce „Zmarszczki na kosmicznym morzu” (Ripples on a Cosmic Sea: The Search for Gravitational Waves) australijski fizyk, prof. David Blair, poszukiwanie fal grawitacyjnych porównuje do nasłuchiwania wibracji wywołanych przez pukanie do drzwi z odległości dziesięciu tysięcy kilometrów. Detektory zdolne wykryć fale grawitacyjne powinny być zdolne zarejestrować wstrząsy sejsmiczne wywołane przez upadek szpilki po drugiej stronie naszej planety. Czy to w ogóle jest możliwe? Tak! Od 2002 roku działa w USA Laser Interferometer Gravitational Wave Observatory w skrócie LIGO czyli Laserowe Obserwatorium Interferometryczne Fal Grawitacyjnych. Zanim budowa ruszyła, pierwszy szef laboratorium prof. Barry Barrish na dorocznym posiedzeniu AAAS (American Association for the Advancement of Science) oświadczył, że pomimo wielu trudności nadszedł w końcu czas na zrobienie czegoś, co można nazwać prawdzią nauką (swoją drogą, odważne słowa na zjeździe najlepszych naukowców na świecie).

>>> Więcej naukowych informacji na FB.com/NaukaToLubie

This_visualization_shows_what_Einstein_envisioned

Symulacja łączenia się czarnych dziur – jedno ze zjawisk, które wytwarza najsilniejsze fale grawitacyjne

Z falami grawitacyjnymi jest jednak ten problem, że przez dziesięciolecia, mimo prób, nikomu nie udało się ich znaleźć. Gdyby komuś zaświtała w głowie myśl, że być może w ogóle ich nie ma, spieszę donieść, że gdyby tak było naprawdę, runąłby fundament współczesnej fizyki – Ogólna Teoria Względności, a kosmologię trzeba byłoby przepisać od początku. Dzisiaj głośno mówi się, że fale grawitacyjne zostały przez LIGO zarejestrowane. Panuje raczej atmosfera lekkiego podniecenia i oczekiwania na to, co stanie się za chwilę. Potwierdzenie istnienia fal grawitacyjnych nie będzie kolejnym odkryciem, które ktoś odfajkuje na długiej liście spraw do załatwienia.  Zobaczymy otaczający nas wszechświat z całkowicie innej perspektywy.

Jako pierwszy falowe zmiany pola grawitacyjnego, w latach 60 XX wieku próbował zarejestrować amerykański fizyk Jaseph Weber. Budowane przez niego aluminiowe cylindry obłożone detektorami nie zostały jednak wprawione w drgania. Co prawda Weber twierdził, że złapał zmarszczki wszechświata, ale tego wyniku nie udało się potwierdzić. Dalsze poszukiwania trwały bez powodzenia, aż do 1974 roku, gdy dwóch radioastronomów z Uniwersytetu w Princeton (Joseph Taylor i Russel Hulse) obserwując krążące wokół siebie gwiazdy (PSR1913+16) stwierdziło, że układ powoli traci swoją energię, tak jak gdyby wysyłał … fale grawitacyjne. Mimo, że samych fal nie zaobserwowano, za pośrednie potwierdzenie ich istnienia autorzy dostali w 1993 roku Nagrodę Nobla. Uzasadnienie Komitetu Noblowskiego brzmiało: „za odkrycie nowego typu pulsara, odkrycie, które otwiera nowe możliwości badania grawitacji”.

>>> Więcej naukowych informacji na FB.com/NaukaToLubie

virgoviewInstalacja, która z lotu ptaka wygląda jak wielka litera L, to dwie rury o długości 4 km każda, stykające się końcami pod kątem prostym. Choć całość przypomina przepompownię czy oczyszczalnię ścieków jest jednym z najbardziej skomplikowanych urządzeń kiedykolwiek wybudowanych przez człowieka. Każde z ramion tworzy betonowa rura o średnicy 2 metrów. W jej wnętrzu – jak w bunkrze – znajduje się druga ze stali nierdzewnej, która jest granicą pomiędzy światem zewnętrznym a bardzo wysoką próżnią. Z miejsca w którym rury się stykają, „na skrzyżowaniu”, dokładnie w tym samym momencie wysyłane są wiązki lasera. Ich celem są zwierciadła umieszczone na końcu każdej z rur. 2000px-Ligo.svgOdbijane przez zwierciadła tam i z powrotem około 100 razy promienie, wpadają z powrotem do centralnego laboratorium i tam zostają do siebie porównane. Dzięki zjawisku interferencji możliwe jest wyliczenie z wielką dokładnością różnicy przebytych przez obydwie wiązki światła dróg. A drogi te powinny być identyczne, no chyba że… chyba że w czasie pomiaru przez Ziemie – podobnie jak fala na powierzchni wody – przejdzie fala grawitacyjna. Wtedy jedno z ramion będzie nieco dłuższe, a efekt natychmiast zostanie wychwycony w czasie porównania dwóch wiązek. Tyle tylko, że nawet największe zaburzenia zmienią długość ramion o mniej niż jedną tysięczną część średnicy protonu (!). To mniej więcej tak, jak gdyby mierzyć zmiany średnicy Drogi Mlecznej (którą ocenia się na ok. 100 tys. lat świetlnych) z dokładnością do jednego metra. Czy jesteśmy w stanie tak subtelne efekty w ogóle zarejestrować ? Lustra na końcach każdego z korytarzy (tuneli) mogą zadrgać (chociażby dlatego, że przeleciał nad nimi samolot, albo w okolicy przejechał ciężki samochód). By tego typu efekty nie miały wpływu na pomiar zdecydowano się na budowę nie jednej, ale dwóch instalacji, w Handford w stanie Waszyngton i w Livingston w stanie Luizjana. Są identyczne, choć oddalone od siebie o ponad 3 tys. kilometrów. Ich ramiona maja takie same wymiary i maja takie same układy optyczne. Nawet gdy w jednym LIGO zwierciadło nieoczekiwanie zadrga, niemożliwe by to samo w tej samej chwili stało się ze zwierciadłem bliźniaczej instalacji. Zupełnie jednak inaczej będzie gdy przez Ziemię przejdzie z prędkością światła fala grawitacyjna. Zmiany jakie wywoła zajdą w dokładnie tej samej chwili w obydwu ośrodkach.

>>> Więcej naukowych informacji na FB.com/NaukaToLubie

A kończąc, pozwólcie na ton nieco nostalgiczny. Wszechświat jest areną niezliczonych kataklizmów a dramatyczne katastrofy, to naturalny cykl jego życia. To nic, że od tysięcy lat na naszym niebie królują te same gwiazdozbiory. W skali kosmicznej taki okres czasu to nic nieznacząca chwila, a nawet w czasie jej trwania widoczne były wybuchy gwiazd. Z bodaj największego kataklizmu – Wielkiego Wybuchu – „wykluło” się to co dzisiaj nazywamy kosmosem. Obserwatoria grawitacyjne (np. takie jak LIGO) otworzą oczy na inne wielkie katastrofy, i to nie tylko te które będą, ale także te które były. Już prawie słychać zgrzyt przekręcanego klucza w drzwiach. Już za chwilę się otworzą. Najpierw przez wąską szparę, a później coraz wyraźniej i coraz śmielej będziemy obserwowali wszechświat przez nieznane dotychczas okulary. Ocenia się, że to co widzą „zwykłe” teleskopy (tzw. materia świecąca) to mniej niż 10% całej masy Wszechświata. A gdzie pozostałe 90% ? Na to pytanie nie znaleziono dotychczas odpowiedzi. Tzw. ciemna materia powinna być wszędzie, a nie widać jej nigdzie. Przypisuje się jej niezwykłe właściwości, łączy się ją z nie mniej tajemniczą ciemną energią. Czy LIGO, pomoże w rozwiązaniu tej intrygującej zagadki? Czy będzie pierwszym teleskopem, przez który będzie widać ciemną materię? Jeżeli obserwatoria grawitacyjne będą w stanie „zobaczyć” obiekty, które można obserwować także w świetle widzialnym (np. wybuch supernowej), a nie będą widziały ani grama ciemnej materii, to zagadka staje się jeszcze bardziej tajemnicza. Bo albo ta materia nie podlega prawom grawitacji, albo nie ma żadnej ciemnej materii. Konsekwencje obydwu tych scenariuszy są trudne do przewidzenia. Czy teraz rozumiecie dlaczego odkrycie fal grawitacyjnych jest tak ważne? 

9 komentarzy do Nobel z fizyki za fale

Jak to się zaczęło?

W pierwszych latach XX wieku Albert Einstein pracował nad Ogólną Teorią Względności. Z jego rachunków jasno wynikało, że wszechświat jest zmienny, dynamiczny. Wiara w to, że jest stały i niezmienny była jednak w tamtych czasach tak powszechna, że… Einstein, wolał tak pokombinować w równaniach by wyszło na jego, niż pójść pod prąd. Gdy eksperymentalnie dowiedziono, że wszechświat jest dynamiczny, stary już Albert miał stwierdzić, że „manipulowanie” równaniami było największą pomyłką jego życia.

W pierwszych latach XX wieku Albert Einstein pracował nad Ogólną Teorią Względności. Z jego rachunków jasno wynikało, że wszechświat jest zmienny, dynamiczny. Wiara w to, że jest stały i niezmienny była jednak w tamtych czasach tak powszechna, że… Einstein, wolał tak pokombinować w równaniach by wyszło na jego, niż pójść pod prąd. Gdy eksperymentalnie dowiedziono, że wszechświat jest dynamiczny, stary już Albert miał stwierdzić, że „manipulowanie” równaniami było największą pomyłką jego życia.

To „manipulowanie” w równaniach  Ogólnej Teorii Względności polegało na dopisaniu do nich dodatkowego członu, tak zwanej stałej kosmologicznej. To ona, na kartce papieru, wszechświat dynamiczny „zamieniała” na statyczny. I prawie wszyscy byli zadowoleni. Prawie. Jedną z osób, które podważały koncepcję wszechświata stacjonarnego był katolicki ksiądz, Georges Lemaitre.

Uparty jak Einstein

Koncepcje Lemaitre’a (swoją teorię nazwał Hipotezą Pierwotnego Atomu) traktowano z pobłażaniem. Lemaitre nie był fizykiem, tylko matematykiem. Gdy spotkał się z Einsteinem (by przekonać go do swojej koncepcji początku wszechświata), ten stwierdził, że Lemaitrowi brakuje wiedzy z zakresu fizyki. To co mówił Lemaitr było w zasadniczej sprzeczności z tym, co powszechnie w jego czasach sądzono. Lemaitr często spotykał się z argumentem, że jego hipoteza jest błędna, bo nawet z rachunków Alberta Einsteina wynika, że wszechświat jest statyczny. No tak, ale z rachunków… nieco „podkręconych”.

Jeszcze na początku lat 20tych XX wieku, za wyjątkiem garstki badaczy spoza głównego nurtu, uważano, że wszechświat jest stały. I wtedy do największego ówcześnie ośrodka astronomicznego, do obserwatorium na górze Wilsona w Kalifornii przyjechał Edwin Hubble. Był już znany w środowisku astronomów jako niepokorny badacz, który ma dosyć oryginalne poglądy. Hubble’a twierdził bowiem, że niewyraźne obłoczki pomiędzy gwiazdami, które obserwowano przez działające już wtedy niemal na całym świecie teleskopy, to nie większe skupiska pyłu międzygwiazdowego czy bliżej nieokreślone mgławice, tylko osobne galaktyki. Pogląd ten był nawet bardziej niż oryginalny, bo powszechnie uważano wtedy, że we wszechświecie jest tylko jedna galaktyka. Galaktyka Drogi Mlecznej.

Hubble odkrywca

Jednym z pierwszych bardzo wyraźnych zdjęć galaktyki jakie Hubbleowi udało się zrobić było zdjęcie galaktyki Andromedy. Świat, nie tylko naukowy był w szoku, gdy Hubbleowi udało się obliczyć (na podstawie pomiaru jasność gwiazd), że najbliższa galaktyka znajduje się ponad milion lat świetlnych od nas. To jedno obliczenie, ta jedna obserwacja „rozszerzyło wszechświat” o miliony, miliardy razy. Hubble odmienił nasze rozumienie wszechświata. Hubble pokazał, że wszechświat to ogromny kosmos, a nasza galaktyka jest niepozornym okruszkiem.

Ale na tym się nie skończyło. OK., wszechświat może i jest o miliardy razy większy niż nam się wydawało, ale czy jest stacjonarny czy dynamiczny – pytano. Kilka lat obserwacji dalszych i bliższych galaktyk pozwoliło Hubble’owi na sformułowanie prawa, które przewróciło do góry nogami wiedzę na temat wszechświata. Analizując światło galaktyk, astronom zauważył, że one się poruszają. Odkrył że czym odleglejsza galaktyka, tym szybciej się od nas oddala. Jeżeli wszystkie galaktyki się od nas oddalają, jeżeli wszystkie oddalają się od siebie, wszechświat się rozszerza. Innego wytłumaczenia nie ma. Łatwo to można sobie wyobrazić. Gdy namalujemy na powierzchni słabo napompowanego balonika kilka kropek a następnie zaczniemy go nadmuchiwać (rozszerzać), kropki zaczną się od siebie oddalać.

Lemetre tryumfuje

W 1931 roku spotkało się trzech badaczy, którzy są chyba głównymi bohaterami tej historii. Hubble, Einstein i Lemetre. To w czasie tego spotkania powstały podstawy współczesnej kosmologii. To wtedy Einstein przekonał się do koncepcji wszechświata dynamicznego. To wtedy zrozumiał swój błąd. I to wtedy stałą kosmologiczną nazwał „największą pomyłką życia”. Trudno mu się dziwić. Wiele lat wcześniej, gdy pracował nad Ogólną Teorią Względności matematyka, jak na tacy podała mu prawdziwy obraz wszechświata. On jednak nie uwierzył.

Jeżeli galaktyki oddalają się od siebie, znaczy, że wczoraj były bliżej siebie, niż są dzisiaj. A rok temu? A milion lat temu? To co Hubble zaobserwował i to co wynikało z równań Ogólnej Teorii Względności (przed tym, gdy Einstein dodał do nich stało kosmologiczną), potwierdzało koncepcję jaką od początku forsował Georges Lemaitre. Wszechświat był kiedyś skupiony w jednym, nieskończenie gęstym punkcie. Lemaitre ten punkt nazwał pierwotnym atomem. W 1947 roku amerykański kosmolog pochodzenia rosyjskiego George Gamow opracował matematyczne podstawy koncepcji Lemaitra. Całość została ochrzczona Teorią Wielkiego Wybuchu (ang. Big Bang).

Obserwacje Hubble’a nie wszystkich jednak przekonały. Nie chodziło o to, że w nie nie uwierzono, ale uważano, że wyciągnięto z nich nieprawdziwe wnioski. W 1948 roku powstała Teoria Stanu Stacjonarnego. W największym skrócie mówi ona, że co prawda galaktyki się rozszerzają, ale w pustych przestrzeniach pomiędzy nimi cały czas powstaje materia.  W ten sposób próbowano pogodzić ogień i wodę. Wszystko się rozszerza, ale gęstość wszechświata pozostaje stała, bo nieustannie produkowana jest nowa materia. Jak to się dzieje i gdzie ona powstaje? To były pytania bez odpowiedzi.

Gamow przewiduje

To wtedy nastąpił symboliczny kres koncepcji stanu stacjonarnego. Pogrzeb wizji wszechświata niezmiennego, statycznego.

Promieniowanie reliktowe to echo Wielkiego Wybuchu i jedyny sposób by zajrzeć w historię tak odległą. Promieniowanie, które teraz potrafimy rejestrować to nic innego jak resztki światła, które emitował rozgrzany i potwornie ściśnięty młody wszechświat. Tak jak żarzące się włókno żarówki czy rozgrzany do czerwoności rozpalony w ogniu metalowy pręt. Poświata Wielkiego Wybuchu wydostała się z gorącej zupy materii dopiero, gdy zaczął się z niej formować przezroczysty gaz atomów. Szacuje się, że było to ok. 380 tyś lat po Wielkim Wybuchu. Gdy skonstruowano odpowiednie anteny, w którąkolwiek ze stron je kierowano, zawsze rejestrowano podobny szum. Hałas radiowy nie ustawał. Tak było na powierzchni Ziemi. W 1989 roku w przestrzeń kosmiczną wysłano satelitę COBE (Cosmic Background Explorer). I potwierdziło się to co przewidywał Gamow. Wszechświat jest wypełniony promieniowaniem, poświatą Wielkiego Wybuchu. COBE zarejestrował coś jeszcze. Wspomniane promieniowanie nie jest jednorodne. Te niewielkie różnice odpowiadają strukturom, które formowały się we wczesnym wszechświecie.  Chłodniejsze rejony (na większości z map zaznaczane kolorem niebieskim) to miejsca gdzie materia w niemowlęcym okresie życia wszechświata skupiała się tworząc galaktyki. W połowie 2001 roku w przestrzeń została wystrzelona sonda WMAP. Następca COBE. Z większą dokładnością, potwierdziła to, co zmierzyła misja COBE.

 

Jak w ciągu 90 lat zmienił się wszechświat?

  • Rok 1917 – Albert Einstein do równań Ogólnej Teorii Względności wprowadza stałą kosmologiczną. „Dzięki” niej wszechświat staje się statyczny.
  • Rok 1923 – Edwin Hubble odkrył, że Droga Mleczna to zaledwie mały wycinek Wszechświata.
  • Rok 1927 – Belgijski ksiądz i matematyk Georges Lemaitre prezentuje Hipotezę Pierwotnego Atomu, która później została ( w założeniu złośliwie) ochrzczona jako Big Bang.
  • Rok 1931 – Edwin Hubble zaobserwował, że galaktyki oddalają się od Ziemi tym szybciej, im dalej się znajdują. Wszechświat jest jednak dynamiczny. Einstein wprowadzenie stałej kosmologicznej nazwał „największą pomyłką życia”.
  • Rok 1948 – George Gamow stwierdza, że jeżeli Wielki Wybuch rzeczywiście miał miejsce, kosmos musi być wypełniony tzw. mikrofalowym promieniowaniem tła.
  • Rok 1964 – zarejestrowanie mikrofalowego promieniowania tła, upadek konkurencyjnej do Wielkiego Wybuchu koncepcji wszechświata stacjonarnego.
  • Lata 70te XX wieku – dokładna analiza rotacji galaktyk budzi wątpliwości co do ilości materii w nich zawartych. Bez istnienia ciemnej materii, nie można wytłumaczyć budowy wszechświata. Dalsze prace potwierdzają, że ciemnej materii jest wielokrotnie więcej niż tej „zwykłej”, widzialnej.
  • Rok 1989 – wystrzelenie na orbitę okołoziemską pierwszego satelity zbudowanego wyłącznie do badań kosmologicznych. Zadaniem COBE (Cosmic Background Explorer) było wykonanie pomiarów kosmicznego promieniowania tła.
  • Rok 1990 – na orbitę okołoziemską wystrzelony zostaje teleskop Hubble’a – jedno z najważniejszych narzędzi współczesnej nauki służące do badania losów wszechświata.
  • Rok 2003 – Prezentacja obrazu mikrofalowego promieniowania tła całego wszechświata wykonanego przez satelitę WMAP (doskonalszego następcę misji COBE). – „ Ten obraz jest jednym z najważniejszych rezultatów naukowych w historii ludzkości” – powiedział rzecznik NASA.

A po więcej ciekawych informacji o Einsteinie odsyłam do nowego serialu National Geographic pt. „Geniusz”. Premiera 23 kwietnia o 21.30.

1 komentarz do Jak to się zaczęło?

Ciemno to widzę

Dzisiaj nad ranem agencje prasowe podały smutną wiadomość. W wieku 88 lat, z powodów naturalnych, zmarła Vera Rubin. Amerykańska astrofizyk, odkrywczyni ciemnej materii. Tej jest znacznie więcej niż materii, która nas buduje. Czym jest? Ciemna materia to jedna z największych zagadek współczesnej nauki.

Dzisiaj nad ranem agencje prasowe podały smutną wiadomość. W wieku 88 lat, z powodów naturalnych, zmarła Vera Rubin. Amerykańska astrofizyk, odkrywczyni ciemnej materii. Tej jest znacznie więcej niż materii, która nas buduje. Czym jest? Ciemna materia to jedna z największych zagadek współczesnej nauki.

 

Gdyby zważyć cały wszechświat, wszystkie gwiazdy, planety, mgławice, komety, asteroidy,… wszystkie te obiekty stanowiłyby zaledwie kilka procent masy całości. Większość, przeważającą większość stanowiłaby nieznana forma materii i jeszcze bardziej tajemnicza forma energii.

Uparta dziewczyna

Co takiego może być tajemniczego w materii? Cóż, problem polega na tym, że my nie mamy pojęcia czy ciemna materia wygląda tak jak nasza, czy jest zbudowana tak jak nasza. Więcej, nie wiemy czy obowiązują ją te same prawa przyrody co materię naszą. Naszą czyli tą, z której jesteśmy zbudowani my i wszystko co nas otacza. Patrząc w niebo, nawet jeżeli używamy największych teleskopów nie widzimy ciemnej materii. Skąd zatem wiemy, że ona w ogóle istnieje? Z odpowiedzią na to pytanie wiąże się historia pewnej upartej młodej naukowiec.

>>> Więcej naukowych informacji na FB.com/NaukaToLubie.

W 1970 roku młoda doktorantka jednego z amerykańskich uniwersytetów, Vera Rubin, postanowiła zmierzyć prędkość gwiazd w standardowej galaktyce spiralnej. Badania nie zapowiadały się ciekawie, bo wiedza o tym, że gwiazdy w galaktyce spiralnej poruszają się jak woda w wirze, była wtedy powszechna. Uważano, że te gwiazdy, które znajdują się dalej od centrum galaktyki powinny poruszać się wolniej, niż gwiazdy, które znajdują się bliżej jej środka. Verze odradzano zajmowanie się tym tematem.

q-100No bo w końcu po co robić pomiary, skoro wiadomo jaki będzie ich wynik? Vera uparła się jednak, że chce swoje obserwacje przeprowadzić. I odkryła… że niezależnie od odległości od centrum galaktyki, gwiazdy mają taką samą prędkość. Ta jedna obserwacja zburzyła fundament na którym stała wiedza o galaktykach. Od teraz nic się nie zgadzało. Takie galaktyki nie miały prawa istnieć. A przecież istniały. Jeżeli ktokolwiek miał wątpliwość, mógł spojrzeć przez teleskop. Próba wyjaśnienia tego fenomenu była jeszcze bardziej zaskakująca niż samo odkrycie.  Nikt – z Verą Rubin włącznie – nie miał wątpliwości, że za ruch gwiazd w galaktyce odpowiedzialna jest grawitacja. Problem polegał na tym, że jej źródło głównie znajduje się w centrum galaktyki. Tak przynajmniej myślano. Tymczasem Vera Rubin uznała, że centrum galaktyki wcale nie musi być jedynym miejscem silnie przyciągającym gwiazdy. Uznała, że pomiędzy gwiazdami musi być jakaś masa dodatkowa, taka, która nie świeci (i jej nie widać). To ona jest źródłem siły grawitacyjnej, która powoduje, że wszystkie gwiazdy w galaktyce mają taką samą prędkość. Jak taką masę sobie wyobrazić? Może jako chmurę niewidocznej dla nas materii w której galaktyka jest zanurzona? Może gwiazdy na tej chmurze się unoszą tak jak oka tłuszczu unoszą się na powierzchni rosołu?

Coś się odkleiło

Potem zaczęto się przyglądać innym galaktykom, gromadom galaktyk i jeszcze większym strukturom. Wszędzie widziano efekt działania ogromnej siły grawitacji. Tyle tylko, że źródła tej siły, czyli samej masy nigdzie nie dostrzeżono. Szybko policzono, że gdyby nie ciemna materia, galaktyki rozsypałyby się. Siła grawitacji jest za mała by duże kosmiczne struktury utrzymywać w porządku, potrzeba kleju, czegoś co to wszystko scala. No i to jest największa tajemnica, czym ten klej jest? Jak wygląda, co jest jego źródłem? I czy stosuje się do praw natury, które obowiązują w naszym świecie?

>>> Więcej naukowych informacji na FB.com/NaukaToLubie.

Co do tego można mieć wątpliwości po ostatnich obserwacjach zespołu naukowców z największych na świecie ośrodków, w tym NASA, ESA (Europejska Agencja Kosmiczna) oraz kilku amerykańskich uniwersytetów. Korzystając z danych obserwacyjnych teleskopu kosmicznego Hubble’a oraz teleskopu VLT należącego do Europejskiego Obserwatorium Południowego, udało się sfotografować zderzenie czterech galaktyk wchodzących w skład gromady galaktyk Abell 3827. Dokładna obserwacja ruchu gwiazd wchodzących w skład tych galaktyk, dokładna obserwacja biegu promieni światła pozwoliła astronomom stwierdzić, że ciemna materia oderwała się od jednej ze zderzających się galaktyk. Brzmi co najmniej abstrakcyjnie, ale tak rzeczywiście jest. Za jedną z galaktyk, w odległości kilku tysięcy lat świetlnych ciągnie się obłok czegoś, czego co prawda nie widać, ale co wpływa grawitacyjnie na całe otoczenie. Tego „czegoś” nie powinno tam być! To „coś”, czyli ciemna materia, powinno być we wnętrzu galaktyki, pomiędzy gwiazdami, które galaktykę tworzą. Co takiego się stało, że materia „zwykła” i ciemna, w tym konkretnym przypadku odłączyły się od siebie? Na to pytanie nie ma dzisiaj odpowiedzi, trudno też powiedzieć czy takie sytuacje zdarzają się często. Ta jest pierwszą tego typu. Choć szczerze mówiąc, o niczym nie musi to świadczyć, nie jesteśmy zbyt dobrze w obserwowaniu czegoś… czego nie widać.

Pajęczyna

Jednym z pomysłów na wyjaśnienie zaobserwowanego zjawiska jest to, że ciemna materia nie stosuje się do praw, które nas obowiązują, że grawitacja działa na nią inaczej niż na obiekty „zwykłej” materii. Na razie, to zwykłe gdybanie. Ale to nie znaczy, że kosmolodzy i astrofizycy nie próbują ciemnej materii złapać. Jednym ze sposobów na jej poznanie jest tworzenie map jej rozmieszczenia. To bardzo trudna sztuka, ale czasami się udaje. Takie mapy tworzy się po to, by znaleźć klucz, by zobaczyć gdzie ciemna materia szczególnie chętnie się grupuje. To może pomóc w określeniu jej właściwości.

seqD_063Takie trójwymiarowe  mapy różnych części kosmosu powstają od wielu lat. Właśnie opublikowano kolejną, dokładniejszą niż poprzednie. Pracował nad nią zespół trzystu naukowców z całego świata. I została zaprezentowana podczas ostatniego spotkania Amerykańskiego Towarzystwa Fizycznego w Baltimore. Mapa jest dość spora, zawiera miliardy gwiazd i obejmuje całe… cztery dziesiąte procent nieba. Co ciekawe, na wielu mapach nieba, na których zaznacza się występowanie ciemnej materii, jest ona uformowana w postaci włókien. Po raz pierwszy udało się to zauważyć kilka lat temu, gdy dzięki użyciu Obserwatorium Kecka na Hawajach astrofizycy obserwowali kwazar UM287. Wyniki ich prac były opublikowane w Nature. Kwazar o którym mowa oddalony jest od Ziemi o około 10 miliardów lat świetlnych. Kwazary przypominają gwiazdy, ale w rzeczywistości są bardzo aktywnymi galaktykami, które „wyrzucają” w przestrzeń ogromne ilości energii. Badacze wykorzystali to promieniowanie tak, jak wykorzystuje się światło latarki, wchodząc do ciemnego pokoju. Światło kwazaru UM287 padało na ogromną, mającą średnicę dwóch milionów lat świetlnych chmurę gazu. Ile to jest 2 miliony lat świetlnych? Trudno to sobie wyobrazić. Układ Słoneczny ma średnicę około 30 dni świetlnych, a cała Galaktyka Drogi Mlecznej nieco ponad 100 tys. lat świetlnych. Oświetlana przez kwazar chmura pyłu była więc 20 razy większa od naszej galaktyki.

>>> Więcej naukowych informacji na FB.com/NaukaToLubie.

Wracając jednak do ciemnej materii. Astronomowie analizując rozchodzenie się światła w tej chmurze, zauważyli, że materia nie jest w niej równomiernie rozłożona, że tworzy coś w rodzaju włókien. Podali hipotezę, że to włókna ciemnej materii. Obserwacja jest w zgodzie z modelami teoretycznymi, które mówią, że ciemna materia nie jest posklejana jak materia widzialna w obiekty takie jak np. planety czy gwiazdy, czyli w struktury kuliste. Przypomina raczej pajęczynę na której „utkany” jest cały wszechświat. Kawałek tej pajęczyny właśnie zauważono. Nigdy wcześniej nie widziano bezpośrednio takich włókien.

Przegrana grawitacja

Ciemna materia – zdaniem astronomów – ma w odpowiadać za kształt dużych obiektów, takich jak np. galaktyki czy ogromne chmury gazu i materii. Trudno powiedzieć, czy może budować całe (ciemne) galaktyki. Pewne jednak jest, że wszechświat składa się z ciemnej materii w około 24 proc. Materia widzialna, taka z której i my jesteśmy zbudowani tworzy go w około 4 procentach. Razem 28 proc. Gdzie jest reszta? Czym jest reszta? I to jest chyba największa zagadka kosmologii. 72 proc. wszechświata to ciemna energia. Nie wiadomo czym jest, nie wiadomo gdzie jest. Być może wszędzie dookoła, być może jest gdzieś skupiona. Wydaje się, że na małych odległościach nie widać efektów jej działania. Być może są one tak ulotne, że nie potrafimy ich zarejestrować. Gdy jednak spojrzeć na kosmos w dużej skali, skali nawet nie galaktyk, tylko gromad galaktyk czy supergromad… Galaktyki oddalają się od siebie. Czym dalej są, tym szybciej się oddalają. Dlaczego tak się dzieje? Dlaczego grawitacja, przyciąganie, nie powoduje, że zaczną się do siebie przybliżać? Dzisiaj uważa się, że to właśnie ciemna energia powoduje puchnięcie wszechświata. A to znaczy, że w pewnym sensie działa przeciwko grawitacji. Ta ostatnia na małych dystansach tą walkę wygrywa. Ale w dużych skalach, to ciemna energia króluje.

Wszechświat jest fascynujący! I wciąż tajemniczy.

Tomasz Rożek

>>> Więcej naukowych informacji na FB.com/NaukaToLubie.

1 komentarz do Ciemno to widzę

Jak fotografować SUPERKsiężyc?

Każda pełnia Księżyca jest doskonałą okazją do fotografowania. W zasadzie to może być wstęp do astrofotografii. Po pierwsze Księżyca nie da się na nocnym niebie pomylić z jakimkolwiek obiektem niebieskim….

Każda pełnia Księżyca jest doskonałą okazją do fotografowania. W zasadzie to może być wstęp do astrofotografii. Po pierwsze Księżyca nie da się na nocnym niebie pomylić z jakimkolwiek obiektem niebieskim. Po drugie, po to by fotografować pełnię, nie trzeba inwestować w drogi sprzęt. Prawdę mówiąc nie trzeba inwestować wcale. Wystarczy aparat, który wielu z nas i tak ma w domu. 14 listopada nałożą się na siebie dwa zjawiska. Pełnia Księżyca i jego maksymalne zbliżenie do Ziemi. Choć tarcza Srebrnego Globu nie będzie zauważalnie większa, to jego jasność zwiększy się o 20 – 30 proc. Tylko jak zrobić zdjęcie, które byłoby dla nas powodem do domy (a nie wstydu)?

Oprócz aparatu, w zasadzie jedynym sprzętem o jaki warto się zatroszczyć, jest statyw. Zachęcam do ustawienia aparatu w tryb manualny. W trybie automatycznym wszystkie zdjęcia będą bardzo do siebie podobne. Na „manualu” możesz poeksperymentować.

No to do rzeczy:

Ostrość. Jeżeli mamy aparat w trybie manualnym, ostrość trzeba ustawić na nieskończoność. W trybie manualnym powinna się ustawić automatycznie (autofocus).

Czułość. Jeżeli aparat umożliwia ustawianie czułości (ISO), tym parametrem można się nieco pobawić, uzyskując czasami bardzo ciekawe efekty. Czym niższa czułość tym wyraźniejsze będzie zdjęcie (niższy poziom szumów). Niestety czym niższa czułość, tym dłuższy musi być czas naświetlania, a to może być problemem np. gdy nie mamy statywu albo gdy w kadrze są szybko poruszające się obiekty. Ich rozmazanie może być dodatkowy atutem zdjęcia. No ale to już kwestia gustu fotografa. Jeżeli chcemy by czas otwarcia migawki był jak najkrótszy, trzeba ustawić wysoką czułość. W takim wypadku na zdjęciu pojawiają się szumy („ziarno”). Może ono dodać artyzmu, ale znowu, to kwestia gustu. Dobra rada: Jak tylko będzie odpowiednia pogoda, Księżyc w pełni będzie można obserwować na tyle długo, że bez pośpiechu i stresu warto poeksperymentować. Ustawiaj różne czułości. Zawsze lepiej mieć więcej zdjęć (z których część wyląduje w koszu), niż żałować, że zrobiło się za mało.

>>> Więcej naukowych informacji na FB.com/NaukaToLubie.

Czas naświetlania. Bardzo trudno zrobić zdjęcie „z ręki” gdy czas otwarcia migawki wynosi mniej niż 1/30 s. Tym bardziej że mówimy o fotografowaniu bardzo odległego obiektu. Stąd jeszcze raz sugestia, by zaopatrzyć się w statyw, nawet gdyby miał być najprostszy. Jeżeli nie masz, obserwuj SUPERKsiężyc z miejsca w którym możesz oprzeć aparat o drzewo, krzesło czy chociażby słup ogrodzenia.

Podobnie jak w przypadku ustawiania czułości, warto poeksperymentować ustawiając różne wartości czasów otwarcia migawki. Zdziwisz się jak różne mogą być zdjęcia tego samego obiektu. Czym krótszy czas migawki, tym bardziej otwarta musi być przysłona aparatu, gdy czas jest długi, przysłona musi być „domknięta”. I tylko z pozoru nie robi to różnicy. Gdy Księżyc będzie nisko nad horyzontem, gdy w kadrze będzie nie tylko jego tarcza ale także np. drzewa albo budynki, domknięta przysłona (wartości od 11 w górę) umożliwi zrobienie zdjęcia na którym ostre będą wszystkie obiekty. Otwarta przysłona (o wartości do 4,5) spowoduje że ostre będą tylko te obiekty na które ustawiona zostanie ostrość. Reszta będzie rozmazana. Jeżeli nie czujesz się na siłach operować przysłoną, ustaw jej automatykę i operuj czasem migawki. Zdziwisz się jak różne zdjęcia uzyskasz.

Ogniskowa. Wszystko zależy od kompozycji zdjęcia, a wiec od tego co chcesz na nim mieć. Jeżeli tylko tarczę Księżyca, ustaw jak najdłuższą ogniskową (jak najbardziej przyzoomuj). Unikaj zoomu cyfrowego, zdjęcie zawsze możesz skadrować na komputerze.

>>> Więcej naukowych informacji na FB.com/NaukaToLubie.

Napisałem to już tutaj kilka razy, ale napisze jeszcze raz. EKSPERYMENTUJ. Masz sporo czasu. Nie ma sensu robienie kilkunastu czy kilkudziesięciu zdjęć przy takich samych parametrach. Baw się ustawieniami czasu, baw przysłoną i czułością. Jeżeli masz zmienne obiektywy, korzystaj z tego. Spróbuj zmienić lokalizację. Na długich czasach pięknie na tle Księżyca wyglądają np. jadące samochody, albo panorama oświetlonego miasta. Ponadto:

– Robiąc zdjęcie korzystaj z samowyzwalacza albo ze zdalnie uruchamianej migawki. W ten sposób nie poruszysz aparatu w czasie robienia zdjęcia.

– Spróbuj zrobić kilka zdjęć przy tych samych parametrach po to by potem nałożyć je na siebie. Zobaczysz, że uzyskasz ciekawy efekt.

– Spróbuj zrobić kilkanaście tak samo skadrowanych zdjęć (nie ruszając aparatu) np. co kilka minut. Nakładając je na siebie uzyskasz… prostą animację.
A jak już zrobisz dobre zdjęcie, pochwal się nim na FB.com/NaukaToLubie 

Powodzenia !!!

Brak komentarzy do Jak fotografować SUPERKsiężyc?

NASA nie zmienia horoskopu!!!

Ta wiadomość przeorała dzisiejsze internety. NASA zmienia znaki zodiaku. Co za bzdura! Astrologia nie jest żadną nauką, a NASA nie zajmuje się gusłami. Wiara w magiczną moc dnia, w którym się urodziło, jest kompletną bzdurą.

Ta wiadomość przeorała dzisiejsze internety. NASA zmienia znaki zodiaku. Co za bzdura! Astrologia nie jest żadną nauką, a NASA nie zajmuje się gusłami. Wiara w magiczną moc dnia, w którym się urodziło, jest kompletną bzdurą.

>>> Więcej naukowych informacji na FB.com/NaukaToLubie.

O zmianie znaków zodiaku słyszę regularnie od kilku już lat. Tak jak gdyby „znak zodiaku” to było coś, co ma swoje miejsce albo coś, co da się precyzyjnie określić. Tak nie jest, choć kiedyś tak było. Astronomia i astrologia były jak dwie siostry bliźniaczki. Dorastały razem i uczyły się razem. Z tą tylko różnicą, że jedna z sióstr była pilną uczennicą, która czasami musiała iść pod prąd swojej epoki, a druga była wygodna i pragmatyczna. Druga siostra, Astrologia, była konformistką. W efekcie Astronomia i Astrologia rozeszły się ponad dwa tysiące lat temu. Astronomia szła naprzód, a astrologia stała w miejscu.

Dwie latarki 

>>> Więcej naukowych informacji na FB.com/NaukaToLubie.

Układ Słoneczny znajduje się w galaktyce Drogi Mlecznej, w jednej z jej odnóg, zwanych Ramieniem Oriona. Choć kosmos to głównie pustka, zdarzają się w nim niewielkie (w porównaniu z tą pustką) wyspy materii. Są nimi właśnie galaktyki. Jesteśmy otoczeni gwiazdami. Są daleko, ale nie aż tak, by nie były widoczne. Na niebie w pogodną noc można zobaczyć kilka tysięcy świetlnych punktów. Wyobraźnia człowieka już tysiące lat temu te punkty pogrupowała w kształty, czyli konstelacje. Jedną z najbardziej znanych jest Wielki Wóz (część gwiazdozbioru Wielkiej Niedźwiedzicy), który składa się z siedmiu gwiazd.  Gwiazdozbiory to grupa gwiazd, które nie są ze sobą nijak związane, ich bliskość jest pozorna, zajmują po prostu określony obszar sfery niebieskiej. Jak to rozumieć? Wyobraźmy sobie dwie latarki zapalone w ciemną noc. Tak ciemną, że innych elementów krajobrazu nie byłoby widać. Nie jesteśmy w stanie ocenić, która latarka jest bliżej, a która dalej.  Tym bardziej że latarka bliższa może świecić słabszym światłem, a ta dalsza może być potężnym reflektorem. Tak właśnie jest z gwiazdami. Na oko wszystkie gwiazdy nocnego nieba są w takiej samej odległości od nas. Niektóre z nich układają się w figury, postacie, a nawet całe sceny. Trzeba do tego sporej wyobraźni, ale tej nigdy ludziom nie brakowało. I tak niebo dla starożytnych było teatrem, sceną, na której w różnych częściach roku pojawiały się mityczne stwory, zwierzęta, herosi i bóstwa.

12 czy 13? 

>>> Więcej naukowych informacji na FB.com/NaukaToLubie.

Dla obserwatorów nieba szczególne znaczenie odgrywały gwiazdozbiory znajdujące się w tzw. zodiaku, a więc w pasie nieba, po którym poruszają się Słońce, Księżyc i inne planety. W starożytnej Babilonii czy Asyrii wyobrażano sobie, że gwiazdozbiory leżące na zodiaku są śladami na drodze, po której porusza się nasza dzienna gwiazda. Że dzielą tę drogę na etapy, a każdy z tych etapów jest w jakimś sensie charakterystyczny. Gwiazdozbiorów leżących w zodiaku jest 13 i tutaj pojawia się pierwszy problem. Znaków zodiaku jest 12. Ten brakujący to Wężownik. Ale o tym za chwilę. 12 gwiazdozbiorów w zodiaku podzieliło rok na 12 części. Chciałoby się napisać: na „równe części”, ale… gwiazdozbiory są różnej wielkości. Z kalendarza wynika, że okresy odpowiadające poszczególnym znakom zodiaku są mniej więcej równe. Tymczasem… Słońce przez gwiazdozbiór Panny przechodzi 42 dni, a przez Skorpiona tylko 6 dni. Na dodatek granice między gwiazdozbiorami są czysto umowne. Trudno rozstrzygnąć, czy Słońce jest wciąż na tle gwiazdozbioru Skorpiona czy już Strzelca. Okresy, gdy Słońce przechodzi przez kolejne gwiazdozbiory (choć jest to ruch pozorny, bo to Ziemia się obraca i dlatego widzimy Słońce na różnym tle), są uzależnione od tego, jak zostaną wyznaczone granice między nimi. W wyniku dosyć pokrętnego podziału Słońce jest w znaku Panny przez 30 dni, choć w rzeczywistości powinno być przez wspomniane 42, a w Skorpionie przez 29 dni, choć w rzeczywistości na tle tego gwiazdozbioru znajduje się tylko 6 dni. Od czego więc zależeć mają cechy człowieka? Od rzeczywistego znaku zodiaku, w którym było Słońce w dniu urodzenia, czy od znaku uznanego zwyczajowo? To ważne pytanie, bo z tablic astronomicznych wynika, że Słońce przechodzi na tle gwiazdozbioru Panny od 16 września do 30 października. Astrologowie uważają jednak, że Słońce jest w Pannie od 23 sierpnia do 22 września. Ktoś, kto urodził się, powiedzmy, 25 sierpnia, kalendarzowo (astrologicznie) jest więc Panną, ale Słońce w dniu jego urodzin było w znaku Lwa. Nawet przyjmując, że dzień urodzin ma jakiekolwiek znaczenie, przeważająca większość z tych, którzy czytają horoskopy, czyta nie ten, który powinna.

Wężownik wyleciał 

>>> Więcej naukowych informacji na FB.com/NaukaToLubie.

Dokładne granice między gwiazdozbiorami (nie tylko tymi z zodiaku) ustalono dopiero w 1928 r. w czasie kongresu generalnego Międzynarodowej Unii Astronomicznej. Teraz – można by pomyśleć – skończą się nieporozumienia. Przeciwnie. Dopiero od tego momentu widać, jak bardzo astrologia oddaliła się od astronomii. Astronomia idzie naprzód, a astrologia stoi w miejscu. Mimo znanych i ustalonych raz na zawsze granic astrolodzy nie zdecydowali się skorygować okresów, w jakich Słońce znajduje się na tle poszczególnych gwiazdozbiorów w zodiaku. Co więcej, w wyniku prac astronomów z Unii Astronomicznej do gwiazdozbiorów zodiakalnych powinna być zaliczona kolejna, 13. konstelacja Wężownika. Słońce wchodzi w jej „obszar” 30 listopada, a opuszcza go 17 grudnia. W astrologicznych znakach zodiaku po Wężowniku nie ma nawet śladu. A to dlatego, że starożytni, Wężownika nie widzieli. Gwiazdy z których „się składa” za słabo świecą. Ale jest jeszcze jeden powód bałaganu. Obrót Ziemi wokół własnej osi zajmuje jej dobę. Dlatego mamy dzień i noc. Na to nakłada się trwający rok bieg Ziemi wokół Słońca, którego skutkiem są pory roku. Ale Ziemia ma przynajmniej jeszcze jeden rodzaj ruchu regularnego, powtarzalnego. Oś Ziemi zatacza w przestrzeni koła, a pełny jej obrót zajmuje około 26 tys. lat i zwany jest rokiem platońskim. Wirującą Ziemię można porównać do wirującego zabawkowego bąka. I tak jak bąk nie wiruje w pozycji „pionowej”, tak samo oś obrotu Ziemi jest nachylona i zatacza w przestrzeni koła. Ten ruch to tzw. precesja. Ziemska precesja jest wynikiem przyciągania przez inne planety Układu Słonecznego, a także przez oddziaływanie grawitacyjne samego Słońca i Księżyca.

Zabawa dla naiwnych 

>>> Więcej naukowych informacji na FB.com/NaukaToLubie.

Ten dodatkowy ruch powoduje, że – co prawda powoli – zmienia się „widok” nocnego nieba. Nie są to zmiany duże, ale w ciągu setek lat… Gwiazdozbiory były znane przynajmniej 2–3 tys. lat przed Chrystusem. Od tamtego czasu naprawdę wiele się zmieniło. 2 tys. lat temu Słońce w dniu równonocy wiosennej wchodziło w gwiazdozbiór Barana (chodzi o wiosnę na półkuli północnej, ta na półkuli południowej jest przesunięta o pół roku). Dzisiaj jest w gwiazdozbiorze Ryb. Za około 600 lat w pierwszym dniu wiosny Słońce będzie w gwiazdozbiorze Wodnika. Co na to astrologia? Nic. Nie bierze w ogóle pod uwagę faktu precesji Ziemi. Tak jak gdyby nasza wiedza zatrzymała się kilka tysięcy lat temu. Równonoc wiosenna następuje z 20 na 21 marca. I właśnie wtedy według astrologów Słońce wchodzi w gwiazdozbiór Barana. W rzeczywistości znajdzie się w nim dopiero 29 dni później. W magiczną moc dnia urodzenia wierzy sporo osób. W telewizjach kablowych funkcjonują całe kanały, w których wróżki i wróżbici odczytują przyszłość ze szklanych kul, z kart czy z gwiazd. Horoskopy publikuje wiele gazet, a niektóre z nich z okazji Nowego Roku dołączają do swoich tytułów całe wkładki temu poświęcone. Gdy prowadzono badania nad sprawdzalnością horoskopów, okazywało się, że sprawdzają się one w takiej samej mierze zarówno wtedy, gdy czyta się horoskop swój, jak i wtedy, gdy zapoznaje się z przeznaczonym dla kogoś innego. Cała sztuka pisania horoskopów nie polega bowiem na tym, żeby cokolwiek przepowiedzieć, tylko na tym, by pasowało wszystkim i w każdej sytuacji. Gwiazdy, planety czy komety nie mają nic do tego.

A co z NASA? Cóż, agencja kosmiczna co jakiś przypomina, że astrologia to nie nauka cytując to, co napisałem powyżej. O niezauważonym gwiazdozbiorze, o precesji czy o nieregularnych granicach pomiędzy gwiazdozbiorami. Tylko tyle i aż tyle.

>>> Więcej naukowych informacji na FB.com/NaukaToLubie.

Brak komentarzy do NASA nie zmienia horoskopu!!!

„Ziemia” w sąsiedztwie

Jest skalista, jest bliziutko nas i ma wielkość podobną do wielkości Ziemi. Co jednak najważniejsze, znajduje się w tzw. strefie życia, czyli ani nie za blisko, ani nie za daleko od swojej gwiazdy. Właśnie odkryto nową planetę.

Jest skalista, jest bliziutko nas i ma wielkość podobną do wielkości Ziemi. Co jednak najważniejsze, znajduje się w tzw. strefie życia, czyli ani nie za blisko, ani nie za daleko od swojej gwiazdy. Właśnie odkryto nową planetę.

>>> Więcej naukowych informacji na FB.com/NaukaToLubie.

Planeta krąży wokół czerwonego karła Proxima Centauri, czyli gwiazdy, która jest naszą najbliższą gwiazdową sąsiadką. Na odkrytej planecie woda może być w stanie ciekłym. Proxima b została złapana dzięki obserwacjom prowadzonym w Chile. Krąży wokół swojej gwiazdy macierzystej nieco ponad 11 ziemskich dni. Tak jak wspomniałem Proxima Centauri jest naszą najbliższą sąsiadką, a to oznacza, że planeta, która wokół niej krąży jest najbliższą nam planetą pozasłoneczną. Czy jest na niej życie? Tego nie wiadomo i trudno nawet powiedzieć w jaki sposób moglibyśmy się tego dowiedzieć. Bardzo dokładne obserwacje mogą nam udzielić inf. o składzie atmosfery albo nawet związków na powierzchni planety, ale na przelot na Proxima b będzie trzeba jeszcze poczekać. Gwiazda i planeta oddalone sa od nas o około 4 lata świetlne, czyli około 38 bilionów kilometrów.

>>> Więcej naukowych informacji na FB.com/NaukaToLubie.

Dla tych, którzy gwiazdę i planetę będą próbowali wypatrzyć na nocnym niebie, także nienajlepsza wiadomość. Obserwacja pozasłonecznych planet jest ekstremalnie trudna nawet przez profesjonalne teleskopy nie mówiąc już o amatorskich. Gołym okiem wcale nie da się ich zobaczyć. Niestety gołym okiem nie widać nawet gwiazdy Proxima Centauri. Jest czerwonym karłem, który świeci za słabym światłem. – Po raz pierwszy zaczęliśmy podejrzewać, że wokół tej [Proxima Centauri] gwiazdy krąży planeta już w 2013 roku. Od tamtego czasu obserwowaliśmy gwiazdę kilkoma różnymi teleskopami – powiedział Guillem Anglada-Escude, szef zespołu astronomów zaangażowanych w projekt badawczy Pale Red Dot.

Masa odkrytej planety to 1,3 masy Ziemi. Planeta krąży wokół swojego słońca w odległości 7 mln kilometrów, a to wielokrotnie mniej niż odległość Ziemia – Słońce. To znacznie mniej niż odległość Słońce – Merkury. Proxima Centauri jest jednak inną gwiazdą niż ta nasza. Świeci słabym światłem i dlatego mimo małej odległości gwiazda – planeta, na powierzchni tej drugiej może znajdować się woda w stanie ciekłym.

>>> Więcej naukowych informacji na FB.com/NaukaToLubie.

Teraz, te Proxima b będzie głównym celem obserwacji tych astronomów, którzy będą poszukiwali życia na obcych planetach. Jeżeli kiedykolwiek (a to na pewno nastąpi) zorganizujemy międzygwiezdną misję, na pewno pierwszym jej celem będzie właśnie nowo odkryta planeta.

Tomasz Rożek

Brak komentarzy do „Ziemia” w sąsiedztwie

Świat między 44 zerami

W 2013 roku, na maturze z języka polskiego, uczniowie analizowali wstęp do mojej książki „Nauka po prostu. Wywiady z wybitnymi”. Rozwiązałem test maturalny stworzony do mojego tekstu i zdobyłem… około 70 proc. punktów. Dlaczego nie 100 proc? Części pytań nie zrozumiałem, część moich odpowiedzi nie trafiła w klucz. W skrócie z tekstu który sam zrozumiałem rozumiem ok. 70 proc. Nie świadczy to chyba o mnie najlepiej. Dzisiaj – nie tylko maturzystom – ten tekst przypominam.

W 2013 roku, na maturze z języka polskiego, uczniowie analizowali wstęp do mojej książki  „Nauka po prostu. Wywiady z wybitnymi”. Rozwiązałem test maturalny stworzony do mojego tekstu i zdobyłem… około 70 proc. punktów. Dlaczego nie 100 proc? Części pytań nie zrozumiałem, część moich odpowiedzi nie trafiła w klucz. W skrócie z tekstu który sam zrozumiałem rozumiem ok. 70 proc. Nie świadczy to chyba o mnie najlepiej. Dzisiaj – nie tylko maturzystom – ten tekst przypominam.

**************

Świat między 44 zerami

Widzialny Wszechświat ma rozmiar kilkunastu miliardów lat świetlnych. To około 1026 (1 z 26 zerami) metra. Z kolei najmniejsze struktury, których istnienia jesteśmy pewni, to budujące między innymi protony i neutrony kwarki. Mają rozmiar kilku attometrów, czyli 10-18 metra. Najmniejsze i największe obserwowane przez człowieka obiekty dzielą od siebie aż 44 rzędy wielkości! Kwarki są o 100 000 000 000 000 000 000 000 000 000 000 000 000 000 000 razy mniejsze od największego obiektu dociekań naukowców. Nasz świat mieści się w tych 44 zerach. Są w nim cząstki elementarne, żywe organizmy i ich DNA, Ziemia i inne planety. Są gwiazdy, galaktyki i gromady galaktyk. A gdzieś w środku jest człowiek. Jedyna znana istota, która chce wiedzieć i chce to wszystko zrozumieć.

Świat, ten zamknięty „między 44 zerami”, jest skonstruowany według uniwersalnych reguł. Człowiek ich nie tworzy, najwyżej odkrywa i nazywa. Na razie znamy je wycinkowo, choć chcielibyśmy oczywiście ogarniać w całości. Marzy nam się też, by w pełni je wykorzystywać. Nanotechnolodzy chcieliby tworzyć komputery oparte na węglu i projektować cząsteczki leków atom po atomie. Na razie jednak nie wiedzą jak. Biotechnolodzy chcą nadawać żywym organizmom dowolne cechy, chcą hodować tkanki, a może nawet całe organy, z jednej tylko komórki. Inni chcą poznać tajemnice mózgu (by skuteczniej się z nim komunikować), początków materii (by znaleźć źródło niewyczerpywalnej energii) czy klimatu (by zapobiegać ekstremalnym zjawiskom pogodowym).

Odkrywamy coraz więcej i nieustannie jesteśmy zaskakiwani złożonością świata, w którym żyjemy. Odkrywamy coraz więcej, a ciągle tyle pozostaje do poznania i zrozumienia. Horyzont poznania wcale się nie przybliża, gorzej … można odnieść wrażenie, że się oddala.  Nie przeszkadza nam to jednak marzyć.

Świat przyszłości, świat czasów, w których jeżeli wszystkie reguły zostaną poznane (czy to w ogóle kiedykolwiek nastąpi?), będzie światem dostosowanym przez człowieka do człowieka – tylko czy w ostatecznym rachunku dla człowieka. To wizja bardzo odległa, ale przecież zmierzamy ku niej od zawsze. Zaglądamy za horyzont zdarzeń w poszukiwaniu mechanizmów, które za tym wszystkim stoją, bo chcemy je wykorzystywać po swojemu, albo inaczej, na swój użytek. Coraz częściej zresztą nam się to udaje. Tymi mechanizmami, trybami i zębatkami są naukowe prawa przyrody. Nauczyliśmy się kontrolować reakcje jądrowe i dlatego potrafimy korzystać z energii atomowej. Wybudowaliśmy urządzenia, które odczytują niektóre intencje mózgu i dlatego możemy pomagać osobom niepełnosprawnym. W końcu dzięki poznaniu właściwości materii w skali mikro budujemy komputery, a zrozumienie sposobu zapisu informacji w naszym DNA już niedługo zaowocuje terapiami genowymi. To wszystko, te niewątpliwe osiągnięcia ludzkiego intelektu, nie zmieniają jednak faktu, że do poznania wszystkich reguł rządzących przyrodą (a może jest tylko jedna reguła uniwersalna, która stosuje się do wszystkiego?) sporo nam jeszcze brakuje. Czy w związku z tym warto zaprzątać sobie głowę refleksją nad przyszłością? Nad kierunkiem i tempem rozwoju nauki? Może lepiej upajać się wizją świata ułożonego, oswojonego, dostosowanego? Wizją świata przyszłości. Powód jest – jak sądzę – jeden. Uczymy się przez eksperyment. Rozwój sam się nie dzieje, a bez prób i bez błędów nie ma postępu. No właśnie – błędów. O te najłatwiej w pośpiechu. Świat rozwija się dzisiaj szybciej niż kiedykolwiek wcześniej, szybciej niż refleksja nad nim. Nie ma tygodnia bez spektakularnego odkrycia, bez przesunięcia granicy poznania. Wszystko dzieje się tak szybko, że słowo drukowane już dawno przestało nadążać. Wypiera je słowo wyświetlane na ekranie. Już nawet nie komputera stojącego na biurku, ale coraz częściej telefonu komórkowego, albo czegoś co telefonem jest tylko przy okazji.

Nasz świat jest pędzącym pociągiem, w którym siedzimy i patrzymy za okno. Wszystko jest zamazane. Nie widać szczegółów, nie ma czasu na analizę detali. Pędzimy do przodu. To wspaniałe… ale trzeba uważać. W przeszłości na przykład w czasie wojen i rewolucji zdarzało się, że gdy historia przyspieszała brakowało czasu na refleksję. Rzeczy działy się tak szybko, że konsekwencje czynów i decyzji czasami uświadamiano sobie zbyt późno. Wchodząc więc w erę „nano” czy „cyber” warto byłoby zdawać sobie sprawę ze wszystkich ewentualnych konsekwencji. Dopiero ta wiedza pozwala na w pełni świadome funkcjonowanie w dzisiejszym świecie. Skąd ją czerpać? Najlepiej u źródła.

Na początku XXI wieku żyjemy w świecie nieustannie kształtowanym, wręcz kreowanym przez naukę i technologię. W każdej epoce życie jednostki w jakimś stopniu zależało od postępu cywilizacji, ale nigdy nie zależało aż tak bardzo jak obecnie. Miasto bez prądu czy komunikacja bez Internetu nie istnieją. Nie potrafimy żyć bez prądu, Internetu, telefonu komórkowego i komputera. I nie chodzi o naszą wygodę czy przyzwyczajenia, ale o przetrwanie. Bez sieci komputerowej i komórkowej nie działają systemy sterujące pracą elektrowni, oczyszczalni ścieków, uzdatniania wody czy komunikacji (metro, tramwaje, koleje). Niedługo nie będzie istniała elektronika bez nanotechnologii i medycyna bez biotechnologii, a może nawet cybernetyki. Coraz częściej osobom chorym i niepełnosprawnym pomaga się wszczepiając zaawansowane technologiczne implanty i protezy. Niektórym to ratuje życie, innym ułatwia i czyni znośniejszym. Ale wszystkich w pewnym sensie uzależnia od technologii.

Być może z powodu wspomnianego uzależnienia naszego świata od osiągnięć naukowych, może dosłownego rozumienia słowa „demokracja”, a może z powodu asekuranckiej postawy polityków, coraz częściej od nie-specjalistów wymaga się zajmowania stanowiska w sprawach bezpośrednio związanych z nauką. Nigdy wcześniej tak nie było. W niektórych krajach to w referendach ważą się losy biotechnologii i energetyki. W innych pyta się obywateli o status ludzkiego embriona albo o moment, w którym można przerwać ludzkie życie. Tam gdzie formalnie plebiscytu nie ma, rządzący i tak przed podjęciem jakiejkolwiek decyzji przyglądają się słupkom sondaży. Zdanie naukowców, specjalistów zdaje się mieć mniejszą wartość niż opinie elektoratu, często manipulowanego przez sprawnych lobbystów.

W interesie wszystkich jest, by każdy obywatel, a nie tylko osoba z wykształceniem kierunkowym, mógł zabrać świadomy głos w toczących się dzisiaj na wielu frontach debatach z naukowym tłem. Gdy w każdych kolejnych wyborach frekwencja jest coraz niższa, mówi się o zagrożeniu demokracji. Zagrożeniem jest także to, że tak niewiele osób zdaje sobie sprawę z kierunków naszego rozwoju, z szans jakie przed nami stoją i z zagrożeń z nimi związanych. Jeden z moich rozmówców stwierdził, że naukowcy powinni uprawiać naukę, politycy powinni na nią dawać pieniądze, a społeczeństwo powinno kontrolować i jednych i drugich.  Gdy rządzący przed wieloma laty Niemcami kanclerz Gerhard Schroeder poszukiwał oszczędności i chciał obciąć nakłady na naukę, został powszechnie skrytykowany. W mediach pojawiały się nawet sondaże społeczne, z których wynikało, że Niemcy nie chcą w ten sposób oszczędzać. Nasi sąsiedzi zdają sobie po prostu sprawę z tego, że inwestowanie w naukę oznacza rozwój. Społeczeństwo może pośrednio – przez wybieranych polityków – wpływać na kierunek rozwoju nauki. O ile ma wiedzę, która umożliwia podjęcie świadomej decyzji. U nas nakłady na naukę czy nowe technologie nigdy nie były tematem debaty publicznej. Ani w czasie kampanii wyborczych, ani poza nimi. Dlaczego tak się dzieje? W powszechnym odczuciu polski naukowiec to ktoś zamknięty w hermetycznym laboratorium. Ktoś całkowicie oderwany od dnia codziennego. Przyjęło się u nas myśleć, że nauka ma swego rodzaju autonomię, jest niezależna od rzeczywistości. Niestety niebezpieczną konsekwencją takiej opinii jest przekonanie, że uprawianie nauki to sztuka dla sztuki. Trudno sobie wyobrazić większy absurd. Życie nie biegnie innym torem niż najnowsze osiągnięcia i technologie. Przeciwnie. Te obydwie dziedziny są ze sobą ściśle związane. Ale – i znowu wracamy do tego samego – skąd mamy o tym wiedzieć? Jak mamy wpływać na szybkość i kierunek zmian, skoro nie mamy o nich większego pojęcia? Warto wiedzieć więcej. I warto zajrzeć do źródeł.

Tomasz Rożek

 

Brak komentarzy do Świat między 44 zerami

(wszech)Świat się marszczy !!!

Lada dzień gruchnie wiadomość na którą czekamy od kilku dziesięcioleci. Wszechświat, przestrzeń marszczy się. W LIGO podobno odkryto fale grawitacyjne.

Kosmiczny detektor, kosmiczne zagadnienie. W świecie fizyków i kosmologów od kilku dni nie mówi się o niczym innym niż fale grawitacyjne, które miał podobno wykryć LIGO. O co chodzi?

>>> Więcej naukowych informacji na FB.com/NaukaToLubie

waves-101-1222750-1600x1200

Fale grawitacyjne to kompletny odlot. Człowiekiem który sprawę rozumiał, ba, który ją wymyślił, a w zasadzie wyliczył był nie kto inny tylko Albert Einstein (swoją drogą powinien dostać nagrodę za odkrycie najbardziej nieintuicyjnych zjawisk we wszechświecie). Z napisanej przez niego 100 lat temu Ogólnej Teorii Względności wynika, że ruch obiektów obdarzonych masą,  jest źródłem rozchodzących się w przestrzeni fal grawitacyjnych (lub inaczej – choć nie mniej abstrakcyjnie – zaburzeń czasoprzestrzennych). Jak to sobie wyobrazić? No właśnie tu jest problem. Bardzo niedoskonała analogia to powstające na powierzchni wody kręgi, gdy wrzuci się do niej kamień. W przypadku fal grawitacyjnych zamiast wody jest przestrzeń, a zamiast kamienia poruszające się obiekty. Czym większa masa i czym szybszy ruch, tym łatwiej zmarszczki przestrzeni powinny być zauważalne. Rejestrując największe fale grawitacyjne, tak jak gdybyśmy bezpośrednio obserwowali największe kosmiczne kataklizmy: zderzenia gwiazd neutronowych, czarnych dziur czy wybuchy supernowych. Trzeba przyznać, że perspektywa kusząca gdyby nie to… że fale grawitacyjne to niezwykle subtelne zjawiska. Nawet te największe, bardziej będą przypominały lekkie muśnięcia piórkiem niż trzęsienie ziemi. W książce „Zmarszczki na kosmicznym morzu” (Ripples on a Cosmic Sea: The Search for Gravitational Waves) australijski fizyk, prof. David Blair, poszukiwanie fal grawitacyjnych porównuje do nasłuchiwania wibracji wywołanych przez pukanie do drzwi z odległości dziesięciu tysięcy kilometrów. Detektory zdolne wykryć fale grawitacyjne powinny być zdolne zarejestrować wstrząsy sejsmiczne wywołane przez upadek szpilki po drugiej stronie naszej planety. Czy to w ogóle jest możliwe? Tak! Od 2002 roku działa w USA Laser Interferometer Gravitational Wave Observatory w skrócie LIGO czyli Laserowe Obserwatorium Interferometryczne Fal Grawitacyjnych. Zanim budowa ruszyła, pierwszy szef laboratorium prof. Barry Barrish na dorocznym posiedzeniu AAAS (American Association for the Advancement of Science) oświadczył, że pomimo wielu trudności nadszedł w końcu czas na zrobienie czegoś, co można nazwać prawdzią nauką (swoją drogą, odważne słowa na zjeździe najlepszych naukowców na świecie).

>>> Więcej naukowych informacji na FB.com/NaukaToLubie

This_visualization_shows_what_Einstein_envisioned

Symulacja łączenia się czarnych dziur – jedno ze zjawisk, które wytwarza najsilniejsze fale grawitacyjne

Z falami grawitacyjnymi jest jednak ten problem, że przez dziesięciolecia, mimo prób, nikomu nie udało się ich znaleźć. Gdyby komuś zaświtała w głowie myśl, że być może w ogóle ich nie ma, spieszę donieść, że gdyby tak było naprawdę, runąłby fundament współczesnej fizyki – Ogólna Teoria Względności, a kosmologię trzeba byłoby przepisać od początku. Dzisiaj głośno mówi się, że fale grawitacyjne zostały przez LIGO zarejestrowane. Panuje raczej atmosfera lekkiego podniecenia i oczekiwania na to, co stanie się za chwilę. Potwierdzenie istnienia fal grawitacyjnych nie będzie kolejnym odkryciem, które ktoś odfajkuje na długiej liście spraw do załatwienia.  Zobaczymy otaczający nas wszechświat z całkowicie innej perspektywy.

Jako pierwszy falowe zmiany pola grawitacyjnego, w latach 60 XX wieku próbował zarejestrować amerykański fizyk Jaseph Weber. Budowane przez niego aluminiowe cylindry obłożone detektorami nie zostały jednak wprawione w drgania. Co prawda Weber twierdził, że złapał zmarszczki wszechświata, ale tego wyniku nie udało się potwierdzić. Dalsze poszukiwania trwały bez powodzenia, aż do 1974 roku, gdy dwóch radioastronomów z Uniwersytetu w Princeton (Joseph Taylor i Russel Hulse) obserwując krążące wokół siebie gwiazdy (PSR1913+16) stwierdziło, że układ powoli traci swoją energię, tak jak gdyby wysyłał … fale grawitacyjne. Mimo, że samych fal nie zaobserwowano, za pośrednie potwierdzenie ich istnienia autorzy dostali w 1993 roku Nagrodę Nobla. Uzasadnienie Komitetu Noblowskiego brzmiało: „za odkrycie nowego typu pulsara, odkrycie, które otwiera nowe możliwości badania grawitacji”.

>>> Więcej naukowych informacji na FB.com/NaukaToLubie

virgoviewInstalacja, która z lotu ptaka wygląda jak wielka litera L, to dwie rury o długości 4 km każda, stykające się końcami pod kątem prostym. Choć całość przypomina przepompownię czy oczyszczalnię ścieków jest jednym z najbardziej skomplikowanych urządzeń kiedykolwiek wybudowanych przez człowieka. Każde z ramion tworzy betonowa rura o średnicy 2 metrów. W jej wnętrzu – jak w bunkrze – znajduje się druga ze stali nierdzewnej, która jest granicą pomiędzy światem zewnętrznym a bardzo wysoką próżnią. Z miejsca w którym rury się stykają, „na skrzyżowaniu”, dokładnie w tym samym momencie wysyłane są wiązki lasera. Ich celem są zwierciadła umieszczone na końcu każdej z rur. 2000px-Ligo.svgOdbijane przez zwierciadła tam i z powrotem około 100 razy promienie, wpadają z powrotem do centralnego laboratorium i tam zostają do siebie porównane. Dzięki zjawisku interferencji możliwe jest wyliczenie z wielką dokładnością różnicy przebytych przez obydwie wiązki światła dróg. A drogi te powinny być identyczne, no chyba że… chyba że w czasie pomiaru przez Ziemie – podobnie jak fala na powierzchni wody – przejdzie fala grawitacyjna. Wtedy jedno z ramion będzie nieco dłuższe, a efekt natychmiast zostanie wychwycony w czasie porównania dwóch wiązek. Tyle tylko, że nawet największe zaburzenia zmienią długość ramion o mniej niż jedną tysięczną część średnicy protonu (!). To mniej więcej tak, jak gdyby mierzyć zmiany średnicy Drogi Mlecznej (którą ocenia się na ok. 100 tys. lat świetlnych) z dokładnością do jednego metra. Czy jesteśmy w stanie tak subtelne efekty w ogóle zarejestrować ? Lustra na końcach każdego z korytarzy (tuneli) mogą zadrgać (chociażby dlatego, że przeleciał nad nimi samolot, albo w okolicy przejechał ciężki samochód). By tego typu efekty nie miały wpływu na pomiar zdecydowano się na budowę nie jednej, ale dwóch instalacji, w Handford w stanie Waszyngton i w Livingston w stanie Luizjana. Są identyczne, choć oddalone od siebie o ponad 3 tys. kilometrów. Ich ramiona maja takie same wymiary i maja takie same układy optyczne. Nawet gdy w jednym LIGO zwierciadło nieoczekiwanie zadrga, niemożliwe by to samo w tej samej chwili stało się ze zwierciadłem bliźniaczej instalacji. Zupełnie jednak inaczej będzie gdy przez Ziemię przejdzie z prędkością światła fala grawitacyjna. Zmiany jakie wywoła zajdą w dokładnie tej samej chwili w obydwu ośrodkach.

>>> Więcej naukowych informacji na FB.com/NaukaToLubie

A kończąc, pozwólcie na ton nieco nostalgiczny. Wszechświat jest areną niezliczonych kataklizmów a dramatyczne katastrofy, to naturalny cykl jego życia. To nic, że od tysięcy lat na naszym niebie królują te same gwiazdozbiory. W skali kosmicznej taki okres czasu to nic nieznacząca chwila, a nawet w czasie jej trwania widoczne były wybuchy gwiazd. Z bodaj największego kataklizmu – Wielkiego Wybuchu – „wykluło” się to co dzisiaj nazywamy kosmosem. Obserwatoria grawitacyjne (np. takie jak LIGO) otworzą oczy na inne wielkie katastrofy, i to nie tylko te które będą, ale także te które były. Już prawie słychać zgrzyt przekręcanego klucza w drzwiach. Już za chwilę się otworzą. Najpierw przez wąską szparę, a później coraz wyraźniej i coraz śmielej będziemy obserwowali wszechświat przez nieznane dotychczas okulary. Ocenia się, że to co widzą „zwykłe” teleskopy (tzw. materia świecąca) to mniej niż 10% całej masy Wszechświata. A gdzie pozostałe 90% ? Na to pytanie nie znaleziono dotychczas odpowiedzi. Tzw. ciemna materia powinna być wszędzie, a nie widać jej nigdzie. Przypisuje się jej niezwykłe właściwości, łączy się ją z nie mniej tajemniczą ciemną energią. Czy LIGO, pomoże w rozwiązaniu tej intrygującej zagadki? Czy będzie pierwszym teleskopem, przez który będzie widać ciemną materię? Jeżeli obserwatoria grawitacyjne będą w stanie „zobaczyć” obiekty, które można obserwować także w świetle widzialnym (np. wybuch supernowej), a nie będą widziały ani grama ciemnej materii, to zagadka staje się jeszcze bardziej tajemnicza. Bo albo ta materia nie podlega prawom grawitacji, albo nie ma żadnej ciemnej materii. Konsekwencje obydwu tych scenariuszy są trudne do przewidzenia. Czy teraz rozumiecie dlaczego odkrycie fal grawitacyjnych jest tak ważne? 

10 komentarzy do (wszech)Świat się marszczy !!!

Wszystko jest matematyką – rozmowa z X. prof. Michałem Hellerem

O kosmosie, ciekawości, przypadku i matematyce z księdzem profesorem Michałem Hellerem, teologiem, kosmologiem, matematykiem i filozofem rozmawia Tomasz Rożek

Z księdzem profesorem Michałem Hellerem, teologiem, kosmologiem, matematykiem i filozofem rozmawia Tomasz Rożek. Poniższy wywiad jest uzupełnieniem dwóch rozmów, które opublikowałem na kanale YouTube.com/Nauka To Lubie. Pierwsza z tych rozmów dotyczyła wszechświata, a druga człowieka. U dołu wywiadu znajdują się bezpośrednie odnośniki do obydwu rozmów.

>>> Więcej naukowych ciekawostek na FB.com/NaukaToLubie

Co się stało się prawie 14 miliardów lat temu? Możemy w ogóle udzielić jakiejkolwiek odpowiedzi?

Historię wszechświata rekonstruujemy poruszając się wstecz. Do 3 minut po wielkim wybuchu mamy wiedzę bardzo solidną, a potem grzęźniemy w hipotezach. Im bliżej początku, tym bardziej hipotetyczna jest nasza wiedza. Ta wiedza opiera się na teorii, ale teoria jest dobrze sprawdzona chociażby w takich miejscach jak laboratorium fizyki cząstek CERN, gdzie zderza się ze sobą np. protony.

Wiemy w takim razie co stało się po Wielkim Wybuchu, ale co było w punkcie zero?

Pytanie, czy taki punkt zero w ogóle był. Według klasycznej kosmologii, według teorii Einsteina, rzeczywiście punkt zero istniał i był tzw. osobliwością, czyli obszarem, w którym załamuje się pojęcie czasoprzestrzeni. Pojęcia czasu i przestrzeni tracą tam sens. Tam urywa się nasza wiedza, znane nam prawa natury przestają działać.

Skoro nie prawa przyrody, to co się tam dzieje?

To jest pytanie, na które nie znam odpowiedzi. Mamy dwie wielkie teorie: fizyka kwantowa i fizyka grawitacji. Fizyka kwantowa rządzi światem cząstek elementarnych, mikroświatem. Fizyka grawitacji rządzi kosmosem w wielkiej skali. Zaraz po Wielkim Wybuchu te dwie teorie nakładały się na siebie. Po to by wyjaśnić co dzieje się w osobliwości, trzeba połączyć te dwie teorie w jedną. Jest to niezmiernie trudne wyzwanie, bo te dwie siły mają zupełnie inną naturę. Moim zdaniem, to jest w tej chwili problem numer jeden fizyki teoretycznej. Mamy kilka, może nawet kilkanaście pomysłów jak grawitację i teorię kwantów ze sobą połączyć, ale żaden z nich nie jest potwierdzony doświadczalnie. Wszystko to są hipotetyczne rzeczy, posługują się bardzo ładną i zaawansowaną matematyką, ale nie mamy empirycznego rozstrzygnięcia, która jest prawdziwa i pewnie długo nie będziemy mieć.

Czy to jest przypadek, że człowiek został obdarzony umysłem, żeby dociekać tak skomplikowanych i abstrakcyjnych rzeczy?

Tego też nie wiemy. W każdym razie jest to rzecz niesamowita, że mamy taką władzę poznawania wszechświata. Bo pomyślmy nad tym. Jeżeli umysł ludzki powstał ewolucyjnie przez oddziaływanie z otoczeniem, to jak mówią biologowie, utrwalały się te cechy, które są potrzebne do przeżycia.

Wiedza o czarnej dziurze nie jest potrzebna?

Wiedza o czarnej dziurze jest absolutnie niepotrzebna do przeżycia.

Od biedy dałoby się połączyć wiedzę z sukcesem reprodukcyjnym. W końcu wolimy się otaczać ludźmi mądrzejszymi. Może intelekt czy wiedza to coś w rodzaju pożądanego przez przyszłego partnera gadżetu?

Myślę, że chyba wystarczyłby taki gadżet, który służyłby do uchylania głowy jak maczuga leci. Niemniej jednak jest to niesamowite, że człowiek ma tak rozwinięty umysł. Jeśli popatrzymy na historię, to tak naprawdę fizyka zaczęła się gdzieś w XVII wieku. Jesteśmy dopiero na samym początku. Co to jest kilkaset lat wobec 14 miliardów? I to jest rzeczywiście coś absolutnie niesamowitego. Można by to pytanie, które pan zadał, postawić w innej formie: czy złożoność ludzkiego mózgu wystarczy, ażeby zbadać złożoność wszechświata? Innymi słowy, czy złożoność wszechświata jest przykrojona na miarę naszego mózgu? Niezależnie od tego, czy jesteśmy sami we wszechświecie jako istoty rozumne, czy też są jacyś nasi bracia w rozumie, specjaliści mówią, że złożoność mózgu jest większa, niż złożoność całego wszechświata.

Ilość potencjalnych połączeń między komórkami w mózgu jednego człowieka jest większa niż ilość gwiazd we wszechświecie.

No właśnie. I to nas stawia w dość wyróżnionej pozycji. Natomiast czy dzięki tej złożoności możemy pojąć wszystko? Tu jest pewien logiczny paradoks. Jeśli chcielibyśmy pojąć wszystko, to musielibyśmy zrozumieć także mózg. Czy mózg może poznać sam siebie?

>>> Więcej naukowych ciekawostek na FB.com/NaukaToLubie

Mówiliśmy trochę o ewolucji, a z nią bardzo często wiąże się słowo „przypadek”. 

Arystoteles miał przyczynową koncepcję nauki, która w jakimś sensie jest aktualna do dzisiaj. Wyjaśniamy wszechświat według Arystotelesa przez ciągi przyczyn i skutków, takie łańcuchy przyczynowe. Natomiast on przypadek określił jako coś, co przerywa taki ciąg. Interweniuje przypadkowo w ten ciąg i zaburza go. I dlatego według niego nie może być wiedzy naukowej o przypadku. I ludzie uwierzyli, że przypadek jest jakimś takim obcym ciałem w nauce. Tymczasem okazuje się, że tak nie jest. Najbardziej dramatycznym czy widocznym przykładem próby oswajania przypadku jest ludzka chciwość. Jak ktoś gra hazardowo, to chce wygrać. Ludzie szukali więc jakiejś strategii, żeby zapewnić sobie zwycięstwo w totolotku, ruletce, czy w pokerze.

No i takiego sposobu nie znaleźli. Wygrana czy przegrana to kwestia przypadku.

Czy na pewno? Statystyka i rachunek prawdopodobieństwa mówią co innego. Gdyby było tak jak pan mówi, nie mogłyby działać np. banki czy towarzystwa ubezpieczeniowe, które liczą prawdopodobieństwo w związku z ubezpieczeniami na życie. Bez prawdopodobieństwa i statystyki nie byłoby dzisiejszej wiedzy. Ani fizyki, ani medycyny.

Bo statystyka daje odpowiedzi dotyczące ogółu a pojedynczy przypadek dalej jest dziełem… przypadku.

Też nie całkiem. W „Summa contra gentiles” św. Tomasz pisze, że boża opatrzność rządzi zdarzeniami ex casu del fortuna – dziejącymi się z przypadku lub losowo. Dwoje ludzi pobiera się, bo spotkali się, gdy spóźnił się pociąg. Czy to przypadek? Wszystko tu ma przyczynę. Pociąg się spóźnił, bo popsuła się lokomotywa. Młodzi ludzie byli w tym samym miejscu o tym samym czasie, bo każde z nich jechało w konkretne miejsce. W fizyce tak jest na każdym kroku. Dobrym przykładem jest zwykły rzut kamieniem. On jest opisany prostymi równaniami ruchu Newtona i wszystko jest – wydawałoby się – zdeterminowane, ale ja mogę przypadkiem tym kamieniem zamiast trafić w tarczę, to komuś w głowę. W nauce jest bardzo dużo miejsca na przypadki, a one same nie są zaprzeczeniem zasad przyrody. W siatce praw przyrody są pewne luzy na przypadki. Bez tych przypadków prawa przyrody by nie mogły działać.

A ten plan, te reguły, które tym wszystkim rządzą, te luzy, o których ksiądz profesor mówi, czy one jakoś powstały, czy one były zawsze? Jak to rozumieć?

No to jest problem genezy praw przyrody. I ja nie wiem jaka ona jest. To na pewno nie jest zagadnienie z dziedziny fizyki, bo fizyka zakłada prawa przyrody. Nie wyjaśnia ich. W każdym modelu fizycznym prawa fizyki są założone. Takie, a nie inne i koniec. Natomiast wyjaśnienie, skąd się biorą prawa przyrody, to już raczej należy do filozofii czy na przykład do teologii. Można powiedzieć, że to po prostu Pan Bóg stworzył.

>>> Więcej naukowych ciekawostek na FB.com/NaukaToLubie

To jest bardzo wygodne podejście. Pan Bóg stworzył, kropka. A może by się nad tym zastanowić ?

Często fizycy nie nazywają tego Panem Bogiem, ale skądś się one musiały wziąć. Einstein nie uznawał Boga w formie chrześcijańskiej. Raczej był bliżej panteizmu, ale używał hasła „Zamysł Boga” – the Mind of God. Może używał to jako metaforę, ale uważał, że zestaw praw przyrody to jest właśnie the Mind of God. I mówił: nie chciałbym nic więcej wiedzieć, tylko znać the Mind of God.

Znać boży zamysł… czyli to jedno równanie, które opisuje wszystko?

No tak. I tu są te granice fizyki, o których mówimy. Na to wszystko nakłada się matematyka, która jest uniwersalnym językiem opisu wszechświata. Tylko trzeba pamiętać, że matematyka nie oznacza wcale determinizmu.

2 + 2 zawsze równa się 4. Cała matematyka szkolna jest deterministyczna.

No bo w szkole się uczy najprostszych rzeczy: dodawania, odejmowania i pierwiastkowania. Niewiele więcej. W prawdopodobieństwie nic nie jest pewne, choć wszystko prawdopodobne. A to dopiero początek. Mechanika kwantowa posługuje się matematyką, która jest indeterministyczna. Wcześniej rozmawialiśmy o przypadkach. Ja rozróżniam dwa ich rodzaje. Jeden to przypadek wynikający z niewiedzy albo ignorancji. Np. mogę się z kimś założyć, czy z zza rogu wyjedzie tramwaj numer 8 czy 4. Ja nie wiem który i traktuję to w kategoriach przypadku, ale jeżeli te tramwaje są w drodze, to proces jest zdeterminowany. Natomiast czy są przypadki, zdarzenia, które rzeczywiście nie są zdeterminowane? Mechanika kwantowa jest świadectwem, że tak, są. I takie przypadki pojawiają się u podstaw całej naszej rzeczywistości.

Czy wszechświat ma jakieś granice geometryczne? Pytam zarówno o to, czy możemy dowolnie długo dzielić cząstki elementarne na coraz mniejsze kawałki, jak i o to, czy kosmos gdzieś się kończy?

Może być tak, że świat jest skończony, ale nie ma granicy. I wtedy idąc cały czas w jedną stronę, w końcu trafimy do punktu wyjścia. Modele otwarte mówią, że można zmierzać w jednym kierunku w nieskończoność. Nie ma żadnych naukowych powodów, by wszechświat miał granice. Natomiast czy można dzielić cząstki w nieskończoność? Nie wiem.

Co zapaliło małego Michała Hellera do tego by zajął się nauką? A co zapala już dorosłego księdza profesora by zajmował się nią dalej? 

Dorastałem w domu, gdzie rozmawiało się o nauce, o świecie. Ojciec był inżynierem, opublikował nawet kilka prac matematycznych. Od dziecka, jak tylko miałem jakąś książkę popularnonaukową, to się w niej zaczytywałem. I trudno tak ciekawymi rzeczami się nie zajmować. A dzisiaj? Chyba ta sama ciekawość co u małego Michała. Ciekawość jest motorem działania. Ale trzeba uważać, bo ona musi być pod kontrolą. Inaczej do niczego się nie dojdzie, niczego nie uda się wystarczająco dobrze zbadać. Na świecie żyje wielu geniuszy, którzy nie potrafili się ograniczyć. Wiedzą prawie wszystko o prawie wszystkim i zarazem niewiele. Wszystko ich za bardzo ciekawi. I w moim przypadku to zawsze było dość trudne i bywa trudne do dzisiaj. Interesuje mnie za dużo, a trzeba się ograniczyć do jednego.

>>> Więcej naukowych ciekawostek na FB.com/NaukaToLubie

Ksiądz Profesor Michał Heller jest teologiem, filozofem i kosmologiem. W 2008 roku jako jedyny dotychczas Polak został laureatem międzynarodowej Nagrody Templetona, przyznawanej za pokonywanie barier między nauką a religią. Jest autorem kilkudziesięciu książek. 

Opublikowany powyżej wywiad jest fragmentem rozmowy jaką przeprowadziłem z X. prof. Michałem Hellerem dla tygodnika Gość Niedzielny.
3 komentarze do Wszystko jest matematyką – rozmowa z X. prof. Michałem Hellerem

W kosmosie woda jest wszędzie!

Jest na planetach, księżycach, kometach a nawet… w mgławicach. Dość powszechnie panująca opinia o tym, że woda jest obecna tylko na Ziemi, jest kompletnie błędna. Wody w kosmosie jest bardzo dużo. Ale to wcale nie musi znaczyć, że wszędzie tam jest życie.

Dość powszechnie panująca opinia o tym, że woda jest obecna tylko na Ziemi, jest kompletnie błędna. Choć w kolejnym odcinku „Megaodkryć” na National Geographic Channel będzie mowa o „Wodnej apokalipsie” to okazuje się, że ta wspomniana apokalipsa to nasz ziemski problem.

>> Polub FB.com/NaukaToLubie i pomóż mi tworzyć stronę pełną nauki. 

Woda płynna jest na przynajmniej kilku obiektach Układu Słonecznego. Kilka tygodni temu odkryto ją także na powierzchni Marsa. Co zaskakuje, obłoki pary wodnej „wiszą” także w przestrzeni kosmicznej. Kilka lat temu odkryto taki wokół kwazaru PG 0052+251. Póki co, to największy ze wszystkich znanych rezerwuarów wody w kosmosie. Dokładne obliczenia wskazują, że gdyby całą tę parę wodną skroplić, byłoby jej 140 bilionów (tysięcy miliardów) razy więcej niż wody we wszystkich ziemskich oceanach. Masa odkrytego wśród gwiazd „zbiornika wody” wynosi 100 tysięcy razy więcej niż masa Słońca. To kolejny dowód, że woda jest wszechobecna we wszechświecie.

Do wyboru: lód, woda i para

Naukowców nie dziwi sam fakt znalezienia wody, ale jej ilość. Cząsteczka wody (dwa atomy wodoru i jeden atom tlenu) jest stosunkowo prosta i występuje we wszechświecie powszechnie. Bardzo często łączy się ją z obecnością życia. Faktem jest, że życie, jakie znamy, jest uzależnione od obecności wody. Ale sam fakt istnienia gdzieś wody nie oznacza istnienia tam życia. Po to, by życie zakwitło, musi być spełnionych wiele różnych warunków. Woda wokół wspomnianego kwazaru jest w stanie gazowym, a woda niezbędna do życia musi być w stanie ciekłym. Nawet jednak ciekła woda to nie gwarancja sukcesu (w poszukiwaniu życia), a jedynie wskazówka.

Takich miejsc, którym badacze się przyglądają, jest dzisiaj w Układzie Słonecznym przynajmniej kilka. Woda może tu występować – tak jak na Ziemi – w trzech postaciach: gazowej, ciekłej i stałej. I właściwie we wszystkich trzech wszędzie jej pełno. Cząsteczki pary wodnej badacze odnajdują w atmosferach przynajmniej trzech planet Układu Słonecznego. Także w przestrzeni międzygwiezdnej. Woda w stanie ciekłym występuje na pewno na Ziemi. Czasami na Marsie, najprawdopodobniej na księżycach Jowisza, ale także – jak wykazały ostatnie badania – na księżycach Saturna. A na jednym z nich – Enceladusie – z całą pewnością. Gdy kilka lat temu amerykańska sonda kosmiczna Cassini-Huygens przelatywała blisko tego księżyca, zrobiła serię zdjęć, na których było wyraźnie widać buchające na wysokość kilku kilometrów gejzery. Zdjęcia tego zjawiska były tak dokładne, że badacze z NASA zauważyli w buchających w przestrzeń pióropuszach nie tylko strugi wody, ale także kłęby pary i… kawałki lodu. Skąd lód? Wydaje się, że powierzchnia Enceladusa, tak samo zresztą jak jowiszowego księżyca Europy, pokryta jest bardzo grubą (czasami na kilka kilometrów) warstwą lodu. Tam nie ma lądów czy wysp. Tam jest tylko zamarznięty ocean. Cały glob pokryty jest wodą.

061215_europa_02

Powierzchnia jowiszowego księżyca Europa

Nie tylko u nas

Skoro cała powierzchnia księżyców Jowisza i Saturna pokryta jest bardzo grubym lodem, skąd energia gejzerów? Skąd płynna woda pod lodem? Niektóre globy żyją, są aktywne. Ich wnętrze jest potężnym reaktorem, potężnym źródłem ciepła. Tak właśnie jest w przypadku zarówno Europy, jak i Enceladusa. Swoją drogą ciekawe, co musi się dziać pod kilkukilometrowym lodem, skoro woda, która wydrążyła sobie w nim lukę, wystrzeliwuje na wiele kilometrów w przestrzeń?

Może nie morza, jeziora czy chociażby bajora, ale lekka rosa – wodę znajduje się także na powierzchni naszego Księżyca. Zaskakujące odkrycie to dzieło indyjskiej sondy Chandrayaan-1, potwierdzone przez dwie amerykańskie misje (Deep Impact i Cassini).

Niejedna praca naukowa powstała też na temat wody na Czerwonej Planecie. Wiadomo, że jest na marsjańskich biegunach. Nie brakuje jednak danych, że woda, nawet w stanie ciekłym, pojawia się czasowo w różnych innych miejscach planety. Wyraźnie ją widać na zboczach kraterów, o ile padają na nie promienie letniego Słońca.

Z badań amerykańskiej sondy Messenger, która od 2004 roku badała Merkurego, wynika, że woda jest także w atmosferze pierwszej od Słońca gorącej planety. Co z innymi planetami spoza Układu Słonecznego? Na nich też pewnie jest mnóstwo wody. Tylko jeszcze o tym nie wiemy. Chociaż… Pierwszą egzoplanetą, na której najprawdopodobniej jest woda jest HD 189733b, która znajduje się 63 lata świetlne od nas. Ta planeta to tzw. gazowy gigant. Ogromna kula gorących i gęstych gazów z płynnym wnętrzem. Gdzie tutaj miałaby być woda? Wszędzie – twierdzą badacze. Dzięki aparaturze wybudowanej w California Institute of Technology, USA udało się odkryć, że mająca prawie 1000 st. C atmosfera zawiera duże ilości pary wodnej.

>> Polub FB.com/NaukaToLubie i pomóż mi tworzyć stronę pełną nauki. 

Czy któreś z tych kosmicznych źródeł wody będzie nas w stanie uchronić przez niedostatkiem pitnej wody na Ziemi? Tego jeszcze nie wiemy, choć problem braku podstawowej do życia substancji wydaje się być coraz bardziej palący. Przekonują o tym hollywoodzka gwiazda – Angela Basset – i jej goście – światowej sławy naukowcy, którzy próbują odpowiedzieć na pytanie czy czeka nas „Wodna Apokalipsa” w ostatnim już odcinku niezwykłej serii „Megaodkrycia” na National Geographic Channel. Jeśli chcecie wiedzieć, gdzie najtęższe umysły naukowe szukają teraz źródeł H2O, oglądajcie „Wodną Apokalipsę” – już w niedzielę, 13 grudnia, o 22.00 na National Geographic Channel.

 

 

Brak komentarzy do W kosmosie woda jest wszędzie!

Nowe zdjęcia Plutona!!!! Niesamowite.

Co tam się dzieje?!? Z najnowszych zdjęć powierzchni Plutona wynika, że ta planeta jest niezwykle zróżnicowana. Są góry, ogromne kratery i lodowe pustynie!

Co tam się dzieje?!? Z najnowszych zdjęć powierzchni Plutona wynika, że ta planeta jest niezwykle zróżnicowana. Są góry, ogromne kratery i lodowe pustynie!

>> Polub FB.com/NaukaToLubie. Pomóż mi tworzyć miejsce w którym komentuję i popularyzuję naukę.

To moje ulubione zdjęcie. Wygląda tak jak gdyby lodowiec „wylewał się” na pustynię. 2-newhorizonsr

Nadesłane obrazy zrobiła sonda New Horizons. Fotografowała powierzchnię Plutona z odległości dwunastu tysięcy kilometrów. Nigdy wcześniej nie udało się zrobić tak dokładnych zdjęć powierzchni planety karłowatej. Co na niej można zobaczyć? Góry, lodowe pustynie i kratery o średnicy wielu kilometrów.

vVpYaZs

Choć zdjęcia zostały zrobione kilka miesięcy temu, dopiero teraz znalazły się na Ziemi. Fotografie musiały „czekać w kolejce” na przesłanie. Szybkość transmisji pomiędzy New Horizons a Ziemią jest bardzo wolna. Pluton znajduje się średnio 40 razy dalej od Słońca niż Ziemia, a to oznacza, że światło (a więc i fala radiowa) potrzebuje kilku godziny by dotrzeć do Ziemi.

>> Polub FB.com/NaukaToLubie. Pomóż mi tworzyć miejsce w którym komentuję i popularyzuję naukę.

nh-craters-mountains-glaciers

Wszystkie zdjęcia należą do NASA.

 

 

5 komentarzy do Nowe zdjęcia Plutona!!!! Niesamowite.

100 lat abstrakcji

Czas jest względny, a masa zakrzywia czasoprzestrzeń. To jedno zdanie jednych przyprawia o ból głowy, dla innych jest źródłem nieograniczonej fascynacji. Fascynacji, która trwa dokładnie 100 lat.

>>> Polub FB.com/NaukaToLubie to miejsce w którym komentuję i popularyzuję naukę.

Pióra i ołówki na teorii grawitacji połamało już wielu badaczy. To co wiemy, to prosty wzór, którego dzieci uczą się w szkole. Że siła grawitacji zależy od masy obiektów, które są jej źródłami (im obiekt cięższy, tym większa siła), oraz że słabnie wraz z zwiększającą się odległością pomiędzy tymi obiektami. Dzięki tej prostej zależności, udaje się doskonale przewidywać ruchy planet, satelitów, także zachowanie sporej części gwiazd w galaktyce. Sporej, ale nie wszystkich.

Tymi, których wytłumaczyć się nie da są np. kolizje gwiazd neutronowych, pulsary, czarne dziury czy wybuchy supernowych. Grawitacji nie sposób także „dopasować” do wielkiego wybuchu. A skoro od niego swój początek wziął czas i przestrzeń, nasze braki w rozumieniu grawitacji stają się kłopotliwe.

Dokładnie 100 lat temu Albert Einstein ogłosił (a konkretnie odczytał) Ogólną Teorię Względności. Jej manuskrypt (ma 46 stron) można dzisiaj zobaczyć w Bibliotece Narodowej Izraela. Dla postronnego obserwatora, niespecjalisty , notatki Einsteina mogą sprawiać wrażenie niewyraźnych bazgrołów zrobionych na pożółkłych kartkach. Są napisane bardzo drobnym maczkiem, często poprawiane, miejscami podkreślone, w innych miejscach przekreślone. Sporo w nich matematycznych wzorów. Niesamowite, jak wiele w fizyce czy w ogóle w postrzeganiu świata (wszechświata) zmieniło to, co 100 lat temu zostało zaprezentowane światu.

Ogólna Teoria Względności została ogłoszona w 1915 roku, gdy Albert Einstein przebywał w Niemczech. Już wtedy Einstein był znanym człowiekiem, a jego prace – choć przez bardzo nielicznych rozumiane – były w pewnym sensie kultowe. Stworzenie OTW nie było olśnieniem, jak wielu innych teorii fizycznych. Einstein pracował nad nią 9 lat. Czasami błądził, czasami się mylił. To była żmudna praca. OTW jest – jak sama nazwa wskazuje – uogólnieniem Szczególnej Teorii Względności Einsteina. Choć teoria Ogólna i Szczególna są dwoma najbardziej znanymi jego pracami, Einstein największe naukowe zaszczyty (Nagrodę Nobla) odebrał za prace nad zupełnie innym problem (konkretnie nad efektem fotoelektrycznym).

Ogólna Teoria Względności (OTW) jest w zasadzie teorią opisującą najbardziej namacalne dla nas oddziaływanie – grawitację. Z nią wiążą się takie wielkości jak masa, przestrzeń i czas. OTW jest bardzo skomplikowana. Nie sposób jej zrozumieć bez ogromnej wiedzy czysto matematycznej. Wynika z niej, że każda masa jest źródłem zakrzywienia otaczającej ją przestrzeni. Czym większa masa, tym większa siła grawitacji, czyli większe zakrzywienie przestrzeni. Jak to rozumieć? Gdy dwie osoby trzymają za rogi obrus jego powierzchnia jest płaska. Ale gdy na sam środek obrusu wrzucimy piłkę, obrus w miejscu w którym się ona znajduje lekko się „naciągnie” czy inaczej „zakrzywi”. Czym większa piłka, tym większe zakrzywienie. Gdy położymy na skraju obrusu mniejsza piłeczka, stoczy się do tego zakrzywienia, tak jak przyciągana grawitacyjnie asteroida „stoczy” się w kierunku Słońca. Tyle tylko, że obrus ma dwa wymiary, a przestrzeń wokół nas ma ich trzy. Ta nieintuicyjność (nie mylić z nielogicznością) to jeden z powodów dla których dwie teorie względności tak trudno zrozumieć. Drugim jest bardzo zaawansowana matematyka, której Einstein musiał użyć do rozwiązania swoich równań.

Gdy Einstein referował swoje pomysły na względność, był znany z zupełnie innych badań teoretycznych. Słuchano go więc z zaciekawianiem. Ale to zaciekawienie wynikało z szacunku do znanego fizyka a nie ze zrozumienia tego o czym mówił. W pewnym sensie tak jest do dzisiaj. Albert Einstein jest postacią kultową. Ale nie dlatego, że tak wielu ludzi rozumie Szczególną czy Ogólną Teorię Względności.  Tak naprawdę zaledwie garstka fizyków wie o co w niej chodzi. Nieco większa grupa rozumie co wynika z teorii Einsteina. Całkiem sporo fizyków na codzień wykorzystuje w swojej pracy naukowej zjawiska, które udało się dzięki teoriom Einsteina zrozumieć. Jednym z takich zjawisk są soczewki grawitacyjne. W zakrzywionej przestrzeni światło nie porusza się po liniach prostych, tylko krzywych. To dlatego światło dalekich galaktyk biegnące w okolicach dużych mas (czarnych dziur czy innych galaktyk) jest zakrzywione, tak samo jak światło przechodzące przez szklane soczewki. Dla astrofizyków i astronomów soczewki grawitacyjne to coś w rodzaju naturalnego teleskopu dzięki któremu mogą obserwować obiekty i zjawiska których inaczej nie udałoby się zaobserwować. Zakrzywiane światło to jednak dopiero początek wchodzenia w świat abstrakcji. Z równań Einsteina wynika także, że czas jest pojęciem względnym, że nie płynie dla nas wszystkich tak samo. Jego bieg jest zależny bowiem od siły grawitacji i od prędkości z jakim porusza się ciało. To z kolei wykorzystuje się w systemach globalnej lokalizacji (np. GPS).

Einstein był teoretykiem. Nie sprawdzał eksperymentalnie tego co wyliczył na drodze matematyki. Zresztą wtedy kiedy dokonywał swoich odkryć, nie było możliwości sprawdzenia ich poprawności. Urządzenia pomiarowe nie były dość czułe, a człowiek jeszcze nie latał w kosmos. To właśnie w przestrzeni pozaziemskiej wielokrotnie testowano wyliczenia Alberta Einsteina. Wszystkie dokładnie się zgadzają. No może za wyjątkiem jednej. Przewidywanych w Teorii Względności fal grawitacyjnych. Ale o nich napiszę innym razem 🙂 Tak samo jak o największej naukowej pomyłce Einsteina.

>>> Zapraszam na profil FB.com/NaukaToLubie (kliknij TUTAJ). To miejsce w którym staram się na bieżąco informować o nowościach i ciekawostkach ze świata nauki i technologii.

Brak komentarzy do 100 lat abstrakcji

Marsjanin okiem naukowca ;-)

Film Marsjanin jest niezły, choć książka 100 razy lepsza. Ale do rzeczy. Czy możliwa jest historia astronauty Marka Watneya, którego  gra Matt Damon? Postanowiłem popastwić się nad scenariuszem.

Wiem, że piszę to nico późno (w większości kin film już zszedł z ekranów), ale potraktujcie to jako pewien rodzaj próby. W polskim internecie naukowcy (dziennikarze naukowi) zwykle nie recenzują filmów. Ciekaw jestem jaka będzie reakcja na moją recenzję.

Film warto zobaczyć, a jeszcze bardziej warto przeczytać książkę. Piękne krajobrazy, dobre efekty specjalne i ciekawa historia nie zmieniają jednak tego, że opowiedziana w nim historia nie ma prawa się zdarzyć i to z wielu różnych powodów. Ja wspomnę o czterech. Jeżeli nie oglądałaś, jeżeli nie oglądałeś filmu, za chwilę zdradzę kilka szczegółów jego fabuły.

Burza piaskowa, ewakuacja załogi. Zdjęcie z filmu

1.Załogowa misja na Marsa musi w trybie natychmiastowym ewakuować się z planety z powodu silnej burzy piaskowej. Ta nadchodzi tak szybko, że astronauci mają dosłownie kilka minut na spakowanie się i wystrzelenie na orbitę. Tymczasem marsjańska burza byłaby dla sprzętu i ludzi  niegroźna. Marsjańska atmosfera jest z grubsza 200 razy rzadsza od ziemskiej. Nawet jak mocno wieje, niewiele ma to wspólnego z niszczycielskim żywiołem. Marsjańskie burze po prostu nie mają mocy którą mają burze na Ziemi. Marsjańska burza nie może przewracać metalowych konstrukcji. Poza tym da się ją przewidzieć z dużym wyprzedzeniem. Jeżeli w ogóle mówić o niebezpieczeństwach związanych z burzami piaskowymi na Czerwonej Planecie, to nie z powodu siły wiatru tylko znacznie mniejszych niż na Ziemi ziarenek pyłu. Te wcisną się wszędzie powodując uszkodzenia sprzętu. No ale tego w filmie nie było.

martian-gallery13-gallery-image

Uprawa ziemniaków w marsjańskim habitacie. Zdjęcie z filmu

2.Główny bohater ulega wypadkowi, a ewakuująca się załoga święcie przekonana o jego śmierci zostawia go samego na planecie. Mark Watney oczywiście się nie załamuje, tylko szybciutko liczy że na pomoc będzie musiał czekać kilka lat. Sprawdza racje żywnościowe i wychodzi mu, że tych ma za mało. Postanawia więc uprawiać w habitacie ziemniaki. Nawozi do wnętrza labu marsjański grunt i… no i tutaj zaczynają się kolejne kłopoty. Warstwa gruntu jaką przenosi do habitatu jest za mała żeby cokolwiek na niej wyrosło. Ale nie to jest najciekawsze. Z jakiś powodów astronauta postanawia nawozić ekskrementami ziemię po to by ziemniaki szybciej rosły. Po pierwsze nie wiem po co jakikolwiek nawóz. Marsjański grunt jest bardzo bogaty w mikroelementy i minerały. Nawet jeżeli chcieć go nawozić, to ludzkie odchody to nienajlepszy pomysł. Znacznie lepiej byłoby używać odpadków organicznych. Totalnym odlotem jest produkcja wody dla uprawy ziemniaków. Do tego Mark używa hydrazyny, czyli paliwa rakietowego. W teorii reakcja którą przeprowadza jest możliwa, w praktyce cały habitat wyleciałby w powietrze. Po to żeby z hydrazyny odzyskać wodór, po to by po połączeniu z tlenem powstała woda, musi zachodzić w ściśle kontrolowanych warunkach. A nie w namiocie zrobionym z worka.

Habitat, ściana na której główny bohater zaznacza liczbę spędzonych na Marcie dni. Zdjęcie z filmu

3.Największe moje wątpliwości budzi jednak nie burza, ani nie uprawa ziemniaków, tylko długi czas przebywania człowieka na Czerwonej Planecie. O ile dobrze liczę Mark Watney przebywał tam około 20 miesięcy. Nawet gdyby miał wodę i pożywienie wróciłby stamtąd chory. Do powierzchni Marsa z powodu bardzo cienkiej i rzadkiej atmosfery dochodzi dużo więcej promieniowania kosmicznego niż do powierzchni Ziemi. Z szacunków wynika, że po to by człowiek mógł czuć się na Marsie równie bezpieczny co na Ziemi, na Czerwonej Planecie musiałby przebywać pod osłoną około 2 metrów litej skały. Tymczasem w filmie nie widzimy bunkrów czy podziemnych schronów, tylko pomieszczenia wykonane z dość cienkich materiałów. Także kombinezon głównego bohatera jest cieniutki. Mark spaceruje, podziwia widoki a nawet wypuszcza się w dość dalekie trasy w pojeździe, który zresztą wygląda na zbyt ciężki jak na marsjańskie warunki. Jeden z łazików marsjańskich, nieporównywalnie mniejszy i lżejszy, kilka lat temu zakopał się w wydmie a wyciąganie go zajęło kilka tygodni.

Dalekie wycieczki piesze. Dość niebezpieczna rozrywka na Marsie. Zdjęcie z filmu

4.Natomiast najwiekszy odlot – dosłownie i w przenośni – to powrót z Marsa na Ziemię, a szczególnie jego początkowa faza, czyli opuszczenie Marsa. Nic tu się nie zgadza. Proca grawitacyjna pomiędzy Ziemia i Marsem zadziała tylko w dość specyficznych warunkach, na pewno nie takich jak te pokazane w filmie. Rozebranie rakiety, którą astronauta Mark Watney wydostaje się z powierzchni Marsa na jego orbitę spowodowałoby jej rozbicie. Pomijam już fakt, że okna zatkane materiałem z zużytego spadochronu to już nawet nie fikcja rodem z gwiezdnych wojen, tylko raczej z Hi-Mena… (dla młodszych Czytelników, He-Men to taka bajka rysunkowa, którą oglądali Wasi rodzice 😉 ). No i w końcu manewry na orbicie. Hamowanie przez wysadzenie w powietrze części stacji, przedziurawienie kombinezonu po to by używać go jak silniczka manewrowego. W końcu spotkanie… no i happy end. Nie o to chodzi że ostatnie sceny filmu sa mało prawdopodobne. One są nierealne i przeczą zasadom fizyki.

Podsumowując.

P1000471

Pustynia Atacama, Chile. Zdjęcie: Tomasz Rożek

Oczywiście takich filmów jak Marsjanin nie ogląda się po to by uczyć się fizyki. To jasne. Lubię się jednak czasami poznęcać nad filmami. Mnie najbardziej podobały się w tym filmie plenery. Spora część z nich była wykreowana komputerowo, ale część scen była grana na Chilijskiej pustyni Atacama. Byłem na niej jakiś czas temu i jeżeli Mars wygląda choć trochę jak ona… warto tam polecieć. Chociażby dla widoków. No i niebieskiego zachodu Słońca, którego akurat w filmie nie było. No bo wiecie, że na Ziemi, czyli niebieskiej planecie słońce zachodzi na czerwono, ale na czerwonej planecie na niebiesko.

P1000318_Fotor

Pustynia Atacama, Chile. Niedaleko tego miejsca testuje się marsjańskie łaziki. Zdjęcie: Tomasz Rożek

>>> Zapraszam na profil FB.com/NaukaToLubie (kliknij TUTAJ). To miejsce w którym staram się na bieżąco informować o nowościach i ciekawostkach ze świata nauki i technologii.

15 komentarzy do Marsjanin okiem naukowca ;-)

Jesteśmy w centrum?

Czy Ziemia leży w centrum wszechświata? To pytanie w XXI wieku może u niektórych wywołać  uśmiech politowania. Ale czy powinno?

Jesteśmy jedynym gatunkiem na Ziemi, który współtworzy środowisko w którym żyje. To ciekawe, bo to środowisko, które sami kreujemy, ma ogromny wpływ na kolejne pokolenia. Choć na Ziemi żyją tysiące, dziesiątki tysięcy gatunków zwierząt i roślin, tylko człowiek ma umiejętności, choć chyba powinienem napisać możliwości, by ziemię w tak ogromnym stopniu przekształcać. Jesteśmy niezwykłym gatunkiem, który żyje na niezwykłej planecie.

CopernicSystem

Rysunek Układu Słonecznego jaki pojawił się w dziele De revolutionibus orbium coelestium.

Przez setki lat, odpowiedź na tytułowe pytanie nie budziła żadnych wątpliwości. Ziemia była w centrum wszystkiego i centrum wszystkiego. Obiekty niebieskie (ze Słońcem i Księżycem włącznie) krążyły wokół naszej planety, a sama Ziemia była rusztowaniem o które opierała się cała reszta. Ten obraz runął około połowy XVI wieku. W 1543 roku w Norymberdze ukazało się dzieło kanonika Mikołaja Kopernika – astronoma, matematyka, ale także prawnika, lekarza i tłumacza. W De revolutionibus orbium coelestium – o obrotach sfer niebieskich – Kopernik obalił geocentryczną wizję świata i całkiem sprawnie (choć ze sporymi błędami) przedstawił system heliocentryczny. Ziemia przestała być w centrum. Jej miejsce zajęło Słońce. Oczywiście nikt wtedy nie myślał nawet o galaktykach, gwiazdach supernowych czy czarnych dziurach.

Dla Kopernika sytuacja była w zasadzie dosyć prosta. Słońce w centrum, a wszystko inne krążące wokoło. Mechanizm wszechświata wyglądał podobnie z tą tylko różnicą, że w samym jego centrum znajdowała się nie jak u starożytnych Ziemia, ale nasza dzienna gwiazda. Kilkadziesiąt lat po Koperniku, na początku XVII wieku obserwacje tego co znajduje się poza naszym układem planetarnym rozpoczął Galileusz. Pierwszą osobą, która przedstawiła koncepcję budowy galaktyki był urodzony w Królewcu filozof i matematyk, Immanuel Kant. Była połowa XVIII wieku i nikt poważny nie uznawał już Ziemi za geometryczne centrum wszechświata. Inaczej było jednak ze Słońcem. Wiedziano już o tym, że gwiazd w naszej galaktyce jest bardzo wiele. Wiedziano nawet że krążą one wokół jednego punktu. Bardzo długo uznawano jednak, że tym centralnym punktem jest właśnie Słońce i nasz układ planetarny.

BN-IB371_0424hu_J_20150423201321

Edwin Hubble z negatywem jednej z zaobserwowanych przez siebie galaktyk. źródło: www.wsj.com

Choć w XIX wieku Ziemia od wielu setek lat nie była już traktowana jako geometryczne centrum wszechświata, była jedyną znaną planetą co do której istniała pewność, że jest kolebką życia. Była też częścią jedynego znanego układu planetarnego. Poza Układem Słonecznym nie obserwowano żadnych planet. Ziemia nie leżała w centrum, ale była symbolicznym centrum. Na przełomie XVIII i XIX wieku najpierw Charles Messier, a później William Herschel skatalogowali setki i tysiące mgławic, które później, dzięki pracy amerykańskiego astronoma Edwina Hubble’a (lata 20te XX wieku) okazały się odległymi galaktykami. Odkrywano wiele, zaglądano coraz głębiej i dalej, ale jedno nie ulegało zmianie. W całym ogromnym wszechświecie, wszechświecie w którym istnieją miliardy galaktyk a każda jest domem dla setek miliardów gwiazd do 1990 roku istniało tylko dziewięć planet. Niesamowita historia !

Sytuacja uległa zmianie dokładnie 9 stycznia 1992 roku. To wtedy ukazała się w prestiżowym czasopiśmie Nature praca polskiego astronoma Aleksandra Wolszczana. Opisywała ona dokonane dwa lata wcześniej odkrycie trzech pierwszych planet poza Układem Słonecznym. Krążyły wokół pulsara PSR B1257+12, niecały 1000 lat świetlnych od Ziemi. Dzisiaj, 23 lat po tym odkryciu znanych jest prawie 2000 planet poza Układem Słonecznym, a planety pozasłoneczne, tzw. egzoplanety są odkrywane wręcz hurtowo.

The artist's illustration featured in the main part of this graphic depicts a star and its planet, WASP-18b, a giant exoplanet that orbits very close to it. A new study using Chandra data has shown that WASP-18b is making the star that it orbits act much older than it actually is.  The lower inset box reveals that no X-rays were detected during a long Chandra observation.  This is surprising given the age of the star, suggesting the planet is weakening the star's magnetic field through tidal forces.

To nie zdjęcie, tytlko artystyczna wizja ogromnej planety WASP-18b, która krąży bardzo blisko powierzchni swojej gwiazdy.

Planet jest sporo, ale czy one są takie jak Ziemia ? Nie! Po pierwsze przeważająca większość z nich jest dużo większa od Ziemi. To gazowe giganty takie jak „nasz” Jowisz i Saturn. Dużych planet odkrywamy tak dużo, bo znacznie łatwiej je wykryć. Ziemia różni się od innych jednak tym, że tutaj jest życie, a „tam” – niewiadomo. Co do tego, że proste bakteryjne życie istnieje w przestrzeni kosmicznej, praktycznie możemy mieć pewność, ale z życiem inteligentnym nie jest wcale tak prosto. Jest w tym pewien paradoks. Czym więcej wiem o życiu, tym chętniej przyznajemy, że to proste, jednokomórkowe jest wszechobecne i wszędobylskie. Proste formy mają niesamowitą zdolność do adaptowania się i do zasiedlania miejsc, które – jeszcze do niedawna byliśmy tego pewni – absolutnie nie nadają się do życia. Z życiem złożonym, nie mówiąc już o jego inteligentnej wersji, jest dokładnie na odwrót. Czym więcej wiemy, tym dłuższa staje się lista czynników, warunków, które muszą zostać spełnione, by życie jednokomórkowe wyewoluowało do wersji złożonej. Dzisiaj ta lista ma już kilkaset pozycji, wśród nich takie jak odpowiednia wielkość planety, odpowiednia odległość od gwiazdy i odpowiedni skład atmosfery. Te wspomniane warunki są w sumie logiczne. Ale dalej na tej liście jest pole magnetyczne i gorące jądro planety, siły pływowe, a więc tektonika płyt. Bardzo ważna jest aktywność wulkaniczna oraz wyładowania atmosferyczne.

Kiedyś powszechnie uważano, że Ziemia w skali kosmicznej jest ewenementem. Potem takie myślenie zarzucono. Gdybym napisał, że dzisiaj wraca się do tego, chyba bym przesadził. Ale faktycznie, coraz częściej zdajemy sobie sprawę z tego, że inteligentne istotny w kosmosie mogą być wielką rzadkością. I to pomimo tego, że planet we wszechświecie jest niepoliczalnie dużo. Czyżby więc Ziemia z ludźmi „na pokładzie” była egzemplarzem niepowtarzalnym? Na razie jest. Wiele, bardzo wiele wskazuje na to, że tak pozostanie jeszcze przez dość długi czas. A może nawet na zawsze.

2 komentarze do Jesteśmy w centrum?

Zdjęcia z eksplozji Antaresa

NASA ujawniła 85 zdjęć ze startu i eksplozji rakiety Antares. Niektóre zapierają dech w piersiach.

Kilka tygodni temu, na FB.com/NaukaToLubie informowałem, że Amerykańska Agencja Kosmiczna NASA udostępniła w serwisie zdjęciowym Flickr zdjęcia wysokiej jakości zrobione w trakcie trwania programu lotów księżycowych Apollo.

Tym razem NASA udostępniła 85 zdjęć na których widać nieudany start zakończony eksplozją rakiety Antares. Zdjęć nie powstydził by się najlepszy scenarzysta filmów science-fiction. Niestety fotografie, które pokazuję poniżej nie zostały stworzone na komputerze.

Rakieta Antares eksplodowała 15 sekund po starcie, który miał miejsce 28 października 2014. Zapasy, które przewoziła miały być dostarczone na pokład Międzynarodowej Stacji Kosmicznej. W sumie stracono ponad 2 tony zaopatrzenia dla ISS, a także sprzęt naukowy i eksperymenty studenckie. Zniszczeniu uległ także satelity Arkyd 3, RACE, GOMX 2 i 26 nanosatelitów Flock-1d.

>>> Przy okazji zapraszam na profil FB.com/NaukaToLubie (kliknij TUTAJ). To miejsce w którym staram się na bieżąco informować o nowościach i ciekawostkach ze świata nauki i technologii.

6_33_gallery_wide 7_25_gallery_wide 8_25_gallery_wide 9_19_gallery_wide 10_15_gallery_wide 11_17_gallery_wide 12_8_gallery_wide-2  13_7_gallery_wide 14_6_gallery_wide 15_4_gallery_wide

 

>>> Zapraszam na profil FB.com/NaukaToLubie (kliknij TUTAJ). To miejsce w którym staram się na bieżąco informować o nowościach i ciekawostkach ze świata nauki i technologii.

Brak komentarzy do Zdjęcia z eksplozji Antaresa

Wszechświaty równoległe?

Pracujący w Kalifornii astrofizyk, analizując mapę mikrofalowego promieniowania tła zauważył na niej dziwne struktury. Naukowiec uważa, że to światło które pochodzi z wszechświatów równoległych.

Pracujący w Kalifornii astrofizyk, Ranga-Ram Chary, analizując mapę mikrofalowego promieniowania tła zauważył na niej dziwne struktury. Tam gdzie na mapie miało być ciemno, pojawiały się jasne plamy. Naukowiec uważa, że najbardziej prawdopodobnym wytłumaczeniem jest to, że światło które widzi pochodzi z wszechświatów równoległych.

Czy to możliwe? Tak. Żadna teoria nie zabrania istnienia wszechświatów równoległych do naszego. Nie zabrania także istnienia wszechświatów starszych od tego w którym my żyjemy. Tyle tylko, że to nie jest żaden dowód za tym, że takie światy rzeczywiście istnieją.

Czym jest mikrofalowe promieniowanie tła, zwane inaczej promieniowaniem reliktowym? To echo Wielkiego Wybuchu. Brzmi abstrakcyjnie. Około 380 tysięcy lat po Wielkim Wybuchu, a więc w bardzo BARDZO wczesnej fazie rozwoju naszego wszechświata, temperatura materii obniżyła się do około 3000 Kelwinów a to spowodowało, że zupa materii i energii (a tym właśnie był wczesny wszechświat) zaczęła się rozdzielać. Fotony oddzieliły się od materii, a ta zaczęła się skupiać w pragalaktyki. Od tego czasu te pierwotne fotony przemierzają wszechświat we wszystkich kierunkach, a my dzięki temu jesteśmy w stanie zobaczyć, jak ten wczesny wszechświat wyglądał. Na mapie mikrofalowego promieniowania tła widać bowiem mniejsze i większe skupiska materii. To są miejsca w których zaczęły powstawać galaktyki i ich gromady. Promieniowania reliktowego jest bardzo mało (w każdym centymetrze sześciennym świata jest około 300 tworzących go fotonów), ale za to jest ono wszędzie. Otacza nas ze wszystkich stron. W skrócie mówiąc to promieniowanie to nic innego jak resztki światła, które emitował rozgrzany i potwornie ściśnięty młody wszechświat. Tak jak żarzące się włókno żarówki czy rozgrzany do czerwoności rozpalony w ogniu metalowy pręt. Poświata Wielkiego Wybuchu wydostała się z gorącej zupy materii dopiero, gdy zaczął się z niej formować przezroczysty gaz atomów. Szacuje się, że było to ok. 380 tyś lat po Wielkim Wybuchu.

A wracając do wszechświatów równoległych. Ich istnienia nie możemy wykluczyć, ani potwierdzić. Przynajmniej na razie. Tajemnicze plamy o których wspomniałem wcześniej nie są żadnym dowodem. W najlepszym wypadku będą argumentem za tym, by jeszcze raz, jeszcze dokładniej przeanalizować wyniki badań, które przeprowadza się nieustannie od kilkudziesięciu lat. Zdaniem naukowca, który zauważył tajemnicze plamy, są to ślady materii, która pochodzi z innego świata, na dodatek takiego w którym mają obowiązywać inne niż u nas prawa fizyki. To ostatnie stwierdzenie jest – delikatnie mówiąc – słabo udokumentowane. Badacza poniosła chyba fantazja. Dobrze jest pamiętać, że w XXI wieku nie jesteśmy w stanie powiedzieć z czego zbudowane jest ponad 90 proc. Naszego własnego wszechświata. Ciemna energia i ciemna materia to ogromne znaki zapytania dla kosmologów. Zanim więc zaczniemy dowodzić istnienia innych wszechświatów, będzie trzeba rozwikłać zagadkę tego w którym my żyjemy.

>>> Zapraszam na profil FB.com/NaukaToLubie (kliknij TUTAJ). To miejsce w którym staram się na bieżąco informować o nowościach i ciekawostkach ze świata nauki i technologii.

3 komentarze do Wszechświaty równoległe?

Bolid – kilka mitów, kilka faktów

Bolid, jasny ślad na nocnym niebie, jaki pojawił się przedwczoraj nad Polską, wywołał ogromne emocje. I nie ma się co dziwić. Przy okazji warto wyjaśnić kilka nieporozumień.

Bolid, jasny ślad na nocnym niebie, jaki pojawił się przedwczoraj nad Polską wywołał ogromne emocje. I nie ma się co dziwić. Tak dobrze udokumentowane na zdjęciach zdarzenie to jednak rzadkość. Przy okazji tego zdarzenia warto wyjaśnić kilka nieporozumień.

  1. Czy to dało się przewidzieć?

NIE. Bolidy to wbrew pozorom małe obiekty (piszę o tym w kolejnym punkcie), a takich nie da się obserwować przez teleskopy a tym bardziej śledzić ich trajektorii. W efekcie, choć są okresy kiedy szansa na zaobserwowanie bolidu jest większa, nie da się przewidzieć kiedy i gdzie go zauważymy. Jeżeli tak, skąd wzięło się tyle zdjęć tego zjawiska? Bolid pozostawia na nocnym niebie (w niektórych przypadkach także na dziennym niebie) ślad, który „trwa” kilkanaście, a nawet kilkadziesiąt sekund. Jeżeli ktokolwiek był na zewnątrz, jeżeli ktokolwiek miał w dłoni aparat fotograficzny (np. w telefonie), miał ogromne szanse by zrobić zdjęcie mimo tego, że nie spodziewał się niczego szczególnego. Wiele ze zdjęć bolidu było robionych na cmentarzach. Cóż, mieliśmy Wszystkich Świętych, a pogoda w sporej części Polski była perfekcyjna. Noc, liście na drzewach, znicze na grobach, łuna światła i … bolid w tle. Bonus dla artystycznych dusz.

  1. Czy to był duży obiekt?

NIE. Ludzkie oko jest w stanie zobaczyć krótkotrwały błysk światła wtedy gdy w ziemską atmosferę wchodzi obiekt wielkości ziarenka piasku. W czasie deszczy (rojów) meteorów, których w ciągu roku jest kilkanaście, przeważającą większość świetlnych efektów powodują właśnie ziarenka wielkości główki od szpilki. Gdy meteor ma wielkość kostki do gry, ślad jaki pozostawia po sobie utrzymuje się na kilka sekund. Bolidy mają wielkość kilku, górka kilkunastu centymetrów. Kilkunastocentymetrowe nie tylko mogą świecić jaśniej niż Księżyc w pełni, ale także być źródłem efektów dźwiękowych. Te przypominają charakterystyczny pisk hamującego na dworcu pociągu, albo wyładowanie atmosferyczne. Szczególnie duże bolidy mogą być widoczne także w ciągu dnia.

  1. Czy bolid mógł dolecieć do Ziemi?

NIE. Ten konkretny, który w sobotę wieczorem wywołał takie poruszenie, nie doleciał do powierzchni gruntu. Był za mały. Skąd o tym wiemy? Pierwszym wskazaniem jest to, że w pewnym momencie świetlny ślad jakiego bolid był źródłem urywa się. To nie jest wskazanie jednoznaczne, bo w przypadku niektórych obiektów świetlny ślad kończy się w miejscu w którym obiekt ma za mało energii (powietrze wyhamowało go) by rozgrzewać otaczające go powietrze. O tym czym jest świetlny ślad piszę w kolejnym punkcie. Jest jednak argument drugi za tym, że nic do powierzchni ziemi nie doleciało. Sobotni obiekt nie był duży, bo świadkowie przelotu nie słyszeli efektów dźwiękowych. Obiekty o średnicy rzędu centymetrów (a nawet te o średnicy dziesiątków centymetrów) spalają się całkowicie w atmosferze. Niektóre najpierw rozpadają się na mniejsze kawałki, a potem spalają.

  1. Czy świetlisty ślad na niebie zostawił rozgrzany do białości kawałek skały?

NIE. Powszechnie uważa się, że to co widzimy na niebie, to rozgrzany do białości kawałek meteoru. Tymczasem to nieprawda. Po pierwsze – jak wspominałem wcześniej – te obiekty są bardzo małe a efekty świetlne powstają na znacznych (kilkadziesiąt kilometrów) wysokościach. Po drugie, gdyby źródłem światła był meteor, nie widzielibyśmy utrzymującego się przez kilkanaście sekund śladu, tylko bardzo szybko poruszający się punkt świetlny. Co zatem świeci jeżeli nie rozgrzany meteor?

Powierzchnia meteoru nagrzewa się rzeczywiście bo tego typu obiekty poruszają się z bardzo dużymi prędkościami (nawet ponad 100 000 km/h), ale powodem tego nagrzewania nie jest ocieranie się o atomy ziemskiej atmosfery, tylko sprężenie powietrza przed czołem meteoru. Kosmiczna „skała” działa jak szybko poruszający się spychacz, który pcha przed sobą gaz. W ten sposób wytraca prędkość, ale „zyskuje” energię. W ten sposób może się rozgrzać do temperatury kilku tysięcy st. C. Tak, jest źródłem światła, ale to nie to światło widzimy na powierzchni ziemi. Rozgrzany meteor przekazuje część swojej energii otoczeniu przez które przelatuje, czyli powietrzu atmosferycznemu. Te rozgrzane zaczyna intensywnie świecić. I to to światło widzimy. Meteor przelatuje dalej, ale gaz świeci tak długo aż się nie ochłodzi co czasami trwa kilkanaście sekund. W pewnym momencie świetlny ślad urywa się. To znak, że w tym miejscu meteor całkowicie się spalił albo rozpadł na fragmenty mniejsze niż ziarenka piasku.

  1. Czy można się spodziewać większej ilości bolidów?

TAK. Przelot bolidu nie jest jednorazowym wydarzeniem. Wbrew pozorom na danym obszarze zdarza się kilka razy w roku. Trzeba jednak pamiętać, że średnio połowę doby mamy dzień. Bolidy dzienne, czyli na tyle duże by zobaczyć je na jasnym niebie, są rzadkością. Ponadto bolidów nie widać gdy na niebie są chmury bo świetlne ślady powstają dużo wyżej. No i kwestia świadków. Gdyby ten sam przelot miał miejsce nie w godzinach wczesno wieczornych tylko nad ranem, nie byłoby pięknych zdjęć, ani ogromnej liczby świadków.

Podsumowując. Gdyby wziąć to wszystko pod uwagę, piękna pogoda, wczesny wieczór i jasny bolid zdarza się raz wiele miesięcy. Co nie znaczy, że kolejny nie pojawi się jutro. Szanse na pojawienie się bolidów rosną w czasie deszczów meteorów. Obecnie Ziemia przechodzi przez pozostałości po komecie 2P/Encke, czego efektem jest dość rzadki (średnio 5 „spadających gwiazd” na godzinę) rój Taurydów Północnych. Jest bardzo prawdopodobne, ze sobotni bolid był kiedyś częścią komety 2P/Encke.

>>> Zapraszam na profil FB.com/NaukaToLubie (kliknij TUTAJ). To miejsce w którym staram się na bieżąco informować o nowościach i ciekawostkach ze świata nauki i technologii.

5 komentarzy do Bolid – kilka mitów, kilka faktów

Orionidy nadlatują !!!

Już za chwileczkę, już za momencik… a tak właściwie od kilku dni Ziemia w swoim ruchu wokół Słońca przelatuje przez chmurę kawałków komety Halley’a. Maksimum tych zderzeń nastąpi z środy na czwartek.

Ziemia z resztkami komety Halley’a „spotyka się” kilka razy w roku. W październiku skutkuje to deszczem Orionidów, na przełomie kwietnia i maja Eta Akwadydów, a w pierwszych dniach sierpnia Akwarydów. Dzisiaj w nocy jest maksimum roju Orionidów.

Poruszająca się w kierunku Słońca kometa (nie tylko kometa Halley’a) topiąc się pozostawia na swojej drodze niewielkie skalne kawałki, z których jest posklejana. Powstaje wtedy ślad, który znaczy drogę po której kometa się poruszała. W ciągu roku Ziemia wielokrotnie wlatuje w tak pozostawioną „ścieżkę” (u dołu tego wpisu wypisałem listę największych rojów meteorytów jakie można oglądać w Polsce).

Pozostałości komet z którymi Ziemia się „zderza” to pył i małe okruchy skalne. W ziemskiej atmosferze pozostawiają widoczny gołym okiem świetlny ślad nawet te, które są wielkości ziarenek pisaku. To dzięki grubej ziemskiej atmosferze możemy oglądać – o ile pogoda na to pozwoli – ciekawe widowisko. Nie musimy przy tym chować się pod dach 😉 , choć gdyby nie chroniąca nas atmosfera byłoby to konieczne, bo drobne cząstki pyłu i większe okruchy skalne wpadają w nią nawet z prędkością 75 km/s. Wtedy ocierając się i zderzając z cząsteczkami powietrza silnie rozgrzewają swoją powierzchnię. Zderzenia te są tak intensywne i jest ich tak dużo, że powierzchnia obiektu zaczyna się topić i wrzeć. Część w ten sposób „nabytej” energii przekazana zostaje do otaczającego meteor powietrza. To nagrzewa się i świeci a my widzimy „spadającej gwiazdy”.

Znakomita większość „spadających gwiazd” spala się całkowicie w ziemskiej atmosferze. Co więcej to co obserwujemy gołym okiem, to zaledwie ułamek wszystkich spadających na Ziemię meteorów. Większość z nich  jest na tyle mała, że ich „spalania” nie widać gołym okiem. Szacuje się, że w ciągu doby na powierzchnię Ziemi spada aż 100 ton tego niezauważalnego pyłu. Corocznie – w ściśle określonych porach – różnych rojów pojawia się na naszym niebie ok. 20. Niektóre z nich widoczne są na jednej półkuli a inne – tak jak Orionidy – na obydwu. Do ich obserwacji nie trzeba kosztownych urządzeń i o ile pogoda dopisze – i dodatkowo noc będzie bezksiężycowa – powinno być widać spadające gwiazdy. Uważny obserwator może ich zauważyć nawet 15 w ciągu jednej godziny.

Najobfitsze roje meteorytów występujące na półkuli północnej (w Polsce).  
Nazwa i okres występowania    
Kwadrantydy (1-6 I)    
Eta Akwarydy (24 IV – 20 V)    
Delta Akwarydy (15 VII – 20 VIII)    
Geminidy (7-16 XII)    
Perseidy (23 VII – 20V III)    
Orionidy (16-27 X)    
Taurydy (20 X- 30XI)    
Leonidy (15-20 XI)    

 

>>> Zapraszam na profil FB.com/NaukaToLubie (kliknij TUTAJ). To miejsce w którym staram się na bieżąco informować o nowościach i ciekawostkach ze świata nauki i technologii.

Brak komentarzy do Orionidy nadlatują !!!

Nobel z fizyki – abstrakcja goni abstrakcję

W ciągu każdej sekundy, przez nasze ciała przenika kilkadziesiąt bilionów neutrin. Abstrakcyjnie dużo. Masa każdego z nich jest mniejsza niż miliardowa część masy atomu wodoru. Abstrakcyjnie mało. Takie właśnie są neutrina. Abstrakcyjne. Za ich badania przyznano tegorocznego Nobla z fizyki.

Neutrina są najbardziej chyba nieuchwytnymi cząstkami badanymi przez fizyków. Prawie w ogóle nie oddziałują z materią. Po prostu przez nią przenikają. Zupełnie tak, jak gdyby była dla nich przezroczysta. Nie stanowią dla nich żadnej przeszkody ciała niebieskie jak i olbrzymie odległości (które pokonują z prędkością zbliżoną do prędkości światła). Powstają w czasie reakcji jądrowych, nie mają ładunku i posiadają nieskończenie małą masę. Neutrina występują w trzech odmianach. Najlepiej poznane są tzw. neutrina elektronowe, ale oprócz nich istnieją jeszcze neutrina taonowe i mionowe. I to właśnie różne odmiany tej samej cząstki były przez 30 lat powodem zamieszania nazwanego tajemnicą neutrin słonecznych. Ale zanim o tajemnicy.

PH20-water-withboat-apr23-wm-small

Wnętrze ogromnego detektora neutrin Super-Kamiokande. Wydrążony we wnętrzu góry mieści 50 000 ton superczystej wody. Widoczne na zdjęciu bańki to fotopowielacze, które rejestrują subtelne błyski światła. Te powstają wtedy, gdy neutrino zderzy się z jądrem atomowym.

Dlaczego ich badanie jest tak ważne? Na prawdę zasługuje aż na Nagrodę Nobla?  Neutrina są być może najliczniejszą grupą cząstek jakie „zasiedlają” nasz wszechświat. W ciągu każdej sekundy, przez nasze ciała przenika ich kilkadziesiąt miliardów. Abstrakcyjnie dużo. Skoro chcemy poznać wszechświat, skoro mamy ambicje by go zrozumieć, nie poradzimy sobie bez wiedzy o neutrinach. Przez lata uważano, że są to cząstki bezmasowe, czyli, że w ogóle nie mają masy. W rzeczywistości ważą, choć tyle co nic. W przypadku tak małych i ulotnych obiektów trudno mówić o precyzyjnym pomiarze masy, ale szacunkowo masę neutrin określa się na dziesiąte części elektronowolta, a to mnie niż jedna miliardowa część masy atomu wodoru. Abstrakcyjnie mało.

A wracając do tajemnicy neutrin słonecznych. Naukowcy doskonale wiedzą w wyniku jakich reakcji we wnętrzu Słońca powstaje jeden z rodzajów neutrin, czyli neutrina elektronowe. Z dużą precyzją można policzyć ile neutrin elektronowych powinno trafiać na Ziemię i ile powinno być rejestrowanych. Przez lata problem polegał jednak na tym, że te przewidywania teoretyczne nijak się miały do danych eksperymentalnych. Neutrin elektronowych na Ziemi rejestrowano o wiele mniej (aż o ok. 70 proc. mniej) niż powinno ich być. Możliwości były dwie. Albo reakcje, które wg. fizyków powinny zachodzić w jądrze Słońca wcale tam nie zachodzą i dlatego o wiele mniej neutrin elektronowych dociera do Ziemi, albo w czasie swojej podróży pomiędzy gwiazdą a naszą planetą coś z neutrinami się dzieje. Ostatecznie okazało się, że fizycy mieli rację co do procesów zachodzących w Słońcu. One po prostu oscylują – czyli zmieniają swoje właściwości. Zamieniają się pomiędzy sobą postaciami. Jedne neutrina spontanicznie, zmieniają się w inne. W naszym świecie dużych przedmiotów to zdolność mocno abstrakcyjna. Jak można ją sobie wyobrazić? A można sobie wyobrazić spadające z drzewa jabłko, które w czasie lotu ku powierzchni gruntu spontanicznie zamieni się w śliwkę, po to by ostatecznie upaść na trawę jako gruszka? Takie właśnie są neutrina. Abstrakcyjne.  Zamiast badać jeden rodzaj neutrin docierających do Ziemi,  zaczęto przyglądać się im wszystkim na raz. Tym razem, wszystko się zgadzało. To było ostateczne potwierdzenie tzw. oscylacji neutrin.

Zapraszam na profil FB.com/NaukaToLubie (kliknij TUTAJ). To miejsce w którym staram się na bieżąco informować o nowościach i ciekawostkach ze świata nauki i technologii.

 

 

 

Tomasz Rożek

3 komentarze do Nobel z fizyki – abstrakcja goni abstrakcję

Bombardowanie z kosmosu

Małe asteroidy o średnicy około 1 metra wpadają w naszą atmosferę zadziwiająco często. NASA właśnie opublikowała raport dotyczący „bombardowania Ziemi” w latach 1994 – 2013.

Jednometrowe obiekty wpadają w atmosferę średnio co dwa tygodnie! Mniejszych obiektów nawet nie sposób policzyć. Miejsca w których dochodzi do kolizji są rozrzucone mniej więcej równomiernie po całej planecie. Z trwających 20 lat badań wynika, że w tym czasie zarejestrowano przynajmniej 556 przypadków bolidów, czyli dużych obiektów kosmicznych w atmosferze. Ich energia wynosi czasami setki miliardów dżuli. Jednym z nielicznych – w ostatnich latach – takich przypadków o którym mamy świadomość był meteor czelabiński, który w połowie lutego 2013 roku wywołał panikę nie tylko w Czelabińsku na Syberii. Jego energia wynosiła mniej więcej tyle ile energia pół miliona ton trotylu.

Meteor czelabiński zanim wszedł w ziemską atmosferę miał wielkość około 20 metrów. Rosnąca gęstość gazowej powłoczki Ziemi spowodowała jednak, że obiekt rozpadł się na mniejsze. To samo dzieje się z większością obiektów o średnicy około metra. Choć ich resztki nie „spalają” się w atmosferze całkowicie, zwykle nie są groźne dla ludzi. A wracając do wydarzenia z Czelabińska. Nawet eksperci uważali wtedy, że częstotliwość takich zdarzeń jest niewielka. Tymczasem okazuje się, że jest inaczej. Z danych NASA wynika, że obiekt podobny do czelabińskiego wchodzi w naszą atmosferę co kilka (a nie kilka tysięcy) lat. Obiekt wielkości boiska sportowego wchodzi w atmosferę średnio raz na 5000 lat. Obiekty wielkości samochodu osobowego „nawiedzają nas” średnio raz w roku. Obiekty mniejsze, o średnicy rzędu jednego metra wpadają średnio co dwa tygodnie. Te mniejsze, jeszcze częściej. Na powierzchnię Ziemi każdej doby spada ponad 100 ton kosmicznej materii. To, że mniejsze obiekty nie docierają do powierzchni planety to jasne. Ziemska atmosfera działa jak mechanizm hamujący. Ogromna energia kosmicznego obiektu jest „wytracana” ale nie znika, tylko zamieniana jest na ciepło, na ogrzewanie obiektu, a ten albo rozpada się na drobny maczek, albo po prostu topi się i wyparowuje. To dotyczy także obiektów dużych, tych metrowych. Przeważająca większość z nich rozpada się w górnych warstwach atmosfery pod wpływem dużej zmiany ciśnienia przy wchodzeniu atmosfery. Mniejsze obiekty albo topią się, albo spadają jako niegroźnie małe. Poza tym, 2/3 powierzchni planety pokryta jest oceanami, a całkiem spora pustyniami i lasami, w skrócie tereny niezamieszkałe stanowią dużą większość  obszarów Ziemi. Jakiekolwiek uderzenie pozostaje tam niezauważone.

Obiekty wielkości ziarenka piasku, o ile wejdą w ziemską atmosferę w nocy, są łatwo zauważalne nawet gołym okiem. Większe to tzw. bolidy, świecą jaśniej niż Wenus. Co ciekawe, to świecenie nie wynika z tarcia obiektu kosmicznego o cząsteczki gazów w atmosferze, tylko z silnego sprężenia powietrza przed czołem bolidu. Ogromny wzrost ciśnienia powoduje podniesienie temperatury nie tylko obiektu, ale także gazu. I to świecący gaz, a nie meteor jest tym co widać w nocy. Bolid czy meteor nagrzewa się do temperatury kilku tysięcy stopni Celsjusza. Szybkiej zmianie ciśnienia często towarzyszy także grom dźwiękowy.

NASA od wielu już lat obserwuje obiekty, które potencjalnie mogą zagrozić Ziemi (to tzw. NEO – Near Earth Object). Jako takie definiuje się te, które znajdują się w odległości mniejszej niż 50 milionów kilometrów od orbity Ziemi.Dla porównania średnia odległość Ziemia – Słońce wynosi około 150 mln kilometrów, a średnia odległość Ziemia Księżyc około 350 tys. kilometrów.

W obszarze szczególnego zainteresowania obserwatorów z NASA, tylko obiektów o średnicy 1km lub większej znajduje się około tysiąca. Ponad 950 z nich jest przez agencję (w ramach programu NEO) obserwowana. W najbliższym sąsiedztwie Ziemi ilość obiektów, których średnica wynosi 150 metrów i więcej, szacuje się na około 25 tysięcy, z czego ponad 22 tys. jest pod obserwacją.

 

Lista potencjalnie groźnych obiektów:

http://neo.jpl.nasa.gov/risks/

Więcej informacji:

http://science.nasa.gov/planetary-science/near-earth-objects/

 

 

Brak komentarzy do Bombardowanie z kosmosu

Type on the field below and hit Enter/Return to search

WP2Social Auto Publish Powered By : XYZScripts.com
Skip to content