Nauka To Lubię

Oficjalna strona Tomasza Rożka

Tag: Ziemia

Uwaga: Spadające gwiazdy! Rój meteorów Perseidy

Przez najbliższych kilkanaście godzin Ziemia będzie nieustannie bombardowana przez rój meteorów – Perseid. Na nocnym niebie można będzie wtedy zaobserwować nawet kilkaset „błysków” na godzinę.

Przez najbliższych kilkanaście godzin Ziemia będzie nieustannie bombardowana przez rój meteorów – Perseid. Na nocnym niebie można będzie wtedy zaobserwować nawet kilkaset „błysków” na godzinę. Szczyt zjawiska widoczny bedzie we środę 12.08.2020!

4 komentarze do Uwaga: Spadające gwiazdy! Rój meteorów Perseidy

Co by się stało…

…gdyby uderzyła w nas asteroida albo kometa? Właśnie jedna z nich przelatuje rekordowo blisko Ziemi. Za pomocą prostych symulatorów (linki w tekście) można sobie wyobrazić rozmiar kataklizmu.

…gdyby uderzyła w nas asteroida albo kometa? Dzisiaj blisko Ziemi przeleci ich pięć! Jedna będzie miała średnicę kilku kilometrów. Skutki kolizji zależą od wielu czynników, w tym od struktury obiektu, jego wielkości, energii ale także kąta pod jakim obiekt wszedłby w ziemską atmosferę. Za pomocą prostych symulatorów można sobie wyobrazić rozmiar kataklizmu.

Co nam może grozić?

Obiekt (52768) 1998 OR2 to planetoida (asteroida), a największe jego zbliżenie z Ziemią nastąpi o 11:56 czasu polskiego. Wiadomo o jego istnieniu od 1998 roku, a jego wielkość (średnica) jest szacowana na od 1,8 do 4,1 km. Nie ma ryzyka, że asteroida uderzy w Ziemię, bo przeleci w odległości około 6 milionów kilometrów, czyli 16,36 razy dalej niż Księżyc. Ale dzisiejszego dnia przeleciały obok nas już dwa inne obiekty, z których jeden w odległości zaledwie 600 tysięcy kilometrów. Ten obiekt został odkryty zaledwie kilka tygodni temu, a jego średnica wynosi kilkanaście metrów. Jego zbliżenie nastąpiło około 3 nad ranem. Oprócz wspomnianej kilkukilometrowej asteroidy która zbliży się do nas niemal w południe, obok Ziemi przelecą jeszcze dwie, kilka minut przed godziną 14  i druga o 14:23. Obydwie miną planetę w odległościach około 4 milionów kilometrów. Pierwsza z nich ma średnicę kilkunastu, a druga kilkudziesięciu metrów.

Tylko ta największa – z dzisiejszych –  asteroida została zauważona wcześniej, pozostałe cztery zostały odkryte dopiero kilka tygodni temu. Na całym świecie funkcjonują teleskopy, które wypatrują obiektów, które mogą zagrozić Ziemi. Wspaniałą pracę robią tutaj także astronomowie amatorzy, którzy analizują zdjęcia zrobione przez „zawodowe” teleskopy. Jednakże te mniejsze obiekty bardzo trudno zobaczyć i często odkrywa się je w ostatniej chwili. Zresztą, czas odkrycia nie ma specjalnego znaczenia, bo i tak nie mamy technologii, która mogłaby nas uchronić przez kolizją z kosmiczną skałą.

Jak – w zależności od wielkości obiektu – wyglądają skutki zderzenia asteroidy z Ziemią? Gdyby asteroida miała średnicę do 25 metrów, takie obiekty uderzają w Ziemię średnio raz na 150 lat, najprawdopodobniej w całości spaliłaby się w ziemskiej atmosferze. Zagrożenie związane z takim „spotkaniem” byłoby zerowe. Meteor czelabiński, który wszedł w ziemską atmosferę 15 lutego 2013 roku miał nie więcej niż 20 metrów średnicy. W wyższych warstwach atmosfery obiekt rozpadł się na drobne kawałki i większość z nich wyparowała w drodze do powierzchni Ziemi. Te nieliczne, które „przetrwały” lekko uszkodziła kilka tysięcy budynków (w dość ciasno zabudowanym mieście) i spowodowały niewielkie obrażenia około tysiąca osób. W przeważającej większości, chodziło o rany spowodowane odłamkami szkła. Straty zostały spowodowane przez falę uderzeniową, a nie odłamki meteorytu.Tak duży obiekt jak meteor czelabiński ostatni raz wszedł w ziemską atmosferę w 1908 roku, czego skutkiem była katastrofa tunguska.

A co z większymi obiektami?

obiekt czas skutki
do 50 m co 1500 lat zniszczenia obejmują średniej wielkości miasto, pojawiają się pożary i fale tsunami
do 150 m co 20 000 lat zniszczenia obejmują kilkaset kilometrów kwadratowych
do 300 m co 100 000 lat totalne zniszczenia w promieniu 100 km, szkody w promieniu kilkuset kilometrów
do 600 m co 200 000 lat tsunami na całej planecie, zniszczenia obszaru porównywalnego z Polską
do 1000 m co 1 000 000 lat poważne zmiany klimatyczne odczuwalne na całej planecie, zniszczony obszar porównywalny z całą Europą
do 5000 m co 20 000 000 lat globalne zniszczenie, pyły powstałe w wyniku kolizji zasłaniają Słońce, wieloletnia zima na całej planecie
powyżej 10 000 m co 100 000 000 lat po nas…

W Układzie Słonecznym znajdują się miliony, miliardy obiektów, które potencjalnie mogłyby nam zagrozić. Grawitacyjną ochronę nad naszą małą planetą sprawuje jednak Słońce i dwa gazowe giganty, czyli Jowisz i Saturn. To one ściągają na siebie przeważającą większość obiektów, które mogłyby uderzyć w Ziemię. Warto także zdawać sobie sprawę z tego, że odległości w kosmosie są… prawdziwie kosmiczne. Nawet jeżeli mówimy o tak bliskim przelocie jak ten aktualny.

Dane w powyższej tabelce są mocno przybliżone, oddają jednak skalę zagrożenia. Dla osób bardziej zainteresowanych polecam dwa symulatory/kalkulatory, dzięki którym można policzyć i zobaczyć zagrożony przez kosmiczny obiekt obszar.

– Pierwszy symulator jest dla mniej zaawansowanych:

uderzenie

– Drugi dla osób, które nieco bardziej chcą się zagłębić w problem:

uderzenie2

>>> Zapraszam na profil FB.com/NaukaToLubie (kliknij TUTAJ). To miejsce w którym staram się na bieżąco informować o nowościach i ciekawostkach ze świata nauki i technologii.

4 komentarze do Co by się stało…

Ekspert: suszę rolniczą notujemy praktycznie co roku od 39 lat

Suszę rolniczą, z większym bądź mniejszym natężeniem, obserwujemy praktycznie co roku od 1981 r. – podkreślił w rozmowie z PAP prof. Andrzej Doroszewski, kierownik Zakładu Agrometeorologii i Zastosowań Informatyki w…

Suszę rolniczą, z większym bądź mniejszym natężeniem, obserwujemy praktycznie co roku od 1981 r. – podkreślił w rozmowie z PAP prof. Andrzej Doroszewski, kierownik Zakładu Agrometeorologii i Zastosowań Informatyki w Instytucie Uprawy Nawożenia i Gleboznawstwa – Państwowego Instytutu Badawczego w Puławach.

4 komentarze do Ekspert: suszę rolniczą notujemy praktycznie co roku od 39 lat

Chiny na Marsie, Mars w Chinach

Cóż tam, panie, w polityce? Chińczyki trzymają się mocno!? Oj mocno.
I to nie tylko w polityce, ale także w nauce. Chiny właśnie otwarły zaawansowany ośrodek w który będą symulowali warunki marsjańskie, kilka tygodni temu chiński lądownik Cheng4 wylądował na „odwrotnej” stronie Księżyca, a to dopiero początek!

W chińskim mieście Mang, położonym tuż przy granicy z Birmą, powstała bardzo zaawansowana makieta marsjańskiego miasta (bazy). W zasadzie tak zaawansowanej bazy nie ma chyba nigdzie indziej. Celem budowy tego ośrodka jest z jednej strony przyciągnięcie turystów i edukacja, z drugiej ćwiczenie ekspertów i symulowanie tego co czeka nas na czerwonej Planecie. W ośrodku będą także prowadzone badania naukowe, w tym badania człowieka. Równocześnie może w nim pracować około 60 osób.

Ośrodek otwarto w zeszły piątek, a koszt jego budowy wyniósł prawie 25 milionów dolarów. Pieniądze nie pochodziły jednak z kasy państwa. Wyłożył je prywatny donator.

Miejsce w którym ośrodek powstał, jego otoczenie, przypomina to czego można się będzie spodziewać na Marsie. Sucha, piaszczysto-kamienista okolica ułatwi prowadzenie treningów i urealni symulacje. Oczywiście na powierzchni Marsa będzie znacznie, znacznie trudniej, z powodu bardzo rzadkiej atmosfery, niskiego ciśnienia i nieporównywalnie większej amplitudy temperatury. I być może najważniejsze. na Marsie panuje wysoki poziom promieniowania kosmicznego, przed którym, na Ziemi chroni nas atmosfera i pole magnetyczne planety. Te różnice nie zmieniają jednak tego, że zdobycie Marsa przez człowieka musi być poprzedzone budowaniem ośrodków szkoleniowych i baz na Ziemi. Jest jeszcze jeden cel ich budowy. Takie miejsca inspirują młodych ludzi. A to bardzo ważne przy budowaniu planu podboju kosmosu. Te inspiracje u niektórych zostaną wykorzystane i rozwinięte w życiu zawodowym, a u innych przekonają że rozwój nauki i technologii ma ogromny sens.

Odwrócona strona Księżyca. Zdjęcie zrobione z pokładu lądownika Cheng4. Widać na nim łazik Yutu-2 zmierzający w kierunku krateru Aitken.

Kto pierwszy będzie na Marsie? Amerykanin? Chińczyk? A może zostanie zorganizowana wspólna misja? W to ostatnie najtrudniej mi uwierzyć. Chiński program kosmiczny rozwija się w zawrotnym tempie. Sukces goni sukces. Żeby to zrozumieć, musimy zdawać sobie sprawę z tego, że pierwszy Chińczyk znalazł się na orbicie dopiero w 2003 roku, 42 lata później niż pierwszy Rosjanin (Gagarin) i pierwszy Amerykanin (Shepard). Dzisiaj, Chiny dawno wyprzedziły Rosję i gonią Amerykę. Kilka tygodni temu, chiński lądownik Cheng4, wylądował na „odwrotnej” stronie Księżyca. W miejscu w którym wcześniej nikt nie lądował. To nie był błachy sukces. Odwrócona od Ziemi strona Księżyca jest jedynym miejscem w całym Układzie Słonecznym (a może i całym kosmosie), do którego nigdy bezpośrednio nie dotrą fale radiowe z Ziemi. A to oznacza, że komunikacja z Cheng4 musiała się odbywać za pomocą satelitów pośredniczących.

To lądowanie pokazuje, że dzisiaj Chińczyków stać już na oryginalność. Nie budują swojego programu kosmicznego na wzór i podobieństwo innych (choć na początku ich rozbiegu tak właśnie było). To jasne jak Słońce, że chcąc lądować na obcych globach, trzeba to poćwiczyć na naszym Księżycu. Jest najbliżej, więc jest oczywistym poligonem testowym. W kierunku Księżyca swoje sondy wysyłali Amerykanie, Rosjanie, ale także Chińczycy, Japończycy, Irańczycy, a w przyszłym miesiącu ma tam lecieć sonda izraelska. Na powierzchni globu lądowali Amerykanie i Rosjanie (Japończycy i Irańczycy swoje sondy rozbijali o powierzchnię Księżyca). Wszyscy jednak wybierali widoczną stronę naszego satelity. Choć nie wszystkie jej kawałki zostały zbadane, generalnie jest ona bardzo dobrze poznana. Chińczycy swoje pierwsze lądowanie także odbyli po widocznej stronie Księżyca, ale kolejne, to sprzed kilku tygodni, postanowili zrobić po stronie niewidocznej. Amerykanie czy Rosjanie lądowali na Srebrnym Globie wielokrotnie. Chińczycy teraz zrobili to po raz drugi. I podnieśli sobie poprzeczkę lądując tam, gdzie nikt inny nie wylądował. Samo lądowanie to jedno, ale misja ma bardzo ciekawy i oryginalny program naukowy. Łącznie z testowaniem czy na Księżycu mogłyby się rozwijać rośliny i zwierzęta.

Tamta strona Księżyca jest wciąż zagadką i choć sam satelita jest blisko Ziemi a jego zdjęcia (a więc i mapy) są bardzo wysokiej jakości, odwrócona strona Księżyca jest niezbadana. Biorąc pod uwagę, że jest inna niż ta strona którą widzimy, w pewnym sensie, Chińczycy wylądowali na zupełnie innym globie.

Co teraz? Jeszcze w tym roku na Księżyc poleci kolejna sonda, której celem będzie przywiezienie księżycowych próbek. W kolejnym roku zaplanowane jest lądowanie na Marsie. Z kolei za 2,5 roku, jeżeli wszystko pójdzie zgodnie z planem, na orbitę zostaną wyniesione i złożone elementy chińskiej stacji orbitalnej Tiangong. Stacji, która będzie miała stałą załogę.

Program kosmiczny Chin to typowy przykład syndromu młodszego brata. Młodsze rodzeństwo rozwija się szybciej i często dochodzi dalej, bo przyglądając się starszemu, nie popełnia błędów i korzysta z doświadczeń. Ma też większy rozmach i stać je na większą fantazję i oryginalność. Zdarza się, że takie podejście pozwala młodszemu prześcignąć starszego. Mimo tego, że ten starszy ma większe doświadczenie.

Brak komentarzy do Chiny na Marsie, Mars w Chinach

Najgroźniejsza broń biologiczna

Gdybym miał powiedzieć, którego rodzaju broni masowego rażenia boję się najbardziej, powiedziałbym, że biologicznej. Moim zdaniem, jest ona bardziej perfidna, niż chemiczna i atomowa.

Gdybym miał powiedzieć, którego rodzaju broni masowego rażenia boję się najbardziej, powiedziałbym, że biologicznej. Moim zdaniem jest ona bardziej perfidna niż broń jądrowa i chemiczna.

Zobacz odcinek:       https://youtu.be/raMiib2O28k

Tworząc ranking najgroźniejszych rodzajów broni zacząłem się zastanawiać, jakie kryteria powinienem wziąć pod uwagę. Na pewno skalę i skuteczność rażenia, koszty produkcji i dostępność komponentów, zaawansowanie technologiczne i łatwość zatrudnienia specjalistów. Nie bez znaczenia jest także to czy po użyciu można zająć zdobyty teren, czy też trzeba latami czekać, aż „czynnik zabijający” się zneutralizuje.

Organizmy chorobotwórcze, które wywołują tak groźne choroby jak cholerę, ospę, dur brzuszny, plamisty, dżumę czy żółtą febrę, a także grypę można zdobyć stosunkowo łatwo w licznych bankach genetycznych, znajdujących się przy dużych ośrodkach naukowych. Znane są przypadki kiedy państwom rządzonym przez dyktatorów, chorobotwórcze bakterie czy wirusy dostarczała firma kurierska. Koszty produkcji broni biologicznej są bardzo małe.

Do rozmnażania bakterii wystarczy wiedza zdobyta na podstawowym kursie biologii, a można to robić w niewielkim laboratorium, które można umieścić właściwie wszędzie. Do rozmnażania na masową skalę groźnych organizmów można użyć kadzi, które wykorzystuje się np. do … warzenie piwa.

Broń biologiczna jest bardziej perfidna niż chemiczna. Można rozsiać nad wybranym terenem bakterie, które np., zniszczą uprawy i doprowadzając mieszkańców do głodu, albo gospodarkę do upadku. To się nazywa terroryzm socjoekonomiczny. W taki sam sposób można zabić wszystkie zwierzęta hodowlane. Zarazki nie muszą być zrzucane z samolotów, mogą być roznoszone przez owady czy gryzonie. W rzeczywistości historia zna takie przypadki.

W 1940 roku, na chińskie miasta, Japończycy rozrzucili zakażone dżumą pchły, wywołując epidemię. Ale to nie był pierwszy przypadek użycia broni biologicznej. W starożytności zatruwano studnie wrzucając do nich zdechłe zwierzęta, a nierzadko zdarzało się, że w czasie oblężenia z katapult w kierunku miast wystrzeliwano zwłoki ludzi czy zwierząt, które zmarły na jakąś chorobę zakaźną. W czasie jednej z wojen pod koniec XV wieku Hiszpanie skazili wino w Neapolu krwią trędowatych.

Bardzo trudno powiedzieć kiedy po raz ostatni mieliśmy do czynienia z atakiem bronią biologiczną. W zależności od wykorzystanego patogenu, od ataku do epidemii może minąć nawet kilka tygodni. W innych przypadkach skutki chorobotwórcze mogą nastąpić niemalże natychmiast po ataku. Nawet gdybyśmy wiedzieli że właśnie zrzucono na nas, wpuszczono do wody w wodociągach, albo do wentylacji w budynku chorobotwórcze bakterie, niewiele możemy zrobić. Szybka i wysoka dawka antybiotyków? Tak, ale tylko wtedy, gdy wiemy czym zaatakowano. A określenie tego wcale nie jest takie proste. Testy wyszkolonych grup ludzi (muszą jeszcze znajdować się gdzieś w pobliżu) mogą trwać nawet kilka godzin, a jest to czas w którym większość bakterii już się w organizmie „zadomowiła”. Nawet jednak, gdyby od razu było wiadomo jakimi bakteriami zaatakowano, z symulacji robionych w USA wynika, że skuteczny atak biologiczny bakteriami wąglika tylko na jedno większe miasto zaowocowałby zużyciem całych krajowych zapasów antybiotyków w ciągu dwóch tygodni.

A co się stanie gdy na czynnik biologiczny nie ma antybiotyków? Jeden z twórców radzieckiego programu broni biologicznej Ken Alibek po ucieczce do USA mówił wprost, że celem radzieckich naukowców pracujących nad bronią biologiczną było produkowanie takich bakterii i wirusów, na które nie ma szczepionek ani antybiotyków. W praktyce jedna grupa naukowców produkowała metodami inżynierii genetycznej zabójczy organizm, a druga próbowała znaleźć antidotum. Jak się to NIE udawało, uznawano czynnik za idealny do użycia. Usilnie pracowano – a może dalej się to robi – nad zwiększeniem tzw. wirulencji bakterii czy wirusów, których naturalną szkodliwość uznano za niewystarczającą. Wirulencja to zdolności do wniknięcia, namnożenia się oraz uszkodzenia tkanek. Stwarzano także szczepy, które w naturze nie występują, łącząc np. najbardziej groźne cechy dwóch bakterii. Można było mieć pewność, że wróg na pewno nie ma na taki czynnik ani szczepionki ani antybiotyku. W ten sposób powstawały nowe odmiany wirusa ospy i wirusa Marburg.

Broń biologiczna jest groźniejsza od chemicznej jeszcze pod jednym względem. Jest samopowielająca się. Jej zabójcze działanie może się potęgować z biegiem czasu.Drobnoustroje rozsiane podczas ataku biologicznego rozmnażają się w organizmach ofiar i dalej rozprzestrzeniają się same. Tak właściwie wcale nie trzeba dużej ilości bakterii, żeby zarazić sporą grupę ludzi. Niewielka ilość bakterii wąglika – które w formie przetrwalnikowej wyglądają jak kakao – można przetransportować wszędzie. Nawet najbardziej drobiazgowe kontrole nic tutaj nie pomogą.

Broń biologiczna ma jednak dosyć istotną wadę z punktu widzenia prowadzenia wojny. Na długi czas może skazić zaatakowany teren. Brytyjczycy w czasie testów skuteczności laseczek wąglika pod koniec II Wojny Światowej skazili na 50 lat tereny szkockiej wyspy Gruinard. Oczywiście z punktu widzenia terrorystów, skażenie to żadna wada. Terroryści zwykle nie zajmują zaatakowanych przez siebie terenów.

Podsumowując. Broń biologiczna jest łatwa w użyciu i transporcie. Można ją – np. wąglik – przesłać nawet listem. Sama się powiela a jej wyprodukowanie – mówię tutaj o najbardziej dostępnych szczepach – nie wymaga dużej wiedzy. Dla terrorystów jest mniej dostępna niż niektóre trujące gazy, a jej sporym minusem jest to że zostawia za sobą skażony teren. Z kolei plusem jest to, że używający tej broni może zostać niewykryty. Śmierć ludzi, zwierząt, zagłada upraw może wystąpić wiele dni a nawet tygodni po użyciu tej broni.

6 komentarzy do Najgroźniejsza broń biologiczna

Co gdzie pada? Diamenty na Uranie!

U nas słowo deszcz, albo śnieg kojarzy się z wodą, bo w zasadzie tylko woda spada na naszą głowę. Na innych planetach i księżycach z nieba spada kwas siarkowy, metan, krople żelaza, ciekłe szkło, a nawet diamenty.

U nas słowo deszcz, albo śnieg kojarzy się z wodą, bo w zasadzie tylko woda spada na naszą głowę. W rzeczywistości sprawa jest bardziej złożona bo woda wodzie nierówna. Mamy grad, mamy śnieg, mamy szadź, szron, krupy no i kropelki ciekłej wody. To jednak tylko różne fizyczne postaci wody, z chemicznego punktu widzenia woda to woda. H2O. A co spada na powierzchnię innych globów? Na razie nie znaleźliśmy planety czy księżyca, na których byłyby wodne deszcze czy wodny śnieg. Ale to wcale nie znaczy, że poza Ziemia nie pada. Nie trzeba daleko szukać, wystarczy spojrzeć na naszą siostrzaną planetę Wenus na której z chmur pada kwas siarkowy 1.

Chmury

No właśnie. Z chmur. Po to żeby cokolwiek padało na powierzchnię globu, muszą być spełnione pewne warunki. Po pierwsze na takim globie musi istnieć atmosfera. A w niej chmury. W zależności od tego z czego te chmury się składają, jaki jest skład całej atmosfery, jakie panuje w niej ciśnienie oraz temperatura, mogą powstawać deszcze np. kwasu siarkowego. Tutaj warto zwrócić uwagę na pewien wyjątek. Gdy jakiś glob jest aktywny geologicznie czy sejsmicznie i występują na nim wulkany albo gejzery, możliwa jest sytuacja w której na niewielką powierzchnię tego globu, mimo braku atmosfery, pada to, co wyrzuciły gejzery. Tak jest np. na jednym z księżyców Saturna, Enceladusie 2. Na jego powierzchni wybuchają lodowe gejzery. Ale nie takie jak te ziemskie, z których na wysokość najwyżej kilkudziesięciu metrów strzela gorąca woda. W przypadku Enceladusa w przestrzeń – księżyc nie ma atmosfery – wylatują kryształki lodu. Tylko bardzo niewielka ich część opada na powierzchnię księżyca, większość zasila pierścienie Saturna. Konkretnie pierścień E Saturna. W dłuższej perspektywie, rzędu tysięcy lat, materiał wyrzucany przez Enceladusa opada na powierzchnię samego Saturna. Gejzery wyrzucają maleńkie kryształki lodu z prędkością ponad 1400 km/h na wysokość 1500 kilometrów nad powierzchnię księżyca.

Kwas na Wenus

A wracając do Wenus. Większość informacji o ukształtowaniu powierzchni Wenus czerpiemy ze zdjęć radarowych. Atmosfera Wenus jest prawie 100 razy cięższa niż ziemska, mimo że Ziemia i Wenus to planety o bardzo podobnej wielkości. Ciśnienie przy powierzchni planety jest ponad 90 razy wyższe niż ciśnienie przy powierzchni ziemi 3. Co ciekawe, uważa się, że kiedyś atmosfery ziemi i Wenus były do siebie bardzo podobne, a na powierzchni Wenus była ciekła woda 4. Z jakiegoś jednak powodu tam rozpoczął się galopujący efekt cieplarniany. Dzisiaj przy powierzchni planety panuje temperatura 460 st C, a atmosfera to głównie dwutlenek węgla i trochę azotu. Grube chmury, zakrywają Wenus tak szczelnie, że do jej powierzchni trafia zaledwie 1proc. światła słonecznego które pada na planetę. Te chmury zbudowane są z dwutlenku siarki. W wensujańskiej atmosferze zdarzają się burze a nawet wyładowania atmosferyczne. Wydaje się, że nawet jeżeli coś pada z tych chmur, nie dolatuje do powierzchni planety. Wyjątkiem są szczyty pasm górskich, gdzie panuje niższa temperatura 1.  Sonda Magellan wykryła na szczytach górskich jakąś odbijającą światło substancję. Coś, co na ziemi bez wątpienia byłoby śniegiem. Biorąc pod uwagę skomplikowaną chemię wenusjańskiej atmosfery nie ma pewności czy tym czymś jest siarczek ołowiu, metaliczny tellur czy właśnie kwas siarkowy.

Metan i diamenty

Na Wenus panuje prawdziwe gorące piekło, z kolei zimne piekło panuje na Tytanie, jednym z księżyców Saturna. To jedyny księżyc w naszym układzie planetarnym, który ma gęstą atmosferę. Ta atmosfera jest zresztą gęstsza od atmosfery ziemskiej. Jest jeszcze coś. Tytan jest jedynym nam znanym globem, na którym jest znajdują się zbiorniki ciekłej substancji 5. Tą substancją jest metan. Atmosfera Tytana składa się z azotu z niewielką ilością argonu, metanu, etanu i acetylenu . Ta niewielka ilość jednak wystarczy, by z gęstych chmur padał ciekły metan i etan. Na zdjęciach z powierzchni księżyca widać rzeki i kanały, widać dopływy do jezior a nawet delty rzek. Największy znany zbiornik Kraken Mare ma wielkość Morza Kaspijskiego. Tytan jest znacznie mniejszy od Ziemi i tylko trochę większy od naszego Księżyca, a to znaczy, że w skali globu Kraken Mare jest prawdziwym oceanem. Na powierzchni którego widać zresztą wyspy i całe atole. Gdyby na powierzchni księżyca był tlen, cały glob wyleciałby w powietrze… Tlenu tam jednak nie ma.

Obserwowanie opadów na Tytanie jest dość skomplikowane, bo najpewniej pojawiają się one sezonowo a pory roku zmieniają się tam co wiele ziemskich lat.  Jeszcze trudniejsza jest jednak obserwacja tego co dzieje się w atmosferze Naptuna. To gazowy olbrzym, o którego twardej powierzchni trudno nawet spekulować. Na Neptunie chmury zbudowane są w zależności od wysokości i ciśnienia z amoniaku, siarkowodoru, wodorosiarczku amonu, siarkowodoru i wody 6. Bardzo skomplikowana fizyka i chemia jaka stoi za procesami które dzieją się w grubych atmosferach gazowych olbrzymów takich jak Neptun, Saturn, Jowisz czy Uran nie jest jeszcze zrozumiała, ale przypuszcza się, że wchodząc coraz głębiej w atmosferę Neptuna temperatura wzrasta do bardzo wysokich wartości liczonych w tysiącach stopni. Przypuszcza się, że na głębokości kilku tysięcy kilometrów, w głąb atmosfery Neptuna wysokie ciśnienie i temperatura powodują rozkład metanu w wyniku którego powstają kryształy węgla, czyli diamenty7 . Te diamenty – zdaniem naukowców – opadają w kierunku twardego jądra planety tak jak kryształy wody, opadają na powierzchnię Ziemi jako śnieg.

Jeszcze głębiej atmosfery Neptuna jest woda jonowa, która jeszcze głębiej staje się przewodnikiem superjonowym i skrystalizowany tlen.  A wracając do deszczy diamentów, te mogą występować nie tylko w supergęstej atmosferze Neptuna ale także na Uranie. Atmosfery tych dwóch gigantów muszą się jednak od siebie różnić składem, bo choć w obydwu znajduje się sporo metanu, Neptun jest niebieski, a Uran ma kolor cyjanu.

Szkło i żelazo

I jeszcze dwie planety pozasłoneczne na koniec. Ich bezpośrednia obserwacja jest ekstremalnie trudna. Owszem możemy zarejestrować ich istnienie, masę, okres obiegu wokół swoich gwiazd i odległość od tych gwiazd. Z tych informacji można wyciągać pewne wnioski na temat warunków jakie panują na tych planetach. W przypadku niektórych planet udaje się o nich powiedzieć nieco więcej. Jedną z takich planet jest HD 189733 b, która znajdującej się w odległości około 60 lat świetlnych od Ziemi8. Obserwując spolaryzowane światło rozpraszane przez atmosferę tej planety odkryto w niej metan, dwutlenek węgla i krzem. Wiatr na powierzchni planety wieje z prędkością kilkukrotnie większą, niż prędkość dźwięku. Zdaniem naukowców z NASA na tej planecie padają deszcze płynnego krzemu, czyli w pewnym przybliżeniu deszcze roztopionego szkła9. I druga planeta OGLE-TR-56b odkryta zresztą przez Polaka Macieja Konackiego10. Planeta krąży wokół swojej gwiazdy w odległości 17 krotnie mniejszej niż odległość Merkurego od Słońca. Jest bez wątpienia gazowym olbrzymem, dużo większym od Jowisza. Została odkryta metodą tranzytu. Nie ma na to żadnych dowodów, ale naukowcy spekulują, że na planecie padają deszcze płynnego żelaza11.

Patrząc na to wszystko, żelazo, metan, kwas siarkowy, jakoś przestaje mi przeszkadzać wodny deszcz. Nawet jak leje kilka dni z rzędu 😉

 

źródła:

  1. phys.org/news/2016-12-weather-venus.html
  2. www.space.com/32844-saturn-moon-enceladus-surprising-plumbing-mystery.html
  3. hyperphysics.phy-astr.gsu.edu/hbase/Solar/venusenv.html
  4. www.universetoday.com/22551/venus-compared-to-earth/
  5. www.nasa.gov/feature/jpl/cassini-explores-a-methane-sea-on-titan
  6. https://www.space.com/18922-neptune-atmosphere.html
  7. https://www.sciencealert.com/scientists-recreate-the-diamond-rains-of-neptune-and-uranus-in-the-lab
  8. https://en.wikipedia.org/wiki/HD_189733_b
  9. https://www.nasa.gov/image-feature/rains-of-terror-on-exoplanet-hd-189733b
  10. https://en.wikipedia.org/wiki/OGLE-TR-56b
  11. https://www.astrobio.net/meteoritescomets-and-asteroids/new-world-of-iron-rain/

 

1 komentarz do Co gdzie pada? Diamenty na Uranie!

Fizyk który nie znał granic

14 marca, zmarł urodzony 76 lat temu fizyk, Stephen Hawking. Człowiek odważny i wybitny, znany na całym świecie nie tylko z powodu teorii fizycznych, którymi się zajmował. Gdyby chcieć powiedzieć o nim jedno zdanie. Brzmiałoby ono… człowiek, który nie znał granic.

14 marca, zmarł urodzony 76 lat temu fizyk, Stephen Hawking. Człowiek odważny i wybitny, znany na całym świecie nie tylko z powodu teorii fizycznych, którymi się zajmował. Gdyby chcieć powiedzieć o nim jedno zdanie. Brzmiałoby ono… człowiek, który nie znał granic.

A granice, akurat Hawking powinien znać doskonale. Od wczesnej młodości cierpiał na stwardnienie zanikowe boczne. Choroba doprowadziła go do stanu, w którym w żadnym aspekcie życia nie był samodzielny. W żadnym, z wyjątkiem myślenia. I tutaj znowu wracamy do braku granic. Stephen Hawking był matematykiem i fizykiem teoretykiem. Zajmował się tematami tak abstrakcyjnymi, że nawet dla kolegów po fachu jego prace były niezwykle skomplikowane. Przez 40 lat swojej naukowej kariery opracował hipotezę parowania czarnych dziur, zajmował się grawitacją kwantową i opracował twierdzenie dotyczące osobliwości. Czyli takich obszarów, miejsc w których przyspieszenie grawitacyjne, albo gęstość materii mają nieskończoną wartość. W osobliwości mają nie działać prawa przyrody które znamy z naszego nie-osobliwego otoczenia.

Jak wszyscy mylił się i błądził. Wielu z tych rzeczy którymi się zajmował, nie potwierdziło się eksperymentalnie. Ale tak właśnie działa nauka. Teoretycy szukają, fizycy eksperymentalni, próbują podważyć. Zresztą podważaniem zajmował się i sam Hawking. Wielokrotnie mówił, że zabawa sztuczną inteligencję jest bardzo groźna. Mówił też, że nie mamy wyjścia, w dłuższej perspektywie, musimy opuścić Ziemię. Zresztą uważał, że kosmos jest pełen życia. „Na mój matematyczny rozum, same liczby sprawiają, że myślenie o istotach pozaziemskich jest całkowicie racjonalne. Prawdziwym wyzwaniem jest dowiedzieć się, jak te istoty mogą wyglądać – powiedział kiedyś.

Dla szerszego odbiorcy Stephen Hawking nie był jednak znany ani z prac o czarnych dziurach, ani z rachunków dotyczących osobliwości, ani tym bardziej z hipotez dotyczących grawitacji kwantowej. Był znany jako autor książki Krótka Historia Czasu, którą wydał w 1988 roku. Krótko po jej wydaniu powiedział, że jego marzeniem było napisanie książki o fizyce, którą będą sprzedawali na lotniskach. I dopiął swego. Jego książka przez wiele tygodni nie schodziła z listy bestsellerów w wielu krajach świata.

Dziesięć lat temu, obchodząc swoje 65 urodziny Hawking powiedział, że weźmie udział w suborbitalnym locie, że chce poczuć nieważkość. I poczuł. Zaledwie kilka miesięcy później fizyk znalazł się na pokładzie specjalnie dostosowanego do tego typu eksperymentów Boeinga 727. Samolot 8 razy wznosił się na wysokość około 8 kilometrów, a następnie „wyłączał” silniki i spadał w dół. Dzięki temu, biorący udział w eksperymencie ludzie, czuli w nim nieważkość. W ten sposób szkoli się ludzi, którzy zostaną wysłani w kosmos. Hawking nie zdążył polecieć na orbitę, ale spełnił swoje marzenie. W wielu wywiadach później wspominał, że w nieważkości, po raz pierwszy od 40 lat mógł się poruszać bez wózka inwalidzkiego. I znowu przekroczył granicę, która dla osób całkowicie sparaliżowanych, byłą dotychczas nieprzekraczalna.

7 komentarzy do Fizyk który nie znał granic

Czerwony wulkan

Przeglądając internet, mignęło mi zdjęcie z powierzchni Marsa. Zdjęcie największego w Układzie Słonecznym wulkanu. Gdyby był na Ziemi, stożek pokryłby prawie całą Francję. Olympus Mons – prawdziwa Góra Olimp.

Przeglądając internet, mignęło mi zdjęcie z powierzchni Marsa. Zdjęcie największego w Układzie Słonecznym wulkanu. Gdyby był na Ziemi, stożek pokryłby prawie całą Francję. Olympus Mons – prawdziwa Góra Olimp.

Do niedawna uważano, że Mars od (niemal) zawsze jest martwy geologicznie. Niemal, znaczy od bardzo długiego czasu. Ale być może ta planeta wygasłych wulkanów, jeszcze tętniła (geologicznym) życiem jeszcze kilkadziesiąt milionów lat temu. To w skali geologicznej okres dość bliski. Być może płynęła tam lawa, a wulkany wyrzucały w przestrzeń pył i głazy. Do takich wniosków doszli badacze, którzy analizowali np. dane z sondy Mars Global Surveyor (MGS). Badacze z Planetary Science Institute w Tucson w Arizonie oraz z Uniwersytetu w Arizonie wiek lawy na zboczach wulkanu Elysium Mons ocenili na około 20 milionów lat. W innych miejscach lawa może być jeszcze młodsza. Trudno – bez pobrania próbek – oceniać dokładny wiek lawy. Pozostaje szacowanie.

Wspomniany wulkan Elysium Mons mierzy 700 kilometrów średnicy i ok. 13 kilometrów wysokości. W porównaniu z ziemskimi wulkanami, a nawet z najwyższymi szczytami, to gigant. Ale w porównaniu z innymi wulkanami na Marsie, to zaledwie średniak. Bo na przykład wulkan Olympus Mons ma aż 27 kilometrów wysokości ponad otaczającą go równinę (prawie 3 razy więcej niż Mont Everest). To największy – znany – wulkan w Układzie Słonecznym. Naukowcy oceniają, że wygasł około 100 milionów lat temu. I choć – z oczywistych względów – nie ma żadnych zdjęć z tamtego okresu, sama jego obserwacja daje całkiem sporo informacji. To, że jego zbocza są nachylone pod bardzo małym kątem (średnio 5 st) oznacza, że wyciek lawy był bardzo powolny i długotrwały. Nie jest wykluczone, że kiedyś wystawał z dna dużego zbiornika z wodą, bo stożek u podstawy zakończony jest skarpą o wysokości nawet 6 kilometrów. Na szczycie wulkanu znajduje się ogromny krater o średnicy około 70 kilometrów i głębokości 3 kilometrów.

Dlaczego na Marsie wulkany są znacznie wyższe niż te na Ziemi? Mars jest planetą mniejszą a więc jego wewnętrzna energia wyczerpała się dość szybko. Ziemia we wnętrzu ma wciąż bardzo dużo energii. To wychładzanie miało swoje ogromne konsekwencje. Jedną z nich był zanik pola magnetycznego planety i zniknięcie tarczy. To mogło spowodować zdmuchnięcie atmosfery Marsa i wyparowanie całej znajdującej się na powierzchni wody. Inną konsekwencją mogło być zatrzymanie ruchu płyt kontynentalnych. Na Ziemi erupcje nawet najbardziej aktywnych wulkanów trwają – w geologicznej skali – bardzo krótko. Na Marsie raz otwarty „kanał” mógł być drożny przez długi czas. Gdy wulkan zaczął „wylewać” lawę, ten proces nie miał końca. Być może właśnie dlatego stożki wulkanów na Czerwonej Planecie są tak wysokie. To jednak tylko nasze przypuszczenia. O aktywności wewnętrznej innych planet, nie wiemy zbyt wiele.

Brak komentarzy do Czerwony wulkan

Planety z innej galaktyki!

Naukowcom z Uniwersytetu w Oklahomie (USA) udało się znaleźć planety, które znajdują się poza galaktyką Drogi Mlecznej. To pierwsze takie odkrycie w historii.

Po raz kolejny pokazano jak potężną metodą badawczą jest mikrosoczewkowanie grawitacyjne. Naukowcy z University of Oklahoma, korzystając z danych zebranych przez orbitalny teleskop Chandra, po raz pierwszy w historii odkryli planety pozasłoneczne w innej galaktyce niż nasza Droga Mleczna. Te które znaleziono znajdują się w galaktyce odległej od nas o 3,8 miliarda lat świetlnych. Odkrycie zostało opisane w Astrophysical Journal Letters.

Mikrosoczewkowanie  grawitacyjne to jedna z kilku metod poszukiwania obiektów, które same nie są źródłem światła, ale same „zniekształcają” jego bieg. To też metoda, której udoskonalenie zawdzięczamy polskim uczonym z grupy profesora Andrzeja Udalskiego.

Promień światła niekoniecznie musi poruszać się po linii prostej. Gdy biegnie przez wszechświat i przelatuje w pobliżu dużej masy, zmienia swój bieg. Polscy uczeni tę metodę zastosowali w skali mikro. Tą masą, która ugina promień światła może być np. planeta. Metodą mikrosoczewkowania można odkrywać nawet planety mniejsze od Ziemi. Żadną z pozostałych znanych metod nie potrafimy wykrywać tak małych globów.

Uginanie promieni światła pod wpływem masy postulował Albert Einstein w opublikowanej w 1916 roku Ogólnej Teorii Względności . Eksperymentalnie ten efekt potwierdzono dopiero w 1979 roku, na podstawie obserwacji kwazaru Q0957+561. Dzisiaj mikrosoczewkowanie pomaga łowić planety, a soczewkowanie grawitacyjne pomaga ocenić np. rozkład ciemnej materii we wszechświecie. Czym większa masa, tym ugięcie światła będzie większe, ale nawet to bardzo subtelne, jest przez astronomów (a w zasadzie zaawansowane urządzenia astronomiczne) zauważalne.

A wracając do odkrytych planet. Zbyt wiele o nich nie wiadomo, poza tym, że ich masa mieści się pomiędzy masą Księżyca i Jowisza. Co więcej, na razie nie zanosi się na to, by dało się w jakikolwiek sposób powiększyć wiedzę o nowych planetach. Nie znamy technologii, która by to umożliwiała. – Ta galaktyka znajduje się 3,8 miliarda lat świetlnych stąd i nie ma najmniejszej szansy na obserwowanie tych planet bezpośrednio, nawet z najlepszym teleskopem, jaki można sobie wyobrazić w scenariuszu science fiction. Jednak jesteśmy w stanie je badać, odkrywać ich obecność, a nawet mieć wyobrażenie o ich masach – powiedział Eduardo Guerras, członek grupy badawczej, która dokonała odkrycia.

Wiele lat temu intuicja podpowiadała, że Układ Słoneczny nie może być jedynym miejscem w którym znajdują się planety. I rzeczywiście, badania polskiego astrofizyka, prof. Aleksandra Wolszczana z początku lat 90tych XX wieku pokazały, że Słońce nie jest jedyną gwiazdą z planetami. Dzisiaj planet innych niż słoneczne znamy wiele tysięcy. Ta sama intuicja podpowiadała, że w innych galaktykach niż nasza Droga Mleczna także muszą istnieć planety. No i właśnie – po raz pierwszy – takie odkryto.

 

Więcej informacji:

http://www.ou.edu/web/news_events/articles/news_2018/ou-discover-planets.html

http://iopscience.iop.org/article/10.3847/2041-8213/aaa5fb

For the First Time Ever, Scientists Found Alien Worlds in Another Galaxy

3 komentarze do Planety z innej galaktyki!

Pożary widziane z kosmosu

W Kalifornii od kilku tygodni szaleją pożary. Serwisy telewizyjne czy internetowe pełne są apokaliptycznych zdjęć, ale ja postanowiłem pokazać wam zdjęcia z kosmosu. Są straszne i… hipnotyzujące.

W Kalifornii od kilku tygodni szaleją pożary. Serwisy telewizyjne czy internetowe pełne są apokaliptycznych zdjęć, ale ja postanowiłem pokazać wam zdjęcia z kosmosu. Są straszne i… hipnotyzujące.

 

Pożary zniszczyły albo niszczą setki tysięcy hektarów lasu. W sumie z domów ewakuowano kilkaset tysięcy ludzi. Ogień dotarł już do Los Angeles, płonie dzielnica Bel Air na terenie której znajduje się kampus znanego na całym świecie Uniwersytetu Kalifornijskiego.

Pożary w tej części Stanów to żadna nowość, ale tegoroczne są szczególnie groźne, bo towarzyszy im suchy i gorący wiatr fenowy, który wieje w porywach z prędkością do 130 km/h. Taki wiatr w południowej Kalifornii wieje od października do marca, z północnego wschodu, od strony gór Sierra Nevada.

Wiatrem fenowym jest np. nasz wiatr halny, czyli ciepły, suchy i porywisty wiatr, wiejący ku dolinom. Taki wiatr powstaje na skutek różnic ciśnienia pomiędzy jedną a drugą stroną grzbietu górskiego. Po nawietrznej stronie grzbietu powietrze unosi się ochładzając oraz pozbywając się pary wodnej. Po stronie zawietrznej powietrze opada ocieplając się.

A wracając do pożarów w Kalifornii. W tym roku są one tak dotkliwe także dlatego, że wczesną wiosną w Kalifornii spadły wyjątkowo obfite deszcze. To spowodowało szybki wzrost niskiej roślinności porastającej zbocza. Od marca jest tam jednak susza. NASA szacuje, że mamy właśnie do czynienia z okresem dziesięciu najsuchszych miesięcy w historii Południowej Kalifornii. Od 10 miesięcy nie spadła tam nawet jedna kropla wody. Ta niska, bujna na wiosnę, ale teraz wysuszona na proch roślinność stała się doskonałą pożywką dla pożarów.

Dzisiaj w Kalifornii szaleje sześć dużych pożarów i kilka mniejszych. Spaliło się kilkaset domów i setki tysięcy hektarów lasu. Straty liczone są w setkach miliardów dolarów.

Zdjęcia w większości zostały zrobione przez spektroradiometr obrazu (MODIS) na pokładzie satelity NASA oraz Multi Spectral Imager (MSI) z satelity Sentinel-2 Europejskiej Agencji Kosmicznej.

A photo taken from the International Space Station and moved on social media by astronaut Randy Bresnik shows smoke rising from wildfire burning in Southern California, U.S., December 6, 2017. Courtesy @AstroKomrade/NASA/Handout via REUTERS ATTENTION EDITORS – THIS IMAGE HAS BEEN SUPPLIED BY A THIRD PARTY. – RC11C90C8420

Przy okazji, zapraszam do subskrypcji mojego kanału na YT ( youtube.com/NaukaToLubie ) i polubienia fanpaga na Facebooku ( facebook.com/NaukaToLubie )

Brak komentarzy do Pożary widziane z kosmosu

Ukryta komnata

Ukryta komnata, promienie kosmiczne i piramidy. Nie, to nie jest streszczenie taniego filmu science-fiction. Streszczenie tekstu z Nature

To podobno pierwsze znalezisko w piramidzie Cheopsa od XIX. I to od razu z grubej rury. Magazyn Nature napisał, że w jednym z najbardziej monumentalnych grobowców odkryto tajemniczą komnatę. Jej długość jest szacowana na kilkadziesiąt metrów, a o tym, że w ogóle istnieje dowiedziano się dzięki analizie… promieni kosmicznych. Jak tego dokonano?

Czerwoną strzałką zaznaczyłem odkrytą komnatę 

Składnikiem  strumienia cząstek, które docierają do nas z kosmosu są miony. A ściślej mówiąc, miony powstają jako cząstki wtórne w wyniku rozpadu mezonów w wyższych warstwach ziemskiej atmosfery. Miony mają cechy elektronów, ale są ponad 200 razy od nich cięższe. Strumień mionów jest dość duży, bo w każdej sekundzie, przez metr kwadratowy powierzchni Ziemi przelatuje ich prawie 200. Miony nie omijają także nas, ale nie są dla nas groźne. Od jakiegoś czasu fizycy nauczyli się je wykorzystywać praktycznie.

 

Wiadomo ile mionów leci na nasze głowy. Jeżeli na ich drodze postawimy przeszkodę, część z nich, w niej ugrzęźnie. Im gęstsza ta przeszkoda, tym ugrzęźnie ich więcej. Ustawiając w odpowiedni sposób detektory mionów, jesteśmy w stanie wykonać trójwymiarowy obraz skanowanego obiektu. Zasada działania tego pomiaru jest identyczna co działania tomografu komputerowego. Jest źródło promieniowania (promienie Roentgena, zwane promieniami X) i są detektory. Robiąc odpowiednio dużo pomiarów pod różnymi kątami, jesteśmy w stanie z dużą precyzją określić kształt, budowę i strukturę tych części ludzkiego ciała, które dla oka lekarza są zakryte.

>>> Więcej naukowych informacji na FB.com/NaukaToLubie.

W przypadku piramidy Cheopsa w Gizie nie było lekarzy, tylko fizycy i archeologowie, nie było promieni X, tylko kosmiczne miony. Nie było tomografu medycznego, tylko zmyślny system detektorów. Ale udało się dokonać tego samego. Znaleziono obiekt, a właściwie pustą przestrzeń, która wcześniej była przed wzrokiem badaczy zakryta.

Nie wiadomo czym jest tajemnicza komnata. Rozdzielczość tej metody jest zbyt mała, by stwierdzić czy znajdują się w niej jakieś obiekty. Może więc być pusta. Ale może też być pełna skarbów. Pusta przestrzeń znajduje się nad tzw. Wielką Galerią, czyli korytarzem prowadzącym do Komory Królewskiej. Nie wiadomo też, czy komnata (pusta przestrzeń) była zamurowana na etapie budowy piramidy, czy ktokolwiek po jej wybudowaniu do niej zaglądał. Piramida Cheopsa powstała w okresie tzw. Starego Państwa, czyli około 2560 roku p.n.e. Budowano ją zaledwie przez 20 lat. Jak na metody i technologie jakimi wtedy dysponowano, to tempo ekspresowe.

>>> Więcej naukowych informacji na FB.com/NaukaToLubie.

7 komentarzy do Ukryta komnata

Nobel z fizyki za fale

Prace nad wykrywaniem i analizą fal grawitacyjnych musiały kiedyś zostać uhonorowane Nagrodą Nobla. No i stało się.

Kosmiczny detektor, kosmiczne zagadnienie. W świecie fizyków i kosmologów po raz kolejny będzie mówiło się o falach grawitacyjnych. Kilkanaście dni temu dzięki pracy kolaboracji LIGO/VIRGO zmarszczki przestrzeni były w czołówkach serwisów na całym świecie. Dzisiaj też będą. Z powodu Nagrody Nobla z fizyki.

Rainer Weiss, Barry C. Barich, Kip S. Thorne

„for decisive contributions to the LIGO detector and the observation of gravitational waves”

waves-101-1222750-1600x1200

Fale grawitacyjne to kompletny odlot. Człowiekiem który sprawę rozumiał, ba, który ją wymyślił, a w zasadzie wyliczył był nie kto inny tylko Albert Einstein (swoją drogą powinien dostać nagrodę za odkrycie najbardziej nieintuicyjnych zjawisk we wszechświecie). Z napisanej przez niego 100 lat temu Ogólnej Teorii Względności wynika, że ruch obiektów obdarzonych masą,  jest źródłem rozchodzących się w przestrzeni fal grawitacyjnych (lub inaczej – choć nie mniej abstrakcyjnie – zaburzeń czasoprzestrzennych). Jak to sobie wyobrazić? No właśnie tu jest problem. Bardzo niedoskonała analogia to powstające na powierzchni wody kręgi, gdy wrzuci się do niej kamień. W przypadku fal grawitacyjnych zamiast wody jest przestrzeń, a zamiast kamienia poruszające się obiekty. Czym większa masa i czym szybszy ruch, tym łatwiej zmarszczki przestrzeni powinny być zauważalne. Rejestrując największe fale grawitacyjne, tak jak gdybyśmy bezpośrednio obserwowali największe kosmiczne kataklizmy: zderzenia gwiazd neutronowych, czarnych dziur czy wybuchy supernowych. Trzeba przyznać, że perspektywa kusząca gdyby nie to… że fale grawitacyjne to niezwykle subtelne zjawiska. Nawet te największe, bardziej będą przypominały lekkie muśnięcia piórkiem niż trzęsienie ziemi. W książce „Zmarszczki na kosmicznym morzu” (Ripples on a Cosmic Sea: The Search for Gravitational Waves) australijski fizyk, prof. David Blair, poszukiwanie fal grawitacyjnych porównuje do nasłuchiwania wibracji wywołanych przez pukanie do drzwi z odległości dziesięciu tysięcy kilometrów. Detektory zdolne wykryć fale grawitacyjne powinny być zdolne zarejestrować wstrząsy sejsmiczne wywołane przez upadek szpilki po drugiej stronie naszej planety. Czy to w ogóle jest możliwe? Tak! Od 2002 roku działa w USA Laser Interferometer Gravitational Wave Observatory w skrócie LIGO czyli Laserowe Obserwatorium Interferometryczne Fal Grawitacyjnych. Zanim budowa ruszyła, pierwszy szef laboratorium prof. Barry Barrish na dorocznym posiedzeniu AAAS (American Association for the Advancement of Science) oświadczył, że pomimo wielu trudności nadszedł w końcu czas na zrobienie czegoś, co można nazwać prawdzią nauką (swoją drogą, odważne słowa na zjeździe najlepszych naukowców na świecie).

>>> Więcej naukowych informacji na FB.com/NaukaToLubie

This_visualization_shows_what_Einstein_envisioned

Symulacja łączenia się czarnych dziur – jedno ze zjawisk, które wytwarza najsilniejsze fale grawitacyjne

Z falami grawitacyjnymi jest jednak ten problem, że przez dziesięciolecia, mimo prób, nikomu nie udało się ich znaleźć. Gdyby komuś zaświtała w głowie myśl, że być może w ogóle ich nie ma, spieszę donieść, że gdyby tak było naprawdę, runąłby fundament współczesnej fizyki – Ogólna Teoria Względności, a kosmologię trzeba byłoby przepisać od początku. Dzisiaj głośno mówi się, że fale grawitacyjne zostały przez LIGO zarejestrowane. Panuje raczej atmosfera lekkiego podniecenia i oczekiwania na to, co stanie się za chwilę. Potwierdzenie istnienia fal grawitacyjnych nie będzie kolejnym odkryciem, które ktoś odfajkuje na długiej liście spraw do załatwienia.  Zobaczymy otaczający nas wszechświat z całkowicie innej perspektywy.

Jako pierwszy falowe zmiany pola grawitacyjnego, w latach 60 XX wieku próbował zarejestrować amerykański fizyk Jaseph Weber. Budowane przez niego aluminiowe cylindry obłożone detektorami nie zostały jednak wprawione w drgania. Co prawda Weber twierdził, że złapał zmarszczki wszechświata, ale tego wyniku nie udało się potwierdzić. Dalsze poszukiwania trwały bez powodzenia, aż do 1974 roku, gdy dwóch radioastronomów z Uniwersytetu w Princeton (Joseph Taylor i Russel Hulse) obserwując krążące wokół siebie gwiazdy (PSR1913+16) stwierdziło, że układ powoli traci swoją energię, tak jak gdyby wysyłał … fale grawitacyjne. Mimo, że samych fal nie zaobserwowano, za pośrednie potwierdzenie ich istnienia autorzy dostali w 1993 roku Nagrodę Nobla. Uzasadnienie Komitetu Noblowskiego brzmiało: „za odkrycie nowego typu pulsara, odkrycie, które otwiera nowe możliwości badania grawitacji”.

>>> Więcej naukowych informacji na FB.com/NaukaToLubie

virgoviewInstalacja, która z lotu ptaka wygląda jak wielka litera L, to dwie rury o długości 4 km każda, stykające się końcami pod kątem prostym. Choć całość przypomina przepompownię czy oczyszczalnię ścieków jest jednym z najbardziej skomplikowanych urządzeń kiedykolwiek wybudowanych przez człowieka. Każde z ramion tworzy betonowa rura o średnicy 2 metrów. W jej wnętrzu – jak w bunkrze – znajduje się druga ze stali nierdzewnej, która jest granicą pomiędzy światem zewnętrznym a bardzo wysoką próżnią. Z miejsca w którym rury się stykają, „na skrzyżowaniu”, dokładnie w tym samym momencie wysyłane są wiązki lasera. Ich celem są zwierciadła umieszczone na końcu każdej z rur. 2000px-Ligo.svgOdbijane przez zwierciadła tam i z powrotem około 100 razy promienie, wpadają z powrotem do centralnego laboratorium i tam zostają do siebie porównane. Dzięki zjawisku interferencji możliwe jest wyliczenie z wielką dokładnością różnicy przebytych przez obydwie wiązki światła dróg. A drogi te powinny być identyczne, no chyba że… chyba że w czasie pomiaru przez Ziemie – podobnie jak fala na powierzchni wody – przejdzie fala grawitacyjna. Wtedy jedno z ramion będzie nieco dłuższe, a efekt natychmiast zostanie wychwycony w czasie porównania dwóch wiązek. Tyle tylko, że nawet największe zaburzenia zmienią długość ramion o mniej niż jedną tysięczną część średnicy protonu (!). To mniej więcej tak, jak gdyby mierzyć zmiany średnicy Drogi Mlecznej (którą ocenia się na ok. 100 tys. lat świetlnych) z dokładnością do jednego metra. Czy jesteśmy w stanie tak subtelne efekty w ogóle zarejestrować ? Lustra na końcach każdego z korytarzy (tuneli) mogą zadrgać (chociażby dlatego, że przeleciał nad nimi samolot, albo w okolicy przejechał ciężki samochód). By tego typu efekty nie miały wpływu na pomiar zdecydowano się na budowę nie jednej, ale dwóch instalacji, w Handford w stanie Waszyngton i w Livingston w stanie Luizjana. Są identyczne, choć oddalone od siebie o ponad 3 tys. kilometrów. Ich ramiona maja takie same wymiary i maja takie same układy optyczne. Nawet gdy w jednym LIGO zwierciadło nieoczekiwanie zadrga, niemożliwe by to samo w tej samej chwili stało się ze zwierciadłem bliźniaczej instalacji. Zupełnie jednak inaczej będzie gdy przez Ziemię przejdzie z prędkością światła fala grawitacyjna. Zmiany jakie wywoła zajdą w dokładnie tej samej chwili w obydwu ośrodkach.

>>> Więcej naukowych informacji na FB.com/NaukaToLubie

A kończąc, pozwólcie na ton nieco nostalgiczny. Wszechświat jest areną niezliczonych kataklizmów a dramatyczne katastrofy, to naturalny cykl jego życia. To nic, że od tysięcy lat na naszym niebie królują te same gwiazdozbiory. W skali kosmicznej taki okres czasu to nic nieznacząca chwila, a nawet w czasie jej trwania widoczne były wybuchy gwiazd. Z bodaj największego kataklizmu – Wielkiego Wybuchu – „wykluło” się to co dzisiaj nazywamy kosmosem. Obserwatoria grawitacyjne (np. takie jak LIGO) otworzą oczy na inne wielkie katastrofy, i to nie tylko te które będą, ale także te które były. Już prawie słychać zgrzyt przekręcanego klucza w drzwiach. Już za chwilę się otworzą. Najpierw przez wąską szparę, a później coraz wyraźniej i coraz śmielej będziemy obserwowali wszechświat przez nieznane dotychczas okulary. Ocenia się, że to co widzą „zwykłe” teleskopy (tzw. materia świecąca) to mniej niż 10% całej masy Wszechświata. A gdzie pozostałe 90% ? Na to pytanie nie znaleziono dotychczas odpowiedzi. Tzw. ciemna materia powinna być wszędzie, a nie widać jej nigdzie. Przypisuje się jej niezwykłe właściwości, łączy się ją z nie mniej tajemniczą ciemną energią. Czy LIGO, pomoże w rozwiązaniu tej intrygującej zagadki? Czy będzie pierwszym teleskopem, przez który będzie widać ciemną materię? Jeżeli obserwatoria grawitacyjne będą w stanie „zobaczyć” obiekty, które można obserwować także w świetle widzialnym (np. wybuch supernowej), a nie będą widziały ani grama ciemnej materii, to zagadka staje się jeszcze bardziej tajemnicza. Bo albo ta materia nie podlega prawom grawitacji, albo nie ma żadnej ciemnej materii. Konsekwencje obydwu tych scenariuszy są trudne do przewidzenia. Czy teraz rozumiecie dlaczego odkrycie fal grawitacyjnych jest tak ważne? 

9 komentarzy do Nobel z fizyki za fale

Skąd nazwy huraganów? 

Jose, Maria i Lee, to – na dzisiaj – najgroźniejsze huragany szalejące po północnym Atlantyku. Skąd biorą się imiona tych zjawisk? Co mają z tym wspólnego feministki i jaka jest różnica pomiędzy huraganem, orkanem, cyklonem i tajfunem?

Jose, Maria i Lee, to – na dzisiaj – najgroźniejsze huragany szalejące po północnym Atlantyku. Skąd biorą się imiona tych zjawisk? Co mają z tym wspólnego feministki i jaka jest różnica pomiędzy huraganem, orkanem, cyklonem i tajfunem?

Zacznę od tego ostatniego. Cyklon to nazwa zbiorcza i mieści w sobie huragany, tajfuny i burze tropikalne. Każde z tych zjawisk jest cyklonem, tyle tylko, że występującym w innych częściach świata. Wszystkie powstają nad ciepłymi i spokojnymi oceanami i wszystkie wirują.

Huragany szaleją na Atlantyku i na wschodnim Oceanie Spokojnym (Pacyfiku).

Tajfuny atakują na Pacyfiku między 180 i 100 południkiem. Innymi słowy są zagrożeniem dla wybrzeży Azji.

Orkany powstają na Oceanie Indyjskim, ale ostatnio tą nazwą określa się także cyklony uderzające w wybrzeże Europy.

I ostatnia – burza tropikalna (lub sztorm tropikalny) stosuje się do opisu cyklonów o mniejszej sile.

A co z nazwą? Irma, Harvey, kilka lat temu Katrina a w przyszłym roku Alberto, Beryl i Chris… zaraz zaraz. Skąd wiem jakie imiona będą nosiły cyklony w 2018 roku? Ano stąd, że są one już ustalone. Ale od początku. Imiona cyklonom nadaje się od ponad 100 lat. Wcześniej robiono to okazjonalnie. Cel był tylko jeden. Łatwiej nam zapamiętać imię niż cyfrę albo kod literowy. Zbadano, że ludzie czują większy respekt przed cyklonem który łatwiej zapamiętują, lepiej się też przygotowują do jego nadejścia.

Przez kilkadziesiąt lat huragany nazywano tylko imionami żeńskimi. Pod koniec lat 70tych XX – pod wpływem protestów feministek – zaczęto stosować imiona na przemian, imiona żeńskie i męskie. Po to by nie było nieporozumień, po to by nie nadano przez pomyłkę dwóch różnych nazw temu samemu cyklonowi, po to by w krótkim okresie nie nazwano dwóch zjawisk tym samym imieniem, listę z nazwami ustala się sporo do przodu. I tak stworzono listę imion na każdą literę alfabetu po jednym. Następnie zrobiono z nich sześć zestawów, każdy po 21 imion, które ułożono w kolejności alfabetycznej. Każdego roku obowiązuje jeden zestaw. Ten sam powtórzy się dopiero za 6 lat. Lista imion, która obowiązuje w tym roku, będzie obowiązywała dopiero w 2023 roku. I znowu pojawią się cyklony Harvey, Irma, Jose, Maria i Lee. Co gdy w którymś roku pojawi się więcej niż 21 dużych cyklonów? Wtedy nadawane im są nazwy greckie. Teraz mamy przełom września i października ale do końca listy imion na ten rok mamy jeszcze 8 pozycji.

Czasami imiona z listy są wykreślane. Dzieje się to wtedy, gdy cyklon nazwany jakimś imieniem zebrał wyjątkowo krwawe żniwo. Na miejsce wykreślonego imienia, na międzynarodowych konferencjach meteorologów, wybiera się inne imię. Musi zaczynać się na tę samą literę i musi być imieniem żeńskim (gdy wykreślono żeńskie), lub męskim (gdy wykreślono męskie). W 2005 roku wybrzeże USA spustoszył huragan Katrina. Na próżno szukać tego imienia na liście. Tak samo jak Sandy, Mitch czy Tracy.

Jakie imiona zostały na liście na ten rok? Nate, Ophelia, Philippe, Rina, Sean, Tammy, Vince i Whitney. Miejmy nadzieję, że tych imion nie będzie trzeba nadawać.

hurricaneNames1-01

2 komentarze do Skąd nazwy huraganów? 

Smog? Bez spiny, jest super!

Na portalu TwojaPogoda.pl pojawił się kilka dni temu artykuł pt. „Histeria z powodu smogu. Kto ją wywołuje i dlaczego?” No właśnie. Kto histeryzuje? Po co? I kto na tym zyskuje?

Na portalu TwojaPogoda.pl pojawił się kilka dni temu artykuł pt. „Histeria z powodu smogu. Kto ją wywołuje i dlaczego?” No właśnie. Kto histeryzuje? Po co? I kto na tym zyskuje?

Pod artykułem nie podpisał się autor, wiec rozumiem, że to tekst redakcyjny. Dziwię się, że portal, który sam wielokrotnie ostrzegał przed powietrzem złej jakości (np. „Rekordowy smog spowija Polskę. Trujący każdy wdech” z 2017-01-08), sam wielokrotnie opisywał tragiczne skutki oddychania zatrutym powietrzem (np. „Smog w stolicy Iranu zabija tysiące ludzi” z 2007-08-03), dzisiaj postanowił odwrócić smoga ogonem.

Zrzut ekranu 2017-02-19 o 18_Fotora

Tekst można streścić do następujących punktów:

  1. Kiedyś było gorzej.
  2. Na Zachodzie wcale nie jest tak czysto.
  3. Ekologiczne lobby jest na pasku producentów pieców.
  4. Smogu nie trzeba się obawiać.

No to po kolei.

Ad1. Kiedyś było gorzej. Tak, kiedyś było znacznie gorzej. Choć to dzisiaj jest więcej rakotwórczych dioksyn i furanów niż kiedyś. Ale nawet gdyby dzisiaj stężenia wszystkich szkodliwych substancji były niższe niż powiedzmy 20 lat temu, czy to automatycznie oznacza że jest super? No nie. Trzeba spojrzeć w statystyki i w pomiary. I okazuje się, że super nie jest. Że jest źle. I to bardzo. To, że niektórzy obudzili się dopiero wczoraj nie oznacza że kiedyś smogu nie było. Oznacza tylko… że niektórzy obudzili się wczoraj. Ani mniej, ani więcej. Organizacje ekologiczne od wielu lat mówią o zatrutym powietrzu. Tyle tylko, że dotychczas niewielu tego słuchało. W tym roku media informują o smogu częściej niż w poprzednich latach. Dlaczego? Dlatego, że Internet o tym więcej pisze, bo świadomość ludzi wzrosła. To system naczyń połączonych. Odczuwam osobistą satysfakcje, że i ja w budzeniu tej świadomości miałem swój udział publikując prosty pokaz z wacikiem i odkurzaczem. Zrobiłem to w pierwszych dniach stycznia. Choć powietrze było dużo gorsze w listopadzie i grudniu, przeważająca większość materiałów w mediach została zrobiona dopiero w styczniu. Do dzisiaj na różnych platformach moje video zobaczyło ponad 2 mln ludzi. Od tego czasu ten sam pokaz był powtarzany kilkukrotnie we wszystkich serwisach informacyjnych głównych stacji telewizyjnych.

>>> Więcej naukowych informacji na FB.com/NaukaToLubie.

Ad2. Na Zachodzie wcale nie jest tak czysto. Szczerze. Co mnie obchodzi jakie jest powietrze w Londynie, Brukseli czy Paryżu? Oddycham powietrzem w Warszawie albo na Śląsku. I to mnie obchodzi. Argumentowanie, że nie ma co panikować, bo za granicą nie jest wcale tak zielono jak mogłoby się wydawać, jest poniżej poziomu piwnicy.

Ale, podejmując wyzwanie… Jakość powietrza w stolicach zachodniej Europy jest dużo lepsza niż w miastach Polski. Znane są zestawienia mówiące, że to nasze miasta są w czołówce najbrudniejszych miast kontynentu. To, że w Niemczech spala się więcej węgla nie oznacza, że ten węgiel w większym stopniu zanieczyszcza powietrze. Bo,

  • w Niemczech węgiel nie jest palony w prywatnych piecach tylko w elektrowniach i elektrociepłowniach, a te zakłady (także w Polsce) mają filtry i nie dokładają się do smogu. Tymczasem w Polsce sporo węgla spala się w prywatnych piecach.
  • W Polsce nie obowiązują żadne normy dotyczące jakości węgla. W efekcie to u nas spala się węgiel wydobywany np. w Czechach, który tam nie mógłby zostać sprzedany.

Już wiesz redakcjo dlaczego argument o ilości spalanego w Niemczech i Polsce węgla jest jak kulą w płot?

>>> Więcej naukowych informacji na FB.com/NaukaToLubie.

Ad3. Ekologiczne lobby jest na pasku producentów pieców. Gdy pisałem o elektrowniach jądrowych (uważam, że w Polsce powinny powstać), słyszałem, że jestem przeciwko górnictwu na pasku lobby jądrowego. Teraz słyszę, że opłaca mnie lobby producentów węglowych pieców, bo piszę i alarmuję na temat złej jakości powietrza. Robię to zresztą od wielu lat każdego roku w czasie sezonu grzewczego. W międzyczasie byłem na pasku przemysłu farmaceutycznego (tak, uważam, że szczepionki to jedno z największych osiągnieć ludzkości), oraz przemysłu biotechnologicznego (tak, nie znajduję naukowych dowodów przeciwko GMO).

Zarzucenie komuś, że jest skorumpowany jest bajecznie proste, ale intelektualnie dość małe. Redakcja TwojaPogoda.pl naprawdę wierzy, że ci, którzy ostrzegają przed złej jakości powietrzem są kupieni przez producentów nowoczesnych pieców? Dodam tylko, że po to by ulżyć powietrzu nie trzeba koniecznie pieca wymieniać. Dużo da przeczyszczenie przewodów kominowych. Sporo da odczyszczenie przed sezonem grzewczym, a nawet w trakcie jego trwania samego pieca i odpowiedni sposób składania ognia w piecu. Te czynności nic nie kosztują, a pozwalają oszczędzić pieniądze bo podnoszą sprawność pieca i instalacji. Nie jest wiec prawdą, że smog można zlikwidować tylko wymieniając stary piec na nowiutki. Jest wiele innych rozwiązań, a niektóre z nich przynoszą oszczędności. No ale tego z tekstu o histerii smogowej się nie dowiemy. Nie możemy się dowiedzieć, bo to złamałoby linię argumentacji redakcji, że ci, którzy piszą i mówią o smogu są w kieszeni producentów drogich pieców.

>>> Więcej naukowych informacji na FB.com/NaukaToLubie.

Ad4. Smogu nie trzeba się obawiać. Redakcja portalu twierdzi, że cała ta histeria ze smogiem została „opracowana przez niektóre organizacje” i „wcale nie chodzi [w niej] o ochronę naszego zdrowia”.

Był taki czas, kiedy uważano, że zdrowe jest naświetlanie się promieniami jonizującymi. I choć w pewnym momencie stało się jasne, że te mogą być źródłem raka, wiele osób dalej się naświetlało. Był taki czas, gdy twierdzono, że zdrowe jest palenie papierosów. Firmy tytoniowe przedstawiały opracowania które tego dowodziły. Przez lata dowodzono też, że ołów z benzyny nie ma nic wspólnego ze złym stanem zdrowia ludzi wdychających spaliny albo mieszkających niedaleko szlaków komunikacyjnych. Dzisiaj benzyny są bezołowiowe, na paczkach papierosów są ostrzeżenia o nowotworach spowodowanych paleniem a źródła promieniowania jonizującego są zamykane w pancernych szafach żeby nie wpadły w niepowołane ręce.

Nie ma w naszym ciele organu czy układu, który nie byłby narażony z powodu powietrza złej jakości. Są na to tysiące naukowych dowodów. Serce, płuca, ale także mózg. Układ hormonalny, układ nerwowy, krwionośny… Tam gdzie powietrze jest bardziej zanieczyszczone jest mniejsza masa urodzeniowa dzieci, a ludzie żyją krócej. Ocenia się że w Polsce każdego roku umiera z powodu powietrza złej jakości ponad 40 tys. osób. Szczególnie narażeni są chorzy (np. na astmę), osoby starsze i dzieci. „Smogu nie trzeba się obawiać”? W tekście z TwojaPogoda.pl znalazł się właśnie taki śródtytuł. Trzeba, i to bardzo. Dobrze, że coraz lepiej zdajemy sobie z tego sprawę. To, że są ludzie czy firmy, które na rosnącej świadomości robią pieniądze, to naturalne i oczywiste. Są firmy, które robią pieniądze na produkcji samochodowych pasów bezpieczeństwa i systemów ABS, choć gdy je wprowadzano mówiło się że to tylko sposób na wyciąganie pieniędzy z kieszeni klienta. Tam gdzie jest popyt tam pojawia się i podaż. Od nas, klientów, zależy czy damy się nabierać na tanie  sztuczki (np. maseczki) czy zdecydujemy się na rozwiązania, które problem rozwiązują choć w części.

Zanim zakończę, chciałbym jeszcze wyjaśnić trzy kwestie.

  1. Węgiel nie jest źródłem smogu. Źródłem smogu jest palenie węglem niskiej jakości i śmieciami w piecach, które nie są odpowiednio przygotowane do eksploatacji. Takie są fakty. Mówienie więc, że walka ze smogiem to walka z węglem jest bzdurą i niepotrzebnie rozgrzewa emocje. W Polsce kilka milionów ludzi żyje dzięki przemysłowi wydobywczemu. Ten przemysł jest przestarzały i zżerany wewnętrznymi problemami. Nie da się jednak (z wielu różnych powodów) po prostu wszystkich kopalń zamknąć. Węgiel może być czarnym złotem o ile wykorzystamy go w sposób nowoczesny i innowacyjny. Np. gazując pod ziemią, budując instalacje niskoemisyjne czy zeroemisyjne. Podkreślanie, że walka o czyste powietrze to walka z węglem, powoduje u milionów ludzi żyjących z wydobycia węgla (i przemysłu który z tym jest związany) automatyczną niechęć do działań mających na celu poprawę jakości powietrza.
  1. Wiarygodność pomiaru. „Jeśli na jednej ulicy pomiary wskazują na duże skażenie powietrza, wcale nie oznacza to, że w Twojej okolicy jest równie niebezpiecznie.” Nieprawdą jest, co pisze redakcja TwojaPogoda.pl, że pomiaru z jednej stacji nie można stosować do całego miasta. W przeciwieństwie do temperatury, która rzeczywiście może się szybko zmieniać, zanieczyszczenie powietrza jest dość jednorodne na większym obszarze. W Polsce nie mamy niedoboru stacji pomiarowych. A na tak duże miasto jak np. Warszawa wystarczy ich kilka, by wiarygodnie przedstawić jakość powietrza w mieście. Nawet jeżeli na danym obszarze znajdują się pojedyncze punkty pomiarowe, odpowiednie algorytmy (biorące pod uwagę wiele zmiennych) wyliczają stężenie prawdopodobne. Jest ono (a robi się takie testy) bardzo bliskie stężeniom rzeczywistym. Warto rzeczywiście zwrócić uwagę, by dane na których się opieramy (w tym dane w aplikacjach w telefonach komórkowych) pochodziły z oficjalnych stacji, a nie były zniekształcane przez mierniki prywatne albo komercyjne, których dokładność jest zła, albo bardzo zła.
  1. Skarga na Polskę. Niektóre organizacje ekologiczne za zanieczyszczone powietrze postanowiły złożyć na Polskę skargę do Komisji Europejskiej. Taki ruch uważam za totalnie antyskuteczny. Smogu nie pozbędziemy się (nie zminimalizujemy) dekretami rządu czy uchwałami samorządu, bo smog powstaje nie w dużych zakładach przemysłowych tylko w naszych prywatnych kominach i rurach wydechowych. Komisja Europejska może nałożyć na nas karę i co? I to nas, Polaków, przekona do zmiany głupich i szkodliwych przyzwyczajeń? Myślę, że raczej utwierdzi w przekonaniu, że Bruksela znowu nas atakuje. I z całą pewnością atakuje dlatego, że chce położyć łapę na naszym węglu. Składając skargę do Komisji Europejskiej niektóre organizacje ekologiczne właśnie dały do ręki argument tym, którzy ze smogiem nie mają zamiaru walczyć. Sorry, taki mamy klimat. 

Tomasz Rożek

>>> Więcej naukowych informacji na FB.com/NaukaToLubie.

4 komentarze do Smog? Bez spiny, jest super!

Ciemno to widzę

Dzisiaj nad ranem agencje prasowe podały smutną wiadomość. W wieku 88 lat, z powodów naturalnych, zmarła Vera Rubin. Amerykańska astrofizyk, odkrywczyni ciemnej materii. Tej jest znacznie więcej niż materii, która nas buduje. Czym jest? Ciemna materia to jedna z największych zagadek współczesnej nauki.

Dzisiaj nad ranem agencje prasowe podały smutną wiadomość. W wieku 88 lat, z powodów naturalnych, zmarła Vera Rubin. Amerykańska astrofizyk, odkrywczyni ciemnej materii. Tej jest znacznie więcej niż materii, która nas buduje. Czym jest? Ciemna materia to jedna z największych zagadek współczesnej nauki.

 

Gdyby zważyć cały wszechświat, wszystkie gwiazdy, planety, mgławice, komety, asteroidy,… wszystkie te obiekty stanowiłyby zaledwie kilka procent masy całości. Większość, przeważającą większość stanowiłaby nieznana forma materii i jeszcze bardziej tajemnicza forma energii.

Uparta dziewczyna

Co takiego może być tajemniczego w materii? Cóż, problem polega na tym, że my nie mamy pojęcia czy ciemna materia wygląda tak jak nasza, czy jest zbudowana tak jak nasza. Więcej, nie wiemy czy obowiązują ją te same prawa przyrody co materię naszą. Naszą czyli tą, z której jesteśmy zbudowani my i wszystko co nas otacza. Patrząc w niebo, nawet jeżeli używamy największych teleskopów nie widzimy ciemnej materii. Skąd zatem wiemy, że ona w ogóle istnieje? Z odpowiedzią na to pytanie wiąże się historia pewnej upartej młodej naukowiec.

>>> Więcej naukowych informacji na FB.com/NaukaToLubie.

W 1970 roku młoda doktorantka jednego z amerykańskich uniwersytetów, Vera Rubin, postanowiła zmierzyć prędkość gwiazd w standardowej galaktyce spiralnej. Badania nie zapowiadały się ciekawie, bo wiedza o tym, że gwiazdy w galaktyce spiralnej poruszają się jak woda w wirze, była wtedy powszechna. Uważano, że te gwiazdy, które znajdują się dalej od centrum galaktyki powinny poruszać się wolniej, niż gwiazdy, które znajdują się bliżej jej środka. Verze odradzano zajmowanie się tym tematem.

q-100No bo w końcu po co robić pomiary, skoro wiadomo jaki będzie ich wynik? Vera uparła się jednak, że chce swoje obserwacje przeprowadzić. I odkryła… że niezależnie od odległości od centrum galaktyki, gwiazdy mają taką samą prędkość. Ta jedna obserwacja zburzyła fundament na którym stała wiedza o galaktykach. Od teraz nic się nie zgadzało. Takie galaktyki nie miały prawa istnieć. A przecież istniały. Jeżeli ktokolwiek miał wątpliwość, mógł spojrzeć przez teleskop. Próba wyjaśnienia tego fenomenu była jeszcze bardziej zaskakująca niż samo odkrycie.  Nikt – z Verą Rubin włącznie – nie miał wątpliwości, że za ruch gwiazd w galaktyce odpowiedzialna jest grawitacja. Problem polegał na tym, że jej źródło głównie znajduje się w centrum galaktyki. Tak przynajmniej myślano. Tymczasem Vera Rubin uznała, że centrum galaktyki wcale nie musi być jedynym miejscem silnie przyciągającym gwiazdy. Uznała, że pomiędzy gwiazdami musi być jakaś masa dodatkowa, taka, która nie świeci (i jej nie widać). To ona jest źródłem siły grawitacyjnej, która powoduje, że wszystkie gwiazdy w galaktyce mają taką samą prędkość. Jak taką masę sobie wyobrazić? Może jako chmurę niewidocznej dla nas materii w której galaktyka jest zanurzona? Może gwiazdy na tej chmurze się unoszą tak jak oka tłuszczu unoszą się na powierzchni rosołu?

Coś się odkleiło

Potem zaczęto się przyglądać innym galaktykom, gromadom galaktyk i jeszcze większym strukturom. Wszędzie widziano efekt działania ogromnej siły grawitacji. Tyle tylko, że źródła tej siły, czyli samej masy nigdzie nie dostrzeżono. Szybko policzono, że gdyby nie ciemna materia, galaktyki rozsypałyby się. Siła grawitacji jest za mała by duże kosmiczne struktury utrzymywać w porządku, potrzeba kleju, czegoś co to wszystko scala. No i to jest największa tajemnica, czym ten klej jest? Jak wygląda, co jest jego źródłem? I czy stosuje się do praw natury, które obowiązują w naszym świecie?

>>> Więcej naukowych informacji na FB.com/NaukaToLubie.

Co do tego można mieć wątpliwości po ostatnich obserwacjach zespołu naukowców z największych na świecie ośrodków, w tym NASA, ESA (Europejska Agencja Kosmiczna) oraz kilku amerykańskich uniwersytetów. Korzystając z danych obserwacyjnych teleskopu kosmicznego Hubble’a oraz teleskopu VLT należącego do Europejskiego Obserwatorium Południowego, udało się sfotografować zderzenie czterech galaktyk wchodzących w skład gromady galaktyk Abell 3827. Dokładna obserwacja ruchu gwiazd wchodzących w skład tych galaktyk, dokładna obserwacja biegu promieni światła pozwoliła astronomom stwierdzić, że ciemna materia oderwała się od jednej ze zderzających się galaktyk. Brzmi co najmniej abstrakcyjnie, ale tak rzeczywiście jest. Za jedną z galaktyk, w odległości kilku tysięcy lat świetlnych ciągnie się obłok czegoś, czego co prawda nie widać, ale co wpływa grawitacyjnie na całe otoczenie. Tego „czegoś” nie powinno tam być! To „coś”, czyli ciemna materia, powinno być we wnętrzu galaktyki, pomiędzy gwiazdami, które galaktykę tworzą. Co takiego się stało, że materia „zwykła” i ciemna, w tym konkretnym przypadku odłączyły się od siebie? Na to pytanie nie ma dzisiaj odpowiedzi, trudno też powiedzieć czy takie sytuacje zdarzają się często. Ta jest pierwszą tego typu. Choć szczerze mówiąc, o niczym nie musi to świadczyć, nie jesteśmy zbyt dobrze w obserwowaniu czegoś… czego nie widać.

Pajęczyna

Jednym z pomysłów na wyjaśnienie zaobserwowanego zjawiska jest to, że ciemna materia nie stosuje się do praw, które nas obowiązują, że grawitacja działa na nią inaczej niż na obiekty „zwykłej” materii. Na razie, to zwykłe gdybanie. Ale to nie znaczy, że kosmolodzy i astrofizycy nie próbują ciemnej materii złapać. Jednym ze sposobów na jej poznanie jest tworzenie map jej rozmieszczenia. To bardzo trudna sztuka, ale czasami się udaje. Takie mapy tworzy się po to, by znaleźć klucz, by zobaczyć gdzie ciemna materia szczególnie chętnie się grupuje. To może pomóc w określeniu jej właściwości.

seqD_063Takie trójwymiarowe  mapy różnych części kosmosu powstają od wielu lat. Właśnie opublikowano kolejną, dokładniejszą niż poprzednie. Pracował nad nią zespół trzystu naukowców z całego świata. I została zaprezentowana podczas ostatniego spotkania Amerykańskiego Towarzystwa Fizycznego w Baltimore. Mapa jest dość spora, zawiera miliardy gwiazd i obejmuje całe… cztery dziesiąte procent nieba. Co ciekawe, na wielu mapach nieba, na których zaznacza się występowanie ciemnej materii, jest ona uformowana w postaci włókien. Po raz pierwszy udało się to zauważyć kilka lat temu, gdy dzięki użyciu Obserwatorium Kecka na Hawajach astrofizycy obserwowali kwazar UM287. Wyniki ich prac były opublikowane w Nature. Kwazar o którym mowa oddalony jest od Ziemi o około 10 miliardów lat świetlnych. Kwazary przypominają gwiazdy, ale w rzeczywistości są bardzo aktywnymi galaktykami, które „wyrzucają” w przestrzeń ogromne ilości energii. Badacze wykorzystali to promieniowanie tak, jak wykorzystuje się światło latarki, wchodząc do ciemnego pokoju. Światło kwazaru UM287 padało na ogromną, mającą średnicę dwóch milionów lat świetlnych chmurę gazu. Ile to jest 2 miliony lat świetlnych? Trudno to sobie wyobrazić. Układ Słoneczny ma średnicę około 30 dni świetlnych, a cała Galaktyka Drogi Mlecznej nieco ponad 100 tys. lat świetlnych. Oświetlana przez kwazar chmura pyłu była więc 20 razy większa od naszej galaktyki.

>>> Więcej naukowych informacji na FB.com/NaukaToLubie.

Wracając jednak do ciemnej materii. Astronomowie analizując rozchodzenie się światła w tej chmurze, zauważyli, że materia nie jest w niej równomiernie rozłożona, że tworzy coś w rodzaju włókien. Podali hipotezę, że to włókna ciemnej materii. Obserwacja jest w zgodzie z modelami teoretycznymi, które mówią, że ciemna materia nie jest posklejana jak materia widzialna w obiekty takie jak np. planety czy gwiazdy, czyli w struktury kuliste. Przypomina raczej pajęczynę na której „utkany” jest cały wszechświat. Kawałek tej pajęczyny właśnie zauważono. Nigdy wcześniej nie widziano bezpośrednio takich włókien.

Przegrana grawitacja

Ciemna materia – zdaniem astronomów – ma w odpowiadać za kształt dużych obiektów, takich jak np. galaktyki czy ogromne chmury gazu i materii. Trudno powiedzieć, czy może budować całe (ciemne) galaktyki. Pewne jednak jest, że wszechświat składa się z ciemnej materii w około 24 proc. Materia widzialna, taka z której i my jesteśmy zbudowani tworzy go w około 4 procentach. Razem 28 proc. Gdzie jest reszta? Czym jest reszta? I to jest chyba największa zagadka kosmologii. 72 proc. wszechświata to ciemna energia. Nie wiadomo czym jest, nie wiadomo gdzie jest. Być może wszędzie dookoła, być może jest gdzieś skupiona. Wydaje się, że na małych odległościach nie widać efektów jej działania. Być może są one tak ulotne, że nie potrafimy ich zarejestrować. Gdy jednak spojrzeć na kosmos w dużej skali, skali nawet nie galaktyk, tylko gromad galaktyk czy supergromad… Galaktyki oddalają się od siebie. Czym dalej są, tym szybciej się oddalają. Dlaczego tak się dzieje? Dlaczego grawitacja, przyciąganie, nie powoduje, że zaczną się do siebie przybliżać? Dzisiaj uważa się, że to właśnie ciemna energia powoduje puchnięcie wszechświata. A to znaczy, że w pewnym sensie działa przeciwko grawitacji. Ta ostatnia na małych dystansach tą walkę wygrywa. Ale w dużych skalach, to ciemna energia króluje.

Wszechświat jest fascynujący! I wciąż tajemniczy.

Tomasz Rożek

>>> Więcej naukowych informacji na FB.com/NaukaToLubie.

1 komentarz do Ciemno to widzę

Jak fotografować SUPERKsiężyc?

Każda pełnia Księżyca jest doskonałą okazją do fotografowania. W zasadzie to może być wstęp do astrofotografii. Po pierwsze Księżyca nie da się na nocnym niebie pomylić z jakimkolwiek obiektem niebieskim….

Każda pełnia Księżyca jest doskonałą okazją do fotografowania. W zasadzie to może być wstęp do astrofotografii. Po pierwsze Księżyca nie da się na nocnym niebie pomylić z jakimkolwiek obiektem niebieskim. Po drugie, po to by fotografować pełnię, nie trzeba inwestować w drogi sprzęt. Prawdę mówiąc nie trzeba inwestować wcale. Wystarczy aparat, który wielu z nas i tak ma w domu. 14 listopada nałożą się na siebie dwa zjawiska. Pełnia Księżyca i jego maksymalne zbliżenie do Ziemi. Choć tarcza Srebrnego Globu nie będzie zauważalnie większa, to jego jasność zwiększy się o 20 – 30 proc. Tylko jak zrobić zdjęcie, które byłoby dla nas powodem do domy (a nie wstydu)?

Oprócz aparatu, w zasadzie jedynym sprzętem o jaki warto się zatroszczyć, jest statyw. Zachęcam do ustawienia aparatu w tryb manualny. W trybie automatycznym wszystkie zdjęcia będą bardzo do siebie podobne. Na „manualu” możesz poeksperymentować.

No to do rzeczy:

Ostrość. Jeżeli mamy aparat w trybie manualnym, ostrość trzeba ustawić na nieskończoność. W trybie manualnym powinna się ustawić automatycznie (autofocus).

Czułość. Jeżeli aparat umożliwia ustawianie czułości (ISO), tym parametrem można się nieco pobawić, uzyskując czasami bardzo ciekawe efekty. Czym niższa czułość tym wyraźniejsze będzie zdjęcie (niższy poziom szumów). Niestety czym niższa czułość, tym dłuższy musi być czas naświetlania, a to może być problemem np. gdy nie mamy statywu albo gdy w kadrze są szybko poruszające się obiekty. Ich rozmazanie może być dodatkowy atutem zdjęcia. No ale to już kwestia gustu fotografa. Jeżeli chcemy by czas otwarcia migawki był jak najkrótszy, trzeba ustawić wysoką czułość. W takim wypadku na zdjęciu pojawiają się szumy („ziarno”). Może ono dodać artyzmu, ale znowu, to kwestia gustu. Dobra rada: Jak tylko będzie odpowiednia pogoda, Księżyc w pełni będzie można obserwować na tyle długo, że bez pośpiechu i stresu warto poeksperymentować. Ustawiaj różne czułości. Zawsze lepiej mieć więcej zdjęć (z których część wyląduje w koszu), niż żałować, że zrobiło się za mało.

>>> Więcej naukowych informacji na FB.com/NaukaToLubie.

Czas naświetlania. Bardzo trudno zrobić zdjęcie „z ręki” gdy czas otwarcia migawki wynosi mniej niż 1/30 s. Tym bardziej że mówimy o fotografowaniu bardzo odległego obiektu. Stąd jeszcze raz sugestia, by zaopatrzyć się w statyw, nawet gdyby miał być najprostszy. Jeżeli nie masz, obserwuj SUPERKsiężyc z miejsca w którym możesz oprzeć aparat o drzewo, krzesło czy chociażby słup ogrodzenia.

Podobnie jak w przypadku ustawiania czułości, warto poeksperymentować ustawiając różne wartości czasów otwarcia migawki. Zdziwisz się jak różne mogą być zdjęcia tego samego obiektu. Czym krótszy czas migawki, tym bardziej otwarta musi być przysłona aparatu, gdy czas jest długi, przysłona musi być „domknięta”. I tylko z pozoru nie robi to różnicy. Gdy Księżyc będzie nisko nad horyzontem, gdy w kadrze będzie nie tylko jego tarcza ale także np. drzewa albo budynki, domknięta przysłona (wartości od 11 w górę) umożliwi zrobienie zdjęcia na którym ostre będą wszystkie obiekty. Otwarta przysłona (o wartości do 4,5) spowoduje że ostre będą tylko te obiekty na które ustawiona zostanie ostrość. Reszta będzie rozmazana. Jeżeli nie czujesz się na siłach operować przysłoną, ustaw jej automatykę i operuj czasem migawki. Zdziwisz się jak różne zdjęcia uzyskasz.

Ogniskowa. Wszystko zależy od kompozycji zdjęcia, a wiec od tego co chcesz na nim mieć. Jeżeli tylko tarczę Księżyca, ustaw jak najdłuższą ogniskową (jak najbardziej przyzoomuj). Unikaj zoomu cyfrowego, zdjęcie zawsze możesz skadrować na komputerze.

>>> Więcej naukowych informacji na FB.com/NaukaToLubie.

Napisałem to już tutaj kilka razy, ale napisze jeszcze raz. EKSPERYMENTUJ. Masz sporo czasu. Nie ma sensu robienie kilkunastu czy kilkudziesięciu zdjęć przy takich samych parametrach. Baw się ustawieniami czasu, baw przysłoną i czułością. Jeżeli masz zmienne obiektywy, korzystaj z tego. Spróbuj zmienić lokalizację. Na długich czasach pięknie na tle Księżyca wyglądają np. jadące samochody, albo panorama oświetlonego miasta. Ponadto:

– Robiąc zdjęcie korzystaj z samowyzwalacza albo ze zdalnie uruchamianej migawki. W ten sposób nie poruszysz aparatu w czasie robienia zdjęcia.

– Spróbuj zrobić kilka zdjęć przy tych samych parametrach po to by potem nałożyć je na siebie. Zobaczysz, że uzyskasz ciekawy efekt.

– Spróbuj zrobić kilkanaście tak samo skadrowanych zdjęć (nie ruszając aparatu) np. co kilka minut. Nakładając je na siebie uzyskasz… prostą animację.
A jak już zrobisz dobre zdjęcie, pochwal się nim na FB.com/NaukaToLubie 

Powodzenia !!!

Brak komentarzy do Jak fotografować SUPERKsiężyc?

NASA nie zmienia horoskopu!!!

Ta wiadomość przeorała dzisiejsze internety. NASA zmienia znaki zodiaku. Co za bzdura! Astrologia nie jest żadną nauką, a NASA nie zajmuje się gusłami. Wiara w magiczną moc dnia, w którym się urodziło, jest kompletną bzdurą.

Ta wiadomość przeorała dzisiejsze internety. NASA zmienia znaki zodiaku. Co za bzdura! Astrologia nie jest żadną nauką, a NASA nie zajmuje się gusłami. Wiara w magiczną moc dnia, w którym się urodziło, jest kompletną bzdurą.

>>> Więcej naukowych informacji na FB.com/NaukaToLubie.

O zmianie znaków zodiaku słyszę regularnie od kilku już lat. Tak jak gdyby „znak zodiaku” to było coś, co ma swoje miejsce albo coś, co da się precyzyjnie określić. Tak nie jest, choć kiedyś tak było. Astronomia i astrologia były jak dwie siostry bliźniaczki. Dorastały razem i uczyły się razem. Z tą tylko różnicą, że jedna z sióstr była pilną uczennicą, która czasami musiała iść pod prąd swojej epoki, a druga była wygodna i pragmatyczna. Druga siostra, Astrologia, była konformistką. W efekcie Astronomia i Astrologia rozeszły się ponad dwa tysiące lat temu. Astronomia szła naprzód, a astrologia stała w miejscu.

Dwie latarki 

>>> Więcej naukowych informacji na FB.com/NaukaToLubie.

Układ Słoneczny znajduje się w galaktyce Drogi Mlecznej, w jednej z jej odnóg, zwanych Ramieniem Oriona. Choć kosmos to głównie pustka, zdarzają się w nim niewielkie (w porównaniu z tą pustką) wyspy materii. Są nimi właśnie galaktyki. Jesteśmy otoczeni gwiazdami. Są daleko, ale nie aż tak, by nie były widoczne. Na niebie w pogodną noc można zobaczyć kilka tysięcy świetlnych punktów. Wyobraźnia człowieka już tysiące lat temu te punkty pogrupowała w kształty, czyli konstelacje. Jedną z najbardziej znanych jest Wielki Wóz (część gwiazdozbioru Wielkiej Niedźwiedzicy), który składa się z siedmiu gwiazd.  Gwiazdozbiory to grupa gwiazd, które nie są ze sobą nijak związane, ich bliskość jest pozorna, zajmują po prostu określony obszar sfery niebieskiej. Jak to rozumieć? Wyobraźmy sobie dwie latarki zapalone w ciemną noc. Tak ciemną, że innych elementów krajobrazu nie byłoby widać. Nie jesteśmy w stanie ocenić, która latarka jest bliżej, a która dalej.  Tym bardziej że latarka bliższa może świecić słabszym światłem, a ta dalsza może być potężnym reflektorem. Tak właśnie jest z gwiazdami. Na oko wszystkie gwiazdy nocnego nieba są w takiej samej odległości od nas. Niektóre z nich układają się w figury, postacie, a nawet całe sceny. Trzeba do tego sporej wyobraźni, ale tej nigdy ludziom nie brakowało. I tak niebo dla starożytnych było teatrem, sceną, na której w różnych częściach roku pojawiały się mityczne stwory, zwierzęta, herosi i bóstwa.

12 czy 13? 

>>> Więcej naukowych informacji na FB.com/NaukaToLubie.

Dla obserwatorów nieba szczególne znaczenie odgrywały gwiazdozbiory znajdujące się w tzw. zodiaku, a więc w pasie nieba, po którym poruszają się Słońce, Księżyc i inne planety. W starożytnej Babilonii czy Asyrii wyobrażano sobie, że gwiazdozbiory leżące na zodiaku są śladami na drodze, po której porusza się nasza dzienna gwiazda. Że dzielą tę drogę na etapy, a każdy z tych etapów jest w jakimś sensie charakterystyczny. Gwiazdozbiorów leżących w zodiaku jest 13 i tutaj pojawia się pierwszy problem. Znaków zodiaku jest 12. Ten brakujący to Wężownik. Ale o tym za chwilę. 12 gwiazdozbiorów w zodiaku podzieliło rok na 12 części. Chciałoby się napisać: na „równe części”, ale… gwiazdozbiory są różnej wielkości. Z kalendarza wynika, że okresy odpowiadające poszczególnym znakom zodiaku są mniej więcej równe. Tymczasem… Słońce przez gwiazdozbiór Panny przechodzi 42 dni, a przez Skorpiona tylko 6 dni. Na dodatek granice między gwiazdozbiorami są czysto umowne. Trudno rozstrzygnąć, czy Słońce jest wciąż na tle gwiazdozbioru Skorpiona czy już Strzelca. Okresy, gdy Słońce przechodzi przez kolejne gwiazdozbiory (choć jest to ruch pozorny, bo to Ziemia się obraca i dlatego widzimy Słońce na różnym tle), są uzależnione od tego, jak zostaną wyznaczone granice między nimi. W wyniku dosyć pokrętnego podziału Słońce jest w znaku Panny przez 30 dni, choć w rzeczywistości powinno być przez wspomniane 42, a w Skorpionie przez 29 dni, choć w rzeczywistości na tle tego gwiazdozbioru znajduje się tylko 6 dni. Od czego więc zależeć mają cechy człowieka? Od rzeczywistego znaku zodiaku, w którym było Słońce w dniu urodzenia, czy od znaku uznanego zwyczajowo? To ważne pytanie, bo z tablic astronomicznych wynika, że Słońce przechodzi na tle gwiazdozbioru Panny od 16 września do 30 października. Astrologowie uważają jednak, że Słońce jest w Pannie od 23 sierpnia do 22 września. Ktoś, kto urodził się, powiedzmy, 25 sierpnia, kalendarzowo (astrologicznie) jest więc Panną, ale Słońce w dniu jego urodzin było w znaku Lwa. Nawet przyjmując, że dzień urodzin ma jakiekolwiek znaczenie, przeważająca większość z tych, którzy czytają horoskopy, czyta nie ten, który powinna.

Wężownik wyleciał 

>>> Więcej naukowych informacji na FB.com/NaukaToLubie.

Dokładne granice między gwiazdozbiorami (nie tylko tymi z zodiaku) ustalono dopiero w 1928 r. w czasie kongresu generalnego Międzynarodowej Unii Astronomicznej. Teraz – można by pomyśleć – skończą się nieporozumienia. Przeciwnie. Dopiero od tego momentu widać, jak bardzo astrologia oddaliła się od astronomii. Astronomia idzie naprzód, a astrologia stoi w miejscu. Mimo znanych i ustalonych raz na zawsze granic astrolodzy nie zdecydowali się skorygować okresów, w jakich Słońce znajduje się na tle poszczególnych gwiazdozbiorów w zodiaku. Co więcej, w wyniku prac astronomów z Unii Astronomicznej do gwiazdozbiorów zodiakalnych powinna być zaliczona kolejna, 13. konstelacja Wężownika. Słońce wchodzi w jej „obszar” 30 listopada, a opuszcza go 17 grudnia. W astrologicznych znakach zodiaku po Wężowniku nie ma nawet śladu. A to dlatego, że starożytni, Wężownika nie widzieli. Gwiazdy z których „się składa” za słabo świecą. Ale jest jeszcze jeden powód bałaganu. Obrót Ziemi wokół własnej osi zajmuje jej dobę. Dlatego mamy dzień i noc. Na to nakłada się trwający rok bieg Ziemi wokół Słońca, którego skutkiem są pory roku. Ale Ziemia ma przynajmniej jeszcze jeden rodzaj ruchu regularnego, powtarzalnego. Oś Ziemi zatacza w przestrzeni koła, a pełny jej obrót zajmuje około 26 tys. lat i zwany jest rokiem platońskim. Wirującą Ziemię można porównać do wirującego zabawkowego bąka. I tak jak bąk nie wiruje w pozycji „pionowej”, tak samo oś obrotu Ziemi jest nachylona i zatacza w przestrzeni koła. Ten ruch to tzw. precesja. Ziemska precesja jest wynikiem przyciągania przez inne planety Układu Słonecznego, a także przez oddziaływanie grawitacyjne samego Słońca i Księżyca.

Zabawa dla naiwnych 

>>> Więcej naukowych informacji na FB.com/NaukaToLubie.

Ten dodatkowy ruch powoduje, że – co prawda powoli – zmienia się „widok” nocnego nieba. Nie są to zmiany duże, ale w ciągu setek lat… Gwiazdozbiory były znane przynajmniej 2–3 tys. lat przed Chrystusem. Od tamtego czasu naprawdę wiele się zmieniło. 2 tys. lat temu Słońce w dniu równonocy wiosennej wchodziło w gwiazdozbiór Barana (chodzi o wiosnę na półkuli północnej, ta na półkuli południowej jest przesunięta o pół roku). Dzisiaj jest w gwiazdozbiorze Ryb. Za około 600 lat w pierwszym dniu wiosny Słońce będzie w gwiazdozbiorze Wodnika. Co na to astrologia? Nic. Nie bierze w ogóle pod uwagę faktu precesji Ziemi. Tak jak gdyby nasza wiedza zatrzymała się kilka tysięcy lat temu. Równonoc wiosenna następuje z 20 na 21 marca. I właśnie wtedy według astrologów Słońce wchodzi w gwiazdozbiór Barana. W rzeczywistości znajdzie się w nim dopiero 29 dni później. W magiczną moc dnia urodzenia wierzy sporo osób. W telewizjach kablowych funkcjonują całe kanały, w których wróżki i wróżbici odczytują przyszłość ze szklanych kul, z kart czy z gwiazd. Horoskopy publikuje wiele gazet, a niektóre z nich z okazji Nowego Roku dołączają do swoich tytułów całe wkładki temu poświęcone. Gdy prowadzono badania nad sprawdzalnością horoskopów, okazywało się, że sprawdzają się one w takiej samej mierze zarówno wtedy, gdy czyta się horoskop swój, jak i wtedy, gdy zapoznaje się z przeznaczonym dla kogoś innego. Cała sztuka pisania horoskopów nie polega bowiem na tym, żeby cokolwiek przepowiedzieć, tylko na tym, by pasowało wszystkim i w każdej sytuacji. Gwiazdy, planety czy komety nie mają nic do tego.

A co z NASA? Cóż, agencja kosmiczna co jakiś przypomina, że astrologia to nie nauka cytując to, co napisałem powyżej. O niezauważonym gwiazdozbiorze, o precesji czy o nieregularnych granicach pomiędzy gwiazdozbiorami. Tylko tyle i aż tyle.

>>> Więcej naukowych informacji na FB.com/NaukaToLubie.

Brak komentarzy do NASA nie zmienia horoskopu!!!

„Ziemia” w sąsiedztwie

Jest skalista, jest bliziutko nas i ma wielkość podobną do wielkości Ziemi. Co jednak najważniejsze, znajduje się w tzw. strefie życia, czyli ani nie za blisko, ani nie za daleko od swojej gwiazdy. Właśnie odkryto nową planetę.

Jest skalista, jest bliziutko nas i ma wielkość podobną do wielkości Ziemi. Co jednak najważniejsze, znajduje się w tzw. strefie życia, czyli ani nie za blisko, ani nie za daleko od swojej gwiazdy. Właśnie odkryto nową planetę.

>>> Więcej naukowych informacji na FB.com/NaukaToLubie.

Planeta krąży wokół czerwonego karła Proxima Centauri, czyli gwiazdy, która jest naszą najbliższą gwiazdową sąsiadką. Na odkrytej planecie woda może być w stanie ciekłym. Proxima b została złapana dzięki obserwacjom prowadzonym w Chile. Krąży wokół swojej gwiazdy macierzystej nieco ponad 11 ziemskich dni. Tak jak wspomniałem Proxima Centauri jest naszą najbliższą sąsiadką, a to oznacza, że planeta, która wokół niej krąży jest najbliższą nam planetą pozasłoneczną. Czy jest na niej życie? Tego nie wiadomo i trudno nawet powiedzieć w jaki sposób moglibyśmy się tego dowiedzieć. Bardzo dokładne obserwacje mogą nam udzielić inf. o składzie atmosfery albo nawet związków na powierzchni planety, ale na przelot na Proxima b będzie trzeba jeszcze poczekać. Gwiazda i planeta oddalone sa od nas o około 4 lata świetlne, czyli około 38 bilionów kilometrów.

>>> Więcej naukowych informacji na FB.com/NaukaToLubie.

Dla tych, którzy gwiazdę i planetę będą próbowali wypatrzyć na nocnym niebie, także nienajlepsza wiadomość. Obserwacja pozasłonecznych planet jest ekstremalnie trudna nawet przez profesjonalne teleskopy nie mówiąc już o amatorskich. Gołym okiem wcale nie da się ich zobaczyć. Niestety gołym okiem nie widać nawet gwiazdy Proxima Centauri. Jest czerwonym karłem, który świeci za słabym światłem. – Po raz pierwszy zaczęliśmy podejrzewać, że wokół tej [Proxima Centauri] gwiazdy krąży planeta już w 2013 roku. Od tamtego czasu obserwowaliśmy gwiazdę kilkoma różnymi teleskopami – powiedział Guillem Anglada-Escude, szef zespołu astronomów zaangażowanych w projekt badawczy Pale Red Dot.

Masa odkrytej planety to 1,3 masy Ziemi. Planeta krąży wokół swojego słońca w odległości 7 mln kilometrów, a to wielokrotnie mniej niż odległość Ziemia – Słońce. To znacznie mniej niż odległość Słońce – Merkury. Proxima Centauri jest jednak inną gwiazdą niż ta nasza. Świeci słabym światłem i dlatego mimo małej odległości gwiazda – planeta, na powierzchni tej drugiej może znajdować się woda w stanie ciekłym.

>>> Więcej naukowych informacji na FB.com/NaukaToLubie.

Teraz, te Proxima b będzie głównym celem obserwacji tych astronomów, którzy będą poszukiwali życia na obcych planetach. Jeżeli kiedykolwiek (a to na pewno nastąpi) zorganizujemy międzygwiezdną misję, na pewno pierwszym jej celem będzie właśnie nowo odkryta planeta.

Tomasz Rożek

Brak komentarzy do „Ziemia” w sąsiedztwie

O wycince Puszczy słów kilka

Ten spór trwa od kilku miesięcy. Dużo w nim emocji, znacznie mniej faktów. Ekolodzy, opierając się na opinii naukowców, biją na alarm, a rząd (ministerstwo środowiska) właśnie zezwoliło na zwiększenie limitów wycinki drzew w Puszczy Białowieskiej. Komu wierzyć? O co w tym chodzi?

Ten spór trwa od kilku miesięcy. Dużo w nim emocji, znacznie mniej faktów. Ekolodzy, opierając się na opinii naukowców, biją na alarm, a rząd (ministerstwo środowiska) właśnie zezwolił na zwiększenie limitów wycinki drzew w Puszczy Białowieskiej. Komu wierzyć? O co w tym chodzi? 

>>> Więcej naukowych informacji na FB.com/NaukaToLubie.

O polityce tutaj nie piszę. Ale co zrobić jak czasami polityki nie da się ominąć? Spór o najstarszy w Europie fragment lasu pierwotnego musi wzbudzać emocje. Te są tym większe, że na różnicę zdań pomiędzy Zielonymi i Ministerstwem Środowiska nakłada się spór czysto polityczny. Emocjom nie ma się jednak co dziwić, w końcu puszcza to ogromna wartość przyrodnicza i kawał polskiej historii. Są w niej miejsca, które nigdy nie zostały poddane – pośrednio ani bezpośrednio – modyfikacjom ze strony człowieka. Reszta puszczy to niemal w całości las naturalny, czyli obszar, w którym człowiek gospodaruje, ale w sposób mocno ograniczony.

Puszcza polskich królów 

To w sumie bardzo niewielki teren. Po polskiej stronie granicy znajduje się 42 proc. obszaru puszczy (około 50 km z południa na północ, 55 km ze wschodu na zachód), reszta leży na Białorusi. Choć w puszczy znajdują się miejsca, w których las ma charakter pierwotny, i takie, gdzie ma charakter naturalny, w części wpływ gospodarki leśnej jest widoczny. Ta ingerencja w las to nie tylko wynalazek współczesności, ale wynik nasadzeń drzew przed I wojną światową, w okresie międzywojennym i w latach powojennych.

To wtedy puszcza została „wzbogacona” o gatunki drzew, które naturalnie w niej występowały dużo rzadziej, głównie świerki. Dzisiaj sadzone są inne gatunki, co ma przywrócić puszczy jej naturalny charakter. Miejsce drzew „obcych” zajmują dęby, lipy, klony i wiązy. Po raz pierwszy o Puszczy Białowieskiej można przeczytać w opisie polowania, na które w 1409 roku wybrał się Władysław Jagiełło, by zdobyć żywność dla rycerzy wyruszających na wojnę przeciwko zakonowi krzyżackiemu. Solone mięso w beczkach spławiano do Płocka.

>>> Więcej naukowych informacji na FB.com/NaukaToLubie.

Z niepotwierdzonych źródeł wynika także, że w czasie tego polowania wyłapywano dzikie konie (tarpany), które następnie służyły jako konie bojowe. Puszcza Białowieska (choć oczywiście w zupełnie innym niż dzisiaj kształcie) podlega ochronie co najmniej od 600 lat. Była terenem myśliwskim do wyłącznego użytku królów polskich i książąt litewskich. Każda czynność (łowienie ryb, zakładanie barci, koszenie łąk), z wchodzeniem do puszczy włącznie, była regulowana nadawanymi przez króla (konkretnym osobom, ewentualnie osadom) pozwoleniami. Nawet najznamienitsi polscy dostojnicy nie mogli liczyć na stałe zezwolenie na polowanie w puszczy, od czasu do czasu dostawali jednorazowy „przydział”. Za zabicie zwierzęcia bez pozwolenia groziła kara śmierci.

Równie restrykcyjnie podchodzono do wyrębu drzew. W całym XVI wieku wydano tylko dwa pozwolenia: w 1521 roku król Zygmunt I Stary pozwolił Cerkwi w Szereszewie na wyrąb drzew na potrzeby własne, a w 1537 roku królowa Bona pozwoliła na to Kościołowi w tej samej miejscowości. Przez następnych kilkaset lat nowe pozwolenia na wyrąb były nadawane sporadycznie. Paradoksalnie puszczę bardziej cenił rosyjski carat niż polscy komuniści. Zaborcy traktowali ją jako miejsce rozmnażania się zwierząt i teren myśliwski. Dzięki dokarmianiu, zwierzyny w puszczy było za dużo, czego efektem było drastyczne zahamowanie wzrostu drzew liściastych.

721px-Canis_lupus_laying

Wilk

Zwierzęta zjadały młode pędy. Przed I wojną światową po raz pierwszy na masową skalę zalesiano puszczę świerkami. Stopniowa poprawa ochrony puszczy zaczyna się dopiero po 1989 roku. Projekt utworzenia Parku Narodowego Puszczy Białowieskiej pojawia się w 1994 roku, choć już 15 lat wcześniej została ona wpisana przez UNESCO na Światową Listę Rezerwatów Biosfery. Dzisiaj z 860 km kw. puszczy około 300 km kw. to lasy naturalne i zbliżone do naturalnych. A w nich drzewa, których nigdzie indziej w Europie nie znajdziemy. To kwestia nie tylko estetyki, ani tym bardziej potencjału gospodarczego (150-letnie drzewo kiepsko nadaje się na deski).

Stare drzewo znajdujące się w lesie pierwotnym jest nośnikiem genów, które są oryginalne i charakterystyczne dla tego regionu świata i są wynikiem naturalnej selekcji. A to ogromnie istotne. Posadzenie drzewa tego samego gatunku nie zastąpi tego skarbu. Liście obydwu drzew będą pewnie miały ten sam kształt, ale pula genowa będzie inna. W puszczy od dziesięcioleci prowadzone są badania i obserwacje, których wartość jest bezcenna.

Leśnicy leczą puszczę 

Najstarszy nienaruszony las, gatunki zwierząt i roślin występujące tylko w tym miejscu, w końcu oryginalne geny. O co w takim razie jest awantura? O przyszłość. Leśnicy chcieli zwiększyć ilość ścinanych w puszczy drzew. Ekolodzy twierdzili (i dalej twierdzą), że to zaledwie wstęp do masowej wycinki w najstarszym lesie w Europie. Wycinki, która spowoduje straty przyrodnicze nie do odrobienia. Z kolei leśnicy przekonują, że zwiększona wycinka to konieczność, po to, by… puszcza przetrwała. Ekologom i leśnikom – przynajmniej w deklaracjach – chodzi o to samo, o zachowanie bezcennego dziedzictwa przyrodniczego.

>>> Więcej naukowych informacji na FB.com/NaukaToLubie.

Problem polega jednak na tym, że obie grupy uważają, iż aby osiągnąć ten cel, trzeba podjąć dokładnie odwrotne kroki. Jedni postulują: „Ręce precz od puszczy”, drudzy przekonują, że bez pomocy człowieka puszcza, a przynajmniej jej część, zostanie bezpowrotnie zniszczona. Dlaczego? Bo zmiany klimatu, a konkretnie rosnące temperatury średnioroczne, oraz odwodnienie powodują osłabienie niektórych gatunków drzew. Najbardziej podatne na niekorzystne zmiany są świerki.

596px-Europäische_Sumpfschildkröte_Emys_orbicularis

Żółw błotny jest bardzo rzadkim elementem fauny Puszczy By Böhringer Friedrich

Osłabione stają się łatwym celem dla leśnych owadów, np. korników. Biorąc pod uwagę nadreprezentację świerków w niektórych częściach puszczy (wynikającą ze sztucznego nasadzania), na niektórych obszarach ilość chorych drzew jest spora. Leśnicy chcą chronić zdrowe drzewa, wycinając chore. Nadleśnictwa (Białowieża, Hajnówka i Browsk) mają dziesięcioletni przydział (plan) na wycinkę drzew. Ten plan określa Ministerstwo Środowiska i jest w nim ustalona łączna masa drewna, jaka może być wycięta w ciągu 10 lat. Zwykle każdego roku wycina się 10 proc. dziesięcioletniego przydziału. Taki podział nie jest jednak obligatoryjny. Nadleśnictwo może podjąć decyzję, że w którymś roku ilość wyciętych drzew będzie większa, ale za to w kolejnych latach trzeba będzie wycinać mniej. Dzisiaj obowiązujące przydziały zostały określone na lata 2012–2021. Decyzją nadleśnictwa w trzech pierwszych latach obowiązywania planu (2012–2015) wycięto jednak prawie 90 proc. drzew przewidzianych do wycięcia przez 10 lat. Skąd to przyspieszenie? W opublikowanym na stronie internetowej Lasów Państwowych dokumencie pt. „Puszcza Białowieska potrzebuje ratunku”, sygnowanym przez Regionalną Dyrekcję Lasów Państwowych w Białymstoku, znalazło się stwierdzenie, że nadleśnictwo prowadziło „cięcia sanitarne mające na celu opanowanie gradacji kornika drukarza”.

Leśnicy uważają, że w puszczy panuje klęska kornika, która zagraża dalszemu istnieniu drzewostanów świerkowych, stanowiących na terenie Nadleśnictwa Białowieża ponad 30 proc. powierzchni leśnej (w całej puszczy ok. 10 proc). „Jedyną znaną naukom leśnym i skuteczną metodą walki z kornikiem i ograniczania jego gradacji jest usuwanie drzew zasiedlonych, by ograniczyć rozprzestrzenianie się szkodników” – piszą autorzy dokumentu.

Naukowcy bronią drzew

To, że korniki „siedzą” w puszczy, nie jest przedmiotem sporu. Tyle tylko, że nie wszyscy – tak jak leśnicy – uważają, że drzewa zjadane przez korniki trzeba usuwać. 17 naukowców napisało list zatytułowany „Dlaczego martwe świerki są potrzebne w Puszczy Białowieskiej”. Tego głosu nie można zlekceważyć, gdyż autorzy dokumentu to eksperci z takich dziedzin jak leśnictwo, biologia, agroekologia, entomologia i zoologia, przedstawiciele 14 polskich uczelni i instytucji badawczych.

>>> Więcej naukowych informacji na FB.com/NaukaToLubie.

Naukowcy w sposób jednoznaczny i przystępny tłumaczą, dlaczego usuwanie chorych drzew jest błędem. „Opanowane przez korniki świerki zamierają, ustępując miejsca drzewom liściastym, wymagającym dużej ilości światła i lepiej dostosowanym do aktualnych warunków środowiska. Naturalny proces zmiany struktury gatunkowej lasu jest długotrwały, jednak na żadnym z jego etapów nie ma zagrożenia dla trwałości leśnego ekosystemu” – uważają. Nie ukrywają też, że tam, gdzie świerków jest dużo, masowe ich wymieranie może sprawiać wrażenie klęski. Powołują się na przykład Beskidów, które wiele lat temu w sposób sztuczny zostały zalesione świerkami i sosnami. Badacze przestrzegają jednak przed chodzeniem drogą na skróty, szczególnie w Puszczy Białowieskiej (czyli przed wycięciem drzew, zaoraniem terenu i posadzeniem sadzonek drzew liściastych).

By Konrad KurzaczPimkee-mail: konrad.kurzacz@gmail.com - Praca własna, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=2065137

Mozaikowy układ zbiorowisk leśnych w Białowieskim Parku Narodowym. Na pierwszym planie widoczny ols z udziałem świerka. By Konrad KurzaczPimke

Argumentują bowiem (powołując się na badania), że „dynamika gradacji kornika niewiele się różni na terenach, gdzie wszelkimi dostępnymi środkami prowadzono walkę z kornikiem, i na terenach, gdzie takich działań nie prowadzono. Usuwanie zaatakowanych przez kornika lub zamarłych z innych przyczyn drzew nie stanowi skutecznej metody zatrzymania gradacji kornika i zamierania świerków, lecz może przynieść skutek przeciwny”. Dlaczego usuwanie chorych drzew zamiast sytuację poprawić, może ją pogorszyć? Badacze piszą, że w przypadku Puszczy Białowieskiej nie da się wyciąć wszystkich zaatakowanych drzew. Tymczasem umierające albo martwe drzewo „przyciąga” chrząszcze, które żywią się kornikami (chrząszcza wabi feromon, zapach wytwarzany przez samce korników w chwili opanowywania drzewa). Zdaniem autorów listu najskuteczniejszą metodą walki z kornikami jest pozostawienie lasu w spokoju.

„Duża koncentracja zamierających świerków opanowanych przez korniki staje się miejscem intensywnego namnażania się drapieżnych chrząszczy, a także innych drapieżnych i pasożytniczych owadów, które z takich miejsc rozprzestrzeniają się na kolejne obszary w poszukiwaniu swoich ofiar” – piszą autorzy tekstu. Choć przejściowo, ze względów estetycznych, niektóre fragmenty puszczy będą wyglądały nieatrakcyjnie, natura poradzi sobie ze szkodnikami.

Będzie awantura

Od wielu miesięcy na niezliczonych forach i stronach internetowych trwa awantura. Uzasadniona! Ministerstwo Środowiska nie przedstawia przekonywujących dowodów na to, że ma rację, z kolei leśnicy posługują się półprawdami. Ekolodzy – wręcz przeciwnie. Pokazują badania, cytują autorytety. I co? I nic, bo minister środowiska Jan Szyszko właśnie zatwierdził zwiększenie wycinku drzew w Puszczy. Zwiększone limity zakładają pozyskanie ponad 180 tysięcy metrów sześciennych drewna w ciągu najbliższych 10 lat. To prawie 5 razy więcej niż zakładał dotychczasowy plan.

>>> Więcej naukowych informacji na FB.com/NaukaToLubie.

Czy minister Szyszko nie zna badań, które mówią o tym, że wycinka nie polepsza, a wręcz może pogorszyć sytuację? Pomijam fakt, że grozi nam międzynarodowy skandal. Szkoda mi ostatniego w Europie, a może na całej północnej półkuli nizinnego lasu strefy umiarkowanej z całym jego bogactwem. Puszcza to nie tylko wysokie drzewa i duże zwierzęta (np. żubry), to bogactwo przyrody porównywalne do Wielkiej Rafy Koralowej!

Epipogium_aphyllum_plants

Krytycznie zagrożony wyginięciem w Polsce storzan bezlistny By BerndH

Organizacje ekologiczne biją na alarm, a leśnicy – nie negując tego, o czym piszą naukowcy – przypominają, że ich obowiązują przepisy i procedury zobowiązujące do przeciwdziałania takim zjawiskom jak plaga korników, że ich nadrzędnym celem jest troska o zachowanie trwałości lasów. Z tym ostatnim można by dyskutować, Lasy Państwowe to „firma” przynosząca ogromne zyski. Te pieniądze nie są inwestowane w ochronę lasów, tylko przelewane do budżetu państwa.

Leśnicy przypominają przy okazji, że na obszarach, na których świerków jest dużo, bez interwencji człowieka las z powodu umierania tych drzew będzie martwy. To prawda, ale… świerki, o których mowa, są w puszczy elementem sztucznym. Podatność Puszczy Białowieskiej na korniki jest skutkiem działalności człowieka przed dziesiątkami lat. Wycinanie tych drzew wcale nie spowoduje, że problem zniknie. To popełnianie tego samego błędu, czyli ingerencja w las.

Profesorze Janie Szyszko, nie idź tą drogą!

 

 

24 komentarze do O wycince Puszczy słów kilka

Świat między 44 zerami

W 2013 roku, na maturze z języka polskiego, uczniowie analizowali wstęp do mojej książki „Nauka po prostu. Wywiady z wybitnymi”. Rozwiązałem test maturalny stworzony do mojego tekstu i zdobyłem… około 70 proc. punktów. Dlaczego nie 100 proc? Części pytań nie zrozumiałem, część moich odpowiedzi nie trafiła w klucz. W skrócie z tekstu który sam zrozumiałem rozumiem ok. 70 proc. Nie świadczy to chyba o mnie najlepiej. Dzisiaj – nie tylko maturzystom – ten tekst przypominam.

W 2013 roku, na maturze z języka polskiego, uczniowie analizowali wstęp do mojej książki  „Nauka po prostu. Wywiady z wybitnymi”. Rozwiązałem test maturalny stworzony do mojego tekstu i zdobyłem… około 70 proc. punktów. Dlaczego nie 100 proc? Części pytań nie zrozumiałem, część moich odpowiedzi nie trafiła w klucz. W skrócie z tekstu który sam zrozumiałem rozumiem ok. 70 proc. Nie świadczy to chyba o mnie najlepiej. Dzisiaj – nie tylko maturzystom – ten tekst przypominam.

**************

Świat między 44 zerami

Widzialny Wszechświat ma rozmiar kilkunastu miliardów lat świetlnych. To około 1026 (1 z 26 zerami) metra. Z kolei najmniejsze struktury, których istnienia jesteśmy pewni, to budujące między innymi protony i neutrony kwarki. Mają rozmiar kilku attometrów, czyli 10-18 metra. Najmniejsze i największe obserwowane przez człowieka obiekty dzielą od siebie aż 44 rzędy wielkości! Kwarki są o 100 000 000 000 000 000 000 000 000 000 000 000 000 000 000 razy mniejsze od największego obiektu dociekań naukowców. Nasz świat mieści się w tych 44 zerach. Są w nim cząstki elementarne, żywe organizmy i ich DNA, Ziemia i inne planety. Są gwiazdy, galaktyki i gromady galaktyk. A gdzieś w środku jest człowiek. Jedyna znana istota, która chce wiedzieć i chce to wszystko zrozumieć.

Świat, ten zamknięty „między 44 zerami”, jest skonstruowany według uniwersalnych reguł. Człowiek ich nie tworzy, najwyżej odkrywa i nazywa. Na razie znamy je wycinkowo, choć chcielibyśmy oczywiście ogarniać w całości. Marzy nam się też, by w pełni je wykorzystywać. Nanotechnolodzy chcieliby tworzyć komputery oparte na węglu i projektować cząsteczki leków atom po atomie. Na razie jednak nie wiedzą jak. Biotechnolodzy chcą nadawać żywym organizmom dowolne cechy, chcą hodować tkanki, a może nawet całe organy, z jednej tylko komórki. Inni chcą poznać tajemnice mózgu (by skuteczniej się z nim komunikować), początków materii (by znaleźć źródło niewyczerpywalnej energii) czy klimatu (by zapobiegać ekstremalnym zjawiskom pogodowym).

Odkrywamy coraz więcej i nieustannie jesteśmy zaskakiwani złożonością świata, w którym żyjemy. Odkrywamy coraz więcej, a ciągle tyle pozostaje do poznania i zrozumienia. Horyzont poznania wcale się nie przybliża, gorzej … można odnieść wrażenie, że się oddala.  Nie przeszkadza nam to jednak marzyć.

Świat przyszłości, świat czasów, w których jeżeli wszystkie reguły zostaną poznane (czy to w ogóle kiedykolwiek nastąpi?), będzie światem dostosowanym przez człowieka do człowieka – tylko czy w ostatecznym rachunku dla człowieka. To wizja bardzo odległa, ale przecież zmierzamy ku niej od zawsze. Zaglądamy za horyzont zdarzeń w poszukiwaniu mechanizmów, które za tym wszystkim stoją, bo chcemy je wykorzystywać po swojemu, albo inaczej, na swój użytek. Coraz częściej zresztą nam się to udaje. Tymi mechanizmami, trybami i zębatkami są naukowe prawa przyrody. Nauczyliśmy się kontrolować reakcje jądrowe i dlatego potrafimy korzystać z energii atomowej. Wybudowaliśmy urządzenia, które odczytują niektóre intencje mózgu i dlatego możemy pomagać osobom niepełnosprawnym. W końcu dzięki poznaniu właściwości materii w skali mikro budujemy komputery, a zrozumienie sposobu zapisu informacji w naszym DNA już niedługo zaowocuje terapiami genowymi. To wszystko, te niewątpliwe osiągnięcia ludzkiego intelektu, nie zmieniają jednak faktu, że do poznania wszystkich reguł rządzących przyrodą (a może jest tylko jedna reguła uniwersalna, która stosuje się do wszystkiego?) sporo nam jeszcze brakuje. Czy w związku z tym warto zaprzątać sobie głowę refleksją nad przyszłością? Nad kierunkiem i tempem rozwoju nauki? Może lepiej upajać się wizją świata ułożonego, oswojonego, dostosowanego? Wizją świata przyszłości. Powód jest – jak sądzę – jeden. Uczymy się przez eksperyment. Rozwój sam się nie dzieje, a bez prób i bez błędów nie ma postępu. No właśnie – błędów. O te najłatwiej w pośpiechu. Świat rozwija się dzisiaj szybciej niż kiedykolwiek wcześniej, szybciej niż refleksja nad nim. Nie ma tygodnia bez spektakularnego odkrycia, bez przesunięcia granicy poznania. Wszystko dzieje się tak szybko, że słowo drukowane już dawno przestało nadążać. Wypiera je słowo wyświetlane na ekranie. Już nawet nie komputera stojącego na biurku, ale coraz częściej telefonu komórkowego, albo czegoś co telefonem jest tylko przy okazji.

Nasz świat jest pędzącym pociągiem, w którym siedzimy i patrzymy za okno. Wszystko jest zamazane. Nie widać szczegółów, nie ma czasu na analizę detali. Pędzimy do przodu. To wspaniałe… ale trzeba uważać. W przeszłości na przykład w czasie wojen i rewolucji zdarzało się, że gdy historia przyspieszała brakowało czasu na refleksję. Rzeczy działy się tak szybko, że konsekwencje czynów i decyzji czasami uświadamiano sobie zbyt późno. Wchodząc więc w erę „nano” czy „cyber” warto byłoby zdawać sobie sprawę ze wszystkich ewentualnych konsekwencji. Dopiero ta wiedza pozwala na w pełni świadome funkcjonowanie w dzisiejszym świecie. Skąd ją czerpać? Najlepiej u źródła.

Na początku XXI wieku żyjemy w świecie nieustannie kształtowanym, wręcz kreowanym przez naukę i technologię. W każdej epoce życie jednostki w jakimś stopniu zależało od postępu cywilizacji, ale nigdy nie zależało aż tak bardzo jak obecnie. Miasto bez prądu czy komunikacja bez Internetu nie istnieją. Nie potrafimy żyć bez prądu, Internetu, telefonu komórkowego i komputera. I nie chodzi o naszą wygodę czy przyzwyczajenia, ale o przetrwanie. Bez sieci komputerowej i komórkowej nie działają systemy sterujące pracą elektrowni, oczyszczalni ścieków, uzdatniania wody czy komunikacji (metro, tramwaje, koleje). Niedługo nie będzie istniała elektronika bez nanotechnologii i medycyna bez biotechnologii, a może nawet cybernetyki. Coraz częściej osobom chorym i niepełnosprawnym pomaga się wszczepiając zaawansowane technologiczne implanty i protezy. Niektórym to ratuje życie, innym ułatwia i czyni znośniejszym. Ale wszystkich w pewnym sensie uzależnia od technologii.

Być może z powodu wspomnianego uzależnienia naszego świata od osiągnięć naukowych, może dosłownego rozumienia słowa „demokracja”, a może z powodu asekuranckiej postawy polityków, coraz częściej od nie-specjalistów wymaga się zajmowania stanowiska w sprawach bezpośrednio związanych z nauką. Nigdy wcześniej tak nie było. W niektórych krajach to w referendach ważą się losy biotechnologii i energetyki. W innych pyta się obywateli o status ludzkiego embriona albo o moment, w którym można przerwać ludzkie życie. Tam gdzie formalnie plebiscytu nie ma, rządzący i tak przed podjęciem jakiejkolwiek decyzji przyglądają się słupkom sondaży. Zdanie naukowców, specjalistów zdaje się mieć mniejszą wartość niż opinie elektoratu, często manipulowanego przez sprawnych lobbystów.

W interesie wszystkich jest, by każdy obywatel, a nie tylko osoba z wykształceniem kierunkowym, mógł zabrać świadomy głos w toczących się dzisiaj na wielu frontach debatach z naukowym tłem. Gdy w każdych kolejnych wyborach frekwencja jest coraz niższa, mówi się o zagrożeniu demokracji. Zagrożeniem jest także to, że tak niewiele osób zdaje sobie sprawę z kierunków naszego rozwoju, z szans jakie przed nami stoją i z zagrożeń z nimi związanych. Jeden z moich rozmówców stwierdził, że naukowcy powinni uprawiać naukę, politycy powinni na nią dawać pieniądze, a społeczeństwo powinno kontrolować i jednych i drugich.  Gdy rządzący przed wieloma laty Niemcami kanclerz Gerhard Schroeder poszukiwał oszczędności i chciał obciąć nakłady na naukę, został powszechnie skrytykowany. W mediach pojawiały się nawet sondaże społeczne, z których wynikało, że Niemcy nie chcą w ten sposób oszczędzać. Nasi sąsiedzi zdają sobie po prostu sprawę z tego, że inwestowanie w naukę oznacza rozwój. Społeczeństwo może pośrednio – przez wybieranych polityków – wpływać na kierunek rozwoju nauki. O ile ma wiedzę, która umożliwia podjęcie świadomej decyzji. U nas nakłady na naukę czy nowe technologie nigdy nie były tematem debaty publicznej. Ani w czasie kampanii wyborczych, ani poza nimi. Dlaczego tak się dzieje? W powszechnym odczuciu polski naukowiec to ktoś zamknięty w hermetycznym laboratorium. Ktoś całkowicie oderwany od dnia codziennego. Przyjęło się u nas myśleć, że nauka ma swego rodzaju autonomię, jest niezależna od rzeczywistości. Niestety niebezpieczną konsekwencją takiej opinii jest przekonanie, że uprawianie nauki to sztuka dla sztuki. Trudno sobie wyobrazić większy absurd. Życie nie biegnie innym torem niż najnowsze osiągnięcia i technologie. Przeciwnie. Te obydwie dziedziny są ze sobą ściśle związane. Ale – i znowu wracamy do tego samego – skąd mamy o tym wiedzieć? Jak mamy wpływać na szybkość i kierunek zmian, skoro nie mamy o nich większego pojęcia? Warto wiedzieć więcej. I warto zajrzeć do źródeł.

Tomasz Rożek

 

Brak komentarzy do Świat między 44 zerami

Dzieciątko kręci pogodą

Wyobraź sobie wiatry, które od tysięcy, może setek tysięcy lat wieją tysiące kilometrów stąd. Wyobraź sobie dzień, w którym przestają wiać i w efekcie tego… zakwitają kwiaty w Dolinie Śmierci. Bzdury? Nie, szczera prawda.

Wyobraź sobie wiatry, które od tysięcy, może setek tysięcy lat wieją tysiące kilometrów stąd. Wyobraź sobie dzień, w którym przestają wiać i w efekcie tego… zakwitają kwiaty w Dolinie Śmierci. Bzdury? Nie, szczera prawda. 

>>> Więcej naukowych informacji na FB.com/NaukaToLubie. 

Te wiatry to passaty wiejące na południowym Pacyfiku. Wieją ze wschodu, czyli od południowych wybrzeży Ameryki Południowej, na zachód, czyli w kierunku Australii, Filipin i Indonezji. Czasami jednak zdarza się, że passaty milkną albo wieją znacznie słabiej. Dzieje się to pod koniec roku, w okolicach świąt Bożego Narodzenia. To zjawisko (osłabienie passatów) zostało nazwane El Niño, czyli po hiszpańsku „dzieciątko, chłopczyk”.

Nie tylko pogoda 

Passaty wiejące w kierunku zachodnim są tak silne, że poziom morza u wybrzeży Indonezji jest o kilkadziesiąt centymetrów wyższy niż u wybrzeży Ameryki Południowej. To jednak nie wyższy poziom wody wpływa na pogodę, tylko fakt, że wiatry powodują przepływ ogromnych mas ciepłej wody. W ich miejsce pojawia się lodowata woda z dna oceanu. Póki wieją passaty, woda u zachodnich wybrzeży Ameryki Południowej jest zimna, ale u wybrzeży Australii i Indonezji – ciepła. To uruchamia całą kaskadę zjawisk pogodowych. Na przykład deszczy, które padają tam, gdzie woda jest ciepła. Z kolei tam, gdzie jest ona zimna, panuje suchy klimat. Gdy jednak pojawia się zjawisko El Niño, i wiatry słabną, masy ciepłej wody nie zostają zepchnięte na zachód. W efekcie u wybrzeży Ameryki Południowej jest za ciepło, a u wybrzeży Indonezji – za zimno. W Ameryce zaczynają padać deszcze (choć miało być sucho), a w Azji Południowo-Wschodniej i północnej Australii pojawiają się susze, choć miało padać. Te zmiany spowodowały, że w ostatnich dniach, jak alpejska łąka, zakwitła amerykańska Dolina Śmierci.  Najsuchsze, najgorętsze i najbardziej zasolone miejsce w całej Ameryce Północnej. Dolina zakwitła, bo w czasie ostatnich miesięcy przeszły nad nią silne deszcze. Swoją drogą, czy to nie inspirujące, że nasiona z których w każdej chwili wyrasta życie są powszechne nawet w tak nieprzyjaznych miejscach jak Dolina Śmierci?

>>> Więcej naukowych informacji na FB.com/NaukaToLubie.

Osobnym wątkiem związanym z anomalią El Niño jest ten dotyczący przyrody. Naturalny prąd oceaniczny niesie wody chłodne, które są bogate w składniki odżywcze. Rozwija się morskie życie, a wraz z nim populacja ptaków u wybrzeży Ameryki. Z kolei odchody ptaków użyźniają pola. Bez tego użyźniania, na polach niewiele wyrośnie. Zjawisko El Niño, gdyby trwało kilka miesięcy, jest w stanie wykończyć – i tak biedne – gospodarki takich krajów jak Peru czy Chile.

Wróćmy jednak do pogody. Ziemia to system naczyń połączonych. Wody oceanów mieszają się ze sobą, ogromne masy powietrza nie znają granic państw czy kontynentów. Anomalia, szczególnie tak duża jak El Niño, musi mieć konsekwencje na całym globie. Jakie one są? Cóż, nie mamy ich pełnej świadomości, ale wiemy o tych najważniejszych.

Nie mamy pojęcia 

Osłabienie czy wstrzymanie passatów powoduje pojawienie się czasami katastrofalnych deszczy w Ameryce Południowej. W poprzednich latach, gdy pojawiało się Dzieciątko w takich krajach jak Ekwador czy Peru, ilość opadów była aż 10-krotnie wyższa niż wtedy, gdy El Niño nie było. Wyższe opady (teraz śnieżyce) pojawiają się także w Ameryce Północnej. Susze w Azji Południowo-Wschodniej i północnej Australii są przyczyną pożarów, które nawiedzają tamtejsze lasy od kilku miesięcy. Ogromne ilości dymu dostają się do atmosfery, a to ma wpływ na zdrowie ludzi. Znacznie silniejsze i częstsze są huragany na Pacyfiku, ale za to spokojniej jest na Atlantyku. Zwiększone opady pojawiają się w Afryce Północno-Wschodniej i w krajach Półwyspu Arabskiego. Z kolei susze panują na południu Afryki. A co z Europą? Nie ma jednoznacznych dowodów, ale przypuszcza się, że efektem długo trwającego El Niño są ciepłe zimy przerywane krótkimi i gwałtownymi okresami siarczystych mrozów. Tak było na przełomie lat 1982 i 1983 oraz 1997 i 1998. Wówczas także występowało zjawisko Dzieciątka. Tegoroczne El Niño jest jednak rekordowe. Tak silne i długotrwałe nie było od początku pomiarów, a więc od 1950 roku. Za kilka tygodni minie rok, odkąd passaty zwolniły. Zwykle działo się to najwyżej na kilka tygodni w okresie Bożego Narodzenia. Zazwyczaj El Niño występowało mniej więcej co dekadę. W ostatnich latach jest częstsze, dłuższe i gwałtowniejsze. – Zjawisko to wkracza na nowe obszary. Nasza planeta zmieniła się drastycznie ze względu na generalną tendencję ocieplania wód oceanicznych, utratę lodu arktycznego, a także ponad miliona kilometrów kwadratowych letniej pokrywy lodowej na półkuli północnej – powiedział sekretarz generalny Światowej Organizacji Meteorologicznej (WMO) Michel Jarraud. – Choć właśnie padły rekordy, El Niño zamierza jeszcze bardziej podkręcić temperaturę – dodał. Pozostaje odpowiedzieć na ostatnie pytanie. Co jest źródłem tego zjawiska meteorologicznego? Dlaczego w ostatnich latach obserwujemy je częściej? Na obydwa te pytania istnieje tylko jedna uczciwa odpowiedź. Nie mamy bladego pojęcia!

>>> Więcej naukowych informacji na FB.com/NaukaToLubie.

3 komentarze do Dzieciątko kręci pogodą

(wszech)Świat się marszczy !!!

Lada dzień gruchnie wiadomość na którą czekamy od kilku dziesięcioleci. Wszechświat, przestrzeń marszczy się. W LIGO podobno odkryto fale grawitacyjne.

Kosmiczny detektor, kosmiczne zagadnienie. W świecie fizyków i kosmologów od kilku dni nie mówi się o niczym innym niż fale grawitacyjne, które miał podobno wykryć LIGO. O co chodzi?

>>> Więcej naukowych informacji na FB.com/NaukaToLubie

waves-101-1222750-1600x1200

Fale grawitacyjne to kompletny odlot. Człowiekiem który sprawę rozumiał, ba, który ją wymyślił, a w zasadzie wyliczył był nie kto inny tylko Albert Einstein (swoją drogą powinien dostać nagrodę za odkrycie najbardziej nieintuicyjnych zjawisk we wszechświecie). Z napisanej przez niego 100 lat temu Ogólnej Teorii Względności wynika, że ruch obiektów obdarzonych masą,  jest źródłem rozchodzących się w przestrzeni fal grawitacyjnych (lub inaczej – choć nie mniej abstrakcyjnie – zaburzeń czasoprzestrzennych). Jak to sobie wyobrazić? No właśnie tu jest problem. Bardzo niedoskonała analogia to powstające na powierzchni wody kręgi, gdy wrzuci się do niej kamień. W przypadku fal grawitacyjnych zamiast wody jest przestrzeń, a zamiast kamienia poruszające się obiekty. Czym większa masa i czym szybszy ruch, tym łatwiej zmarszczki przestrzeni powinny być zauważalne. Rejestrując największe fale grawitacyjne, tak jak gdybyśmy bezpośrednio obserwowali największe kosmiczne kataklizmy: zderzenia gwiazd neutronowych, czarnych dziur czy wybuchy supernowych. Trzeba przyznać, że perspektywa kusząca gdyby nie to… że fale grawitacyjne to niezwykle subtelne zjawiska. Nawet te największe, bardziej będą przypominały lekkie muśnięcia piórkiem niż trzęsienie ziemi. W książce „Zmarszczki na kosmicznym morzu” (Ripples on a Cosmic Sea: The Search for Gravitational Waves) australijski fizyk, prof. David Blair, poszukiwanie fal grawitacyjnych porównuje do nasłuchiwania wibracji wywołanych przez pukanie do drzwi z odległości dziesięciu tysięcy kilometrów. Detektory zdolne wykryć fale grawitacyjne powinny być zdolne zarejestrować wstrząsy sejsmiczne wywołane przez upadek szpilki po drugiej stronie naszej planety. Czy to w ogóle jest możliwe? Tak! Od 2002 roku działa w USA Laser Interferometer Gravitational Wave Observatory w skrócie LIGO czyli Laserowe Obserwatorium Interferometryczne Fal Grawitacyjnych. Zanim budowa ruszyła, pierwszy szef laboratorium prof. Barry Barrish na dorocznym posiedzeniu AAAS (American Association for the Advancement of Science) oświadczył, że pomimo wielu trudności nadszedł w końcu czas na zrobienie czegoś, co można nazwać prawdzią nauką (swoją drogą, odważne słowa na zjeździe najlepszych naukowców na świecie).

>>> Więcej naukowych informacji na FB.com/NaukaToLubie

This_visualization_shows_what_Einstein_envisioned

Symulacja łączenia się czarnych dziur – jedno ze zjawisk, które wytwarza najsilniejsze fale grawitacyjne

Z falami grawitacyjnymi jest jednak ten problem, że przez dziesięciolecia, mimo prób, nikomu nie udało się ich znaleźć. Gdyby komuś zaświtała w głowie myśl, że być może w ogóle ich nie ma, spieszę donieść, że gdyby tak było naprawdę, runąłby fundament współczesnej fizyki – Ogólna Teoria Względności, a kosmologię trzeba byłoby przepisać od początku. Dzisiaj głośno mówi się, że fale grawitacyjne zostały przez LIGO zarejestrowane. Panuje raczej atmosfera lekkiego podniecenia i oczekiwania na to, co stanie się za chwilę. Potwierdzenie istnienia fal grawitacyjnych nie będzie kolejnym odkryciem, które ktoś odfajkuje na długiej liście spraw do załatwienia.  Zobaczymy otaczający nas wszechświat z całkowicie innej perspektywy.

Jako pierwszy falowe zmiany pola grawitacyjnego, w latach 60 XX wieku próbował zarejestrować amerykański fizyk Jaseph Weber. Budowane przez niego aluminiowe cylindry obłożone detektorami nie zostały jednak wprawione w drgania. Co prawda Weber twierdził, że złapał zmarszczki wszechświata, ale tego wyniku nie udało się potwierdzić. Dalsze poszukiwania trwały bez powodzenia, aż do 1974 roku, gdy dwóch radioastronomów z Uniwersytetu w Princeton (Joseph Taylor i Russel Hulse) obserwując krążące wokół siebie gwiazdy (PSR1913+16) stwierdziło, że układ powoli traci swoją energię, tak jak gdyby wysyłał … fale grawitacyjne. Mimo, że samych fal nie zaobserwowano, za pośrednie potwierdzenie ich istnienia autorzy dostali w 1993 roku Nagrodę Nobla. Uzasadnienie Komitetu Noblowskiego brzmiało: „za odkrycie nowego typu pulsara, odkrycie, które otwiera nowe możliwości badania grawitacji”.

>>> Więcej naukowych informacji na FB.com/NaukaToLubie

virgoviewInstalacja, która z lotu ptaka wygląda jak wielka litera L, to dwie rury o długości 4 km każda, stykające się końcami pod kątem prostym. Choć całość przypomina przepompownię czy oczyszczalnię ścieków jest jednym z najbardziej skomplikowanych urządzeń kiedykolwiek wybudowanych przez człowieka. Każde z ramion tworzy betonowa rura o średnicy 2 metrów. W jej wnętrzu – jak w bunkrze – znajduje się druga ze stali nierdzewnej, która jest granicą pomiędzy światem zewnętrznym a bardzo wysoką próżnią. Z miejsca w którym rury się stykają, „na skrzyżowaniu”, dokładnie w tym samym momencie wysyłane są wiązki lasera. Ich celem są zwierciadła umieszczone na końcu każdej z rur. 2000px-Ligo.svgOdbijane przez zwierciadła tam i z powrotem około 100 razy promienie, wpadają z powrotem do centralnego laboratorium i tam zostają do siebie porównane. Dzięki zjawisku interferencji możliwe jest wyliczenie z wielką dokładnością różnicy przebytych przez obydwie wiązki światła dróg. A drogi te powinny być identyczne, no chyba że… chyba że w czasie pomiaru przez Ziemie – podobnie jak fala na powierzchni wody – przejdzie fala grawitacyjna. Wtedy jedno z ramion będzie nieco dłuższe, a efekt natychmiast zostanie wychwycony w czasie porównania dwóch wiązek. Tyle tylko, że nawet największe zaburzenia zmienią długość ramion o mniej niż jedną tysięczną część średnicy protonu (!). To mniej więcej tak, jak gdyby mierzyć zmiany średnicy Drogi Mlecznej (którą ocenia się na ok. 100 tys. lat świetlnych) z dokładnością do jednego metra. Czy jesteśmy w stanie tak subtelne efekty w ogóle zarejestrować ? Lustra na końcach każdego z korytarzy (tuneli) mogą zadrgać (chociażby dlatego, że przeleciał nad nimi samolot, albo w okolicy przejechał ciężki samochód). By tego typu efekty nie miały wpływu na pomiar zdecydowano się na budowę nie jednej, ale dwóch instalacji, w Handford w stanie Waszyngton i w Livingston w stanie Luizjana. Są identyczne, choć oddalone od siebie o ponad 3 tys. kilometrów. Ich ramiona maja takie same wymiary i maja takie same układy optyczne. Nawet gdy w jednym LIGO zwierciadło nieoczekiwanie zadrga, niemożliwe by to samo w tej samej chwili stało się ze zwierciadłem bliźniaczej instalacji. Zupełnie jednak inaczej będzie gdy przez Ziemię przejdzie z prędkością światła fala grawitacyjna. Zmiany jakie wywoła zajdą w dokładnie tej samej chwili w obydwu ośrodkach.

>>> Więcej naukowych informacji na FB.com/NaukaToLubie

A kończąc, pozwólcie na ton nieco nostalgiczny. Wszechświat jest areną niezliczonych kataklizmów a dramatyczne katastrofy, to naturalny cykl jego życia. To nic, że od tysięcy lat na naszym niebie królują te same gwiazdozbiory. W skali kosmicznej taki okres czasu to nic nieznacząca chwila, a nawet w czasie jej trwania widoczne były wybuchy gwiazd. Z bodaj największego kataklizmu – Wielkiego Wybuchu – „wykluło” się to co dzisiaj nazywamy kosmosem. Obserwatoria grawitacyjne (np. takie jak LIGO) otworzą oczy na inne wielkie katastrofy, i to nie tylko te które będą, ale także te które były. Już prawie słychać zgrzyt przekręcanego klucza w drzwiach. Już za chwilę się otworzą. Najpierw przez wąską szparę, a później coraz wyraźniej i coraz śmielej będziemy obserwowali wszechświat przez nieznane dotychczas okulary. Ocenia się, że to co widzą „zwykłe” teleskopy (tzw. materia świecąca) to mniej niż 10% całej masy Wszechświata. A gdzie pozostałe 90% ? Na to pytanie nie znaleziono dotychczas odpowiedzi. Tzw. ciemna materia powinna być wszędzie, a nie widać jej nigdzie. Przypisuje się jej niezwykłe właściwości, łączy się ją z nie mniej tajemniczą ciemną energią. Czy LIGO, pomoże w rozwiązaniu tej intrygującej zagadki? Czy będzie pierwszym teleskopem, przez który będzie widać ciemną materię? Jeżeli obserwatoria grawitacyjne będą w stanie „zobaczyć” obiekty, które można obserwować także w świetle widzialnym (np. wybuch supernowej), a nie będą widziały ani grama ciemnej materii, to zagadka staje się jeszcze bardziej tajemnicza. Bo albo ta materia nie podlega prawom grawitacji, albo nie ma żadnej ciemnej materii. Konsekwencje obydwu tych scenariuszy są trudne do przewidzenia. Czy teraz rozumiecie dlaczego odkrycie fal grawitacyjnych jest tak ważne? 

10 komentarzy do (wszech)Świat się marszczy !!!

Śpiewające piaski

„Powszechnie wiadomym jest, że pustynię zamieszkują złe duchy, prowadząc podróżników do zguby przez najbardziej złośliwe sztuczki” – pisał w 1295 roku Marco Polo. Dzisiaj wiadomo, że to nie duchy straszą na pustyni tylko dźwięki produkowane przez wydmy.

„Powszechnie wiadomym jest, że pustynię zamieszkują złe duchy, prowadząc podróżników do zguby przez najbardziej złośliwe sztuczki”

– pisał w dzienniku ze swoich podróży Marco Polo. Był rok  w 1295 roku i o mechanice materiałów sypkich wiedziano wtedy niewiele (a i dzisiaj nie wszystko jest jasne i oczywiste). Dzisiaj wiadomo, że to nie duchy straszą na pustyni podróżników, tylko śpiewające wydmy. O co chodzi? O lawiny piasku.

>>> Więcej naukowych informacji na FB.com/NaukaToLubie.

Samochód jadący po tzw. kocich łbach hałasuje, bo koła raz wjeżdżają na kamień, raz z niego zjeżdżają. I tak w kółko, wjeżdżają i zjeżdżają, wjeżdżają… A teraz wyobraźcie sobie ziarenka piasku, które zsuwają się w dół wydmy. Nie ześlizgują się przecież po gładkiej powierzchni, tylko po innych ziarenkach piasku, leżących głębiej. I tak jak samochód na „kocich łbach”, tak drobinki piasku, raz wtaczają się na ziarenka leżące głębiej, raz z nich staczają. Zsynchronizowany ruch ziarenek „góra-dół” powoduje, że wydma zachowuje się jak ogromna drgająca membrana. Te drgania, tak jak w głośniku, „produkują” dźwięki.

Zrzut ekranu 2016-01-22 o 13_Fotor

Gdy nachylenie zbocza wydmy przekroczy wartość graniczną (około 35 st), warstwy piasku zsuwają się (a). Ziarenka piasku nie poruszają się jednak po płaskiej nawierzchni. Najpierw same muszą się wtoczyć (b) i przetoczyć (c i d) po warstwie piasku która pozostaje nieruchoma. W efekcie ziarenka piasku nie tylko poruszają się ku podstawie zbocza. Ponieważ zjeżdżają po innych ziarenkach piasku, dosyć szybko drgają poruszając się góra – dół. Źródło grafiki: Laurie Grace, ŚWIAT NAUKI 11.97

Membrana w głośniku jest jednak dużo mniejsza niż powierzchnia zsuwającej się piaskowej lawiny. Dźwięki „wygrywane” przez śpiewające wydmy mogą być tak donośne, że słychać je z odległości nawet 10 kilometrów. Dokładne pomiary wykazały, że odgłosy powstające na pustyni mogą mieć głośność nawet do 105 decybeli, podczas gdy granica bólu u człowieka wynosi 120 decybeli.

Nie każda wydma śpiewa. Ziarenka piasku muszą być małe, ich średnica nie może przekraczać 0,5 mm. Czym piasek jest czystszy, tym bardziej prawdopodobne, że będzie śpiewał. Gdy w piasku są zanieczyszczenia (muł, resztki roślin czy szczątki zwierząt, np. małe kawałki muszelek), o śpiewaniu można zapomnieć. Śpiewające wydmy występują tylko tam, gdzie jest wysoka temperatura i niska wilgotność. Wydmy nigdy nie śpiewają wcześnie rano czy późno wieczorem, bo wtedy nawet na pustyni w powietrzu (i piasku) jest trochę wilgoci. Cząsteczki wody, sklejają ziarenka piasku, a to wstrzymuje piaskowe lawiny.

Moment w którym z wydmy zsunie się lawina jest nie do przewidzenia. Gdy stromizna wydmy osiągnie wartość graniczną (wynoszącą na Ziemi dla suchego piasku około 35 stopnie), potrzebne jest tylko jedno jedyne ziarenko, które spowoduje przekroczenie wartości krytycznej i niekontrolowana już niczym lawina zsuwa się w dół zbocza. To zachwianie równowagi może być spowodowane także hukiem, albo jakimś wstrząsem. Przeróżne dźwięki powstają więc na pustynie nagle. Czasami jeden dźwięk wywołuje następny, czasami – mówią podróżnicy – jak gdyby grała cała orkiestra. Słychać dzwony, trąbki, harfy, organy i flety. Czasami słychać wystrzały armatnie, syreny okrętowe, odgłosy samolotów, głośny gwar czy płacz. Marco Polo opisywał dźwięki przypominające nawoływania, odgłosy marszu czy klaskania. Bywa, że zaskoczony i przerażony podróżnik znajduje się w samym ich środku.

>>> Więcej naukowych informacji na FB.com/NaukaToLubie

W Polsce nie ma śpiewających wydm. Jest za to tzw. „piszczący” piasek. Spacerując po plaży, stopami ugniatamy piasek. Pod wpływem naszego ciężaru, jego ziarenka są pomiędzy siebie wciskane, a to powoduje ich drgania i powstawanie dźwięków. Piszczących. Czy śpiewające wydmy występują na innych globach? Nie wiadomo. Powierzchnia Marsa składa się prawie wyłącznie z pustyń. Inny rodzaj piasku, inna grawitacja, wilgotność, ciśnienie i temperatura. Oj, fizycy będą mieli pełne ręce roboty.

okładka - piasekArtykuł pochodzi z książki „Nauka. To lubię. Od ziarnka piasku do gwiazd”. Tomasz Rożek, WAB 2012

Brak komentarzy do Śpiewające piaski

Wszystko jest matematyką – rozmowa z X. prof. Michałem Hellerem

O kosmosie, ciekawości, przypadku i matematyce z księdzem profesorem Michałem Hellerem, teologiem, kosmologiem, matematykiem i filozofem rozmawia Tomasz Rożek

Z księdzem profesorem Michałem Hellerem, teologiem, kosmologiem, matematykiem i filozofem rozmawia Tomasz Rożek. Poniższy wywiad jest uzupełnieniem dwóch rozmów, które opublikowałem na kanale YouTube.com/Nauka To Lubie. Pierwsza z tych rozmów dotyczyła wszechświata, a druga człowieka. U dołu wywiadu znajdują się bezpośrednie odnośniki do obydwu rozmów.

>>> Więcej naukowych ciekawostek na FB.com/NaukaToLubie

Co się stało się prawie 14 miliardów lat temu? Możemy w ogóle udzielić jakiejkolwiek odpowiedzi?

Historię wszechświata rekonstruujemy poruszając się wstecz. Do 3 minut po wielkim wybuchu mamy wiedzę bardzo solidną, a potem grzęźniemy w hipotezach. Im bliżej początku, tym bardziej hipotetyczna jest nasza wiedza. Ta wiedza opiera się na teorii, ale teoria jest dobrze sprawdzona chociażby w takich miejscach jak laboratorium fizyki cząstek CERN, gdzie zderza się ze sobą np. protony.

Wiemy w takim razie co stało się po Wielkim Wybuchu, ale co było w punkcie zero?

Pytanie, czy taki punkt zero w ogóle był. Według klasycznej kosmologii, według teorii Einsteina, rzeczywiście punkt zero istniał i był tzw. osobliwością, czyli obszarem, w którym załamuje się pojęcie czasoprzestrzeni. Pojęcia czasu i przestrzeni tracą tam sens. Tam urywa się nasza wiedza, znane nam prawa natury przestają działać.

Skoro nie prawa przyrody, to co się tam dzieje?

To jest pytanie, na które nie znam odpowiedzi. Mamy dwie wielkie teorie: fizyka kwantowa i fizyka grawitacji. Fizyka kwantowa rządzi światem cząstek elementarnych, mikroświatem. Fizyka grawitacji rządzi kosmosem w wielkiej skali. Zaraz po Wielkim Wybuchu te dwie teorie nakładały się na siebie. Po to by wyjaśnić co dzieje się w osobliwości, trzeba połączyć te dwie teorie w jedną. Jest to niezmiernie trudne wyzwanie, bo te dwie siły mają zupełnie inną naturę. Moim zdaniem, to jest w tej chwili problem numer jeden fizyki teoretycznej. Mamy kilka, może nawet kilkanaście pomysłów jak grawitację i teorię kwantów ze sobą połączyć, ale żaden z nich nie jest potwierdzony doświadczalnie. Wszystko to są hipotetyczne rzeczy, posługują się bardzo ładną i zaawansowaną matematyką, ale nie mamy empirycznego rozstrzygnięcia, która jest prawdziwa i pewnie długo nie będziemy mieć.

Czy to jest przypadek, że człowiek został obdarzony umysłem, żeby dociekać tak skomplikowanych i abstrakcyjnych rzeczy?

Tego też nie wiemy. W każdym razie jest to rzecz niesamowita, że mamy taką władzę poznawania wszechświata. Bo pomyślmy nad tym. Jeżeli umysł ludzki powstał ewolucyjnie przez oddziaływanie z otoczeniem, to jak mówią biologowie, utrwalały się te cechy, które są potrzebne do przeżycia.

Wiedza o czarnej dziurze nie jest potrzebna?

Wiedza o czarnej dziurze jest absolutnie niepotrzebna do przeżycia.

Od biedy dałoby się połączyć wiedzę z sukcesem reprodukcyjnym. W końcu wolimy się otaczać ludźmi mądrzejszymi. Może intelekt czy wiedza to coś w rodzaju pożądanego przez przyszłego partnera gadżetu?

Myślę, że chyba wystarczyłby taki gadżet, który służyłby do uchylania głowy jak maczuga leci. Niemniej jednak jest to niesamowite, że człowiek ma tak rozwinięty umysł. Jeśli popatrzymy na historię, to tak naprawdę fizyka zaczęła się gdzieś w XVII wieku. Jesteśmy dopiero na samym początku. Co to jest kilkaset lat wobec 14 miliardów? I to jest rzeczywiście coś absolutnie niesamowitego. Można by to pytanie, które pan zadał, postawić w innej formie: czy złożoność ludzkiego mózgu wystarczy, ażeby zbadać złożoność wszechświata? Innymi słowy, czy złożoność wszechświata jest przykrojona na miarę naszego mózgu? Niezależnie od tego, czy jesteśmy sami we wszechświecie jako istoty rozumne, czy też są jacyś nasi bracia w rozumie, specjaliści mówią, że złożoność mózgu jest większa, niż złożoność całego wszechświata.

Ilość potencjalnych połączeń między komórkami w mózgu jednego człowieka jest większa niż ilość gwiazd we wszechświecie.

No właśnie. I to nas stawia w dość wyróżnionej pozycji. Natomiast czy dzięki tej złożoności możemy pojąć wszystko? Tu jest pewien logiczny paradoks. Jeśli chcielibyśmy pojąć wszystko, to musielibyśmy zrozumieć także mózg. Czy mózg może poznać sam siebie?

>>> Więcej naukowych ciekawostek na FB.com/NaukaToLubie

Mówiliśmy trochę o ewolucji, a z nią bardzo często wiąże się słowo „przypadek”. 

Arystoteles miał przyczynową koncepcję nauki, która w jakimś sensie jest aktualna do dzisiaj. Wyjaśniamy wszechświat według Arystotelesa przez ciągi przyczyn i skutków, takie łańcuchy przyczynowe. Natomiast on przypadek określił jako coś, co przerywa taki ciąg. Interweniuje przypadkowo w ten ciąg i zaburza go. I dlatego według niego nie może być wiedzy naukowej o przypadku. I ludzie uwierzyli, że przypadek jest jakimś takim obcym ciałem w nauce. Tymczasem okazuje się, że tak nie jest. Najbardziej dramatycznym czy widocznym przykładem próby oswajania przypadku jest ludzka chciwość. Jak ktoś gra hazardowo, to chce wygrać. Ludzie szukali więc jakiejś strategii, żeby zapewnić sobie zwycięstwo w totolotku, ruletce, czy w pokerze.

No i takiego sposobu nie znaleźli. Wygrana czy przegrana to kwestia przypadku.

Czy na pewno? Statystyka i rachunek prawdopodobieństwa mówią co innego. Gdyby było tak jak pan mówi, nie mogłyby działać np. banki czy towarzystwa ubezpieczeniowe, które liczą prawdopodobieństwo w związku z ubezpieczeniami na życie. Bez prawdopodobieństwa i statystyki nie byłoby dzisiejszej wiedzy. Ani fizyki, ani medycyny.

Bo statystyka daje odpowiedzi dotyczące ogółu a pojedynczy przypadek dalej jest dziełem… przypadku.

Też nie całkiem. W „Summa contra gentiles” św. Tomasz pisze, że boża opatrzność rządzi zdarzeniami ex casu del fortuna – dziejącymi się z przypadku lub losowo. Dwoje ludzi pobiera się, bo spotkali się, gdy spóźnił się pociąg. Czy to przypadek? Wszystko tu ma przyczynę. Pociąg się spóźnił, bo popsuła się lokomotywa. Młodzi ludzie byli w tym samym miejscu o tym samym czasie, bo każde z nich jechało w konkretne miejsce. W fizyce tak jest na każdym kroku. Dobrym przykładem jest zwykły rzut kamieniem. On jest opisany prostymi równaniami ruchu Newtona i wszystko jest – wydawałoby się – zdeterminowane, ale ja mogę przypadkiem tym kamieniem zamiast trafić w tarczę, to komuś w głowę. W nauce jest bardzo dużo miejsca na przypadki, a one same nie są zaprzeczeniem zasad przyrody. W siatce praw przyrody są pewne luzy na przypadki. Bez tych przypadków prawa przyrody by nie mogły działać.

A ten plan, te reguły, które tym wszystkim rządzą, te luzy, o których ksiądz profesor mówi, czy one jakoś powstały, czy one były zawsze? Jak to rozumieć?

No to jest problem genezy praw przyrody. I ja nie wiem jaka ona jest. To na pewno nie jest zagadnienie z dziedziny fizyki, bo fizyka zakłada prawa przyrody. Nie wyjaśnia ich. W każdym modelu fizycznym prawa fizyki są założone. Takie, a nie inne i koniec. Natomiast wyjaśnienie, skąd się biorą prawa przyrody, to już raczej należy do filozofii czy na przykład do teologii. Można powiedzieć, że to po prostu Pan Bóg stworzył.

>>> Więcej naukowych ciekawostek na FB.com/NaukaToLubie

To jest bardzo wygodne podejście. Pan Bóg stworzył, kropka. A może by się nad tym zastanowić ?

Często fizycy nie nazywają tego Panem Bogiem, ale skądś się one musiały wziąć. Einstein nie uznawał Boga w formie chrześcijańskiej. Raczej był bliżej panteizmu, ale używał hasła „Zamysł Boga” – the Mind of God. Może używał to jako metaforę, ale uważał, że zestaw praw przyrody to jest właśnie the Mind of God. I mówił: nie chciałbym nic więcej wiedzieć, tylko znać the Mind of God.

Znać boży zamysł… czyli to jedno równanie, które opisuje wszystko?

No tak. I tu są te granice fizyki, o których mówimy. Na to wszystko nakłada się matematyka, która jest uniwersalnym językiem opisu wszechświata. Tylko trzeba pamiętać, że matematyka nie oznacza wcale determinizmu.

2 + 2 zawsze równa się 4. Cała matematyka szkolna jest deterministyczna.

No bo w szkole się uczy najprostszych rzeczy: dodawania, odejmowania i pierwiastkowania. Niewiele więcej. W prawdopodobieństwie nic nie jest pewne, choć wszystko prawdopodobne. A to dopiero początek. Mechanika kwantowa posługuje się matematyką, która jest indeterministyczna. Wcześniej rozmawialiśmy o przypadkach. Ja rozróżniam dwa ich rodzaje. Jeden to przypadek wynikający z niewiedzy albo ignorancji. Np. mogę się z kimś założyć, czy z zza rogu wyjedzie tramwaj numer 8 czy 4. Ja nie wiem który i traktuję to w kategoriach przypadku, ale jeżeli te tramwaje są w drodze, to proces jest zdeterminowany. Natomiast czy są przypadki, zdarzenia, które rzeczywiście nie są zdeterminowane? Mechanika kwantowa jest świadectwem, że tak, są. I takie przypadki pojawiają się u podstaw całej naszej rzeczywistości.

Czy wszechświat ma jakieś granice geometryczne? Pytam zarówno o to, czy możemy dowolnie długo dzielić cząstki elementarne na coraz mniejsze kawałki, jak i o to, czy kosmos gdzieś się kończy?

Może być tak, że świat jest skończony, ale nie ma granicy. I wtedy idąc cały czas w jedną stronę, w końcu trafimy do punktu wyjścia. Modele otwarte mówią, że można zmierzać w jednym kierunku w nieskończoność. Nie ma żadnych naukowych powodów, by wszechświat miał granice. Natomiast czy można dzielić cząstki w nieskończoność? Nie wiem.

Co zapaliło małego Michała Hellera do tego by zajął się nauką? A co zapala już dorosłego księdza profesora by zajmował się nią dalej? 

Dorastałem w domu, gdzie rozmawiało się o nauce, o świecie. Ojciec był inżynierem, opublikował nawet kilka prac matematycznych. Od dziecka, jak tylko miałem jakąś książkę popularnonaukową, to się w niej zaczytywałem. I trudno tak ciekawymi rzeczami się nie zajmować. A dzisiaj? Chyba ta sama ciekawość co u małego Michała. Ciekawość jest motorem działania. Ale trzeba uważać, bo ona musi być pod kontrolą. Inaczej do niczego się nie dojdzie, niczego nie uda się wystarczająco dobrze zbadać. Na świecie żyje wielu geniuszy, którzy nie potrafili się ograniczyć. Wiedzą prawie wszystko o prawie wszystkim i zarazem niewiele. Wszystko ich za bardzo ciekawi. I w moim przypadku to zawsze było dość trudne i bywa trudne do dzisiaj. Interesuje mnie za dużo, a trzeba się ograniczyć do jednego.

>>> Więcej naukowych ciekawostek na FB.com/NaukaToLubie

Ksiądz Profesor Michał Heller jest teologiem, filozofem i kosmologiem. W 2008 roku jako jedyny dotychczas Polak został laureatem międzynarodowej Nagrody Templetona, przyznawanej za pokonywanie barier między nauką a religią. Jest autorem kilkudziesięciu książek. 

Opublikowany powyżej wywiad jest fragmentem rozmowy jaką przeprowadziłem z X. prof. Michałem Hellerem dla tygodnika Gość Niedzielny.
3 komentarze do Wszystko jest matematyką – rozmowa z X. prof. Michałem Hellerem

Choinka – sztuczna czy prawdziwa?

Dla tych, którzy jeszcze nie kupili bożonarodzeniowej choinki mam radę. Jeżeli nie chcecie być na bakier z ekologią, kupcie drzewko naturalne. Na pewno nie spowoduje to żadnej katastrofy ekologicznej. Leśnicy twierdzą, że naturalne choinki mają tyle samo zalet, co sztuczne wad.

 

Ścinanie choinki przed świętami, tak jak zabijanie karpia, przedstawiane jest jak zbrodnia na środowisku naturalnym. Bo wiadomo karp to odczuwające ból zwierzę, a choinka to potencjalny las.  Gdy dorośnie, będzie cieszył oko i produkował tlen. Ten obraz jest fałszywy.

>>> Więcej naukowych ciekawostek na FB.com/NaukaToLubie

Drzewka na ścięcie

Co roku oficjalnie wycina się w całym kraju kilkadziesiąt tysięcy drzewek, najczęściej sosen i świerków. Pochodzą one ze szkółek, zakładanych na terenach otwartych albo pod liniami wysokiego i średniego napięcia. Tam gdzie nie może powstać las. Niektóre drzewka pochodzą z lasów już istniejących, ale leśnicy wycinają je w ramach… zabiegów pielęgnacyjnych. Sosny i świerki hodowane są także na prywatnych gruntach nieprzydatnych rolnictwu, ale takich na których ich właściciele nie chcą mieć lasu. W skrócie mówiąc drzewka które można legalnie kupić w sklepie, na targowiskach czy przy supermarketach są i tak skazane na ścięcie. Są sadzone na ścięcie. Jeżeli nie zostaną kupione przy okazji Świąt Bożego Narodzenia, zostaną wycięte później i wyrzucone. Pod liniami energetycznymi nie mogą rosnąć wysokie drzewa.

Alternatywą dla naturalnych drzewek bożonarodzeniowy są choinki sztuczne, plastikowe. Przed świętami pojawiają się akcje w czasie których radykalne organizacje ekologiczne przekonują, że kupowanie sztucznej choinki jest oznaką dbałości o środowisko naturalne. Specjaliści przekonują, że nic bardziej błędnego. Proces produkcji plastiku jest dla środowiska naturalnego dużym obciążeniem. Większość choinek jest produkowanych w Chinach, gdzie dbałość o środowisko nikogo nie interesuje. W procesie produkcji materiałów plastikowych (PCW) powstają szkodliwe pyły i gazy. Potrzebna jest także spora ilość energii i wody. A jeżeli mówimy o konsumpcji energii, musimy mieć z tyłu głowy emisję CO2.

Las w domu

Po kilkunastu dniach, igły naturalnej choinki zaczynają opadać i drzewko nadaje się do wyrzucenia. Ci, którzy mają swój własny ogród mogą przed świętami kupić drzewko naturalne w donicy i zasadzić je na wiosnę. Trzeba jednak pamiętać, że nie zawsze takie drzewko się przyjmie, skoro całą zimę spędziło w ciepłym mieszkaniu. Ci, którzy nie mają swoich ogródków, ściętą i już przysuszoną choinkę muszą wyrzucić do kompostownika, albo zanieść do punktu zbierania choinek, które powstają w niektórych miastach (np. w Warszawie). Suchą choinkę można też spalić. Przy tym wydziela się oczywiście CO2, ale jest to ten sam dwutlenek węgla, który drzewko pochłonęło w czasie wzrostu. Pochłaniało związki węgla i „wyrzucało” do atmosfery tlen. Na kompoście czy na wysypisku śmieci wyrzucone drzewko szybko się rozkłada. Skumulowane w nim związki chemiczne stają się z powrotem częścią obiegu materii w przyrodzie. Z kolei korzenie wyciętego drzewka wzbogacają glebę w tzw. próchnicę.

To prawda, że choinka sztuczna wystarcza na kilka lat. Z czasem blaknie jednak jej kolor i w końcu też trzeba ją wyrzucić. Najgorsze co można zrobić, to wrzucić ją do pieca. Spalany plastik jest źródłem rakotwórczych związków, które rozpylają się w atmosferze i dostają się do organizmu w czasie oddychania. Plastikowego drzewko na wysypisko śmieci będzie się rozkładało przez kilkaset lat. Najlepszym wyjście jest wrzucenie go do pojemnika na odpady segregowane. To może być jednak o tyle problematyczne, że sztuczne choinki najczęściej mają metalowy stelaż.

Pomijając fakt, że drzewko naturalne pachnie lasem, żywicą a plastikowe nie. Że ma naturalny kolor, który trudno odtworzyć nawet najlepszej imitacji. Pomijając to wszystko co dla wielu osób jest ważne, choć subiektywne i niemierzalne. Drzewka plastikowe szkodzą środowisku, a choinki naturalne – nie z powodów obiektywnych.

>>> Więcej naukowych ciekawostek na FB.com/NaukaToLubie

A tak a propos. Wiecie dlaczego choinka zruca igły? Naukowcy z Université Laval w Kanadzie odkryli, że za opadanie igieł odpowiada roślinny hormon etylen. W czasie testów zmierzono, że gałązki jodły balsamicznej (Abies balsamea) zaczęły zrzucać igły po około 14 dniach od ścięcia. Trzy dni wcześniej drzewko zaczęło intensywnie wydzielać etylen. Po 40 dniach, na testowanych drzewkach nie było ani jednej igły. Gdy badacze rozpylili w pomieszczeniu gdzie badano jodły 1-metylocyklopropen (1-MCP), związek hamujący działanie etylenu, igły „wisiały” na drzewku nie jak wcześniej 40 dni, tylko 73 dni. Zastosowanie innego związku, aminoetoksywinyloglicyny (AVG) wydłużyło ten okres jeszcze bardziej, do 87 dni. Przez cały ten wydłużony czas gałązki choinki wyglądały świeżo, jak gdyby drzewko było dopiero co ścięte.  Związek 1-MCP od dawna stosuje się w przechowalniach owoców, np. jabłek. Gdyby rozpylać go w magazynach, albo samochodach wiozących drzewka na targowiska, drzewka mogłyby przetrwać dużo dłużej. Choć z drugiej strony po co komu bożonarodzeniowa choinka w marcu?

3 komentarze do Choinka – sztuczna czy prawdziwa?

Burza światła

Podobno dzisiaj i jutro widoczna na polskim niebie ma być zorza polarna. O ile nie będzie chmur. 156 lat temu miała miejsce największa opisana burza geomagentyczna. Gdyby zdarzyła się dzisiaj, zamilkłyby telefony, radia i stacje telewizyjne. Najpewniej uszkodzona zostałaby także infrastruktura energetyczna.

Dzisiaj, a może nawet jutro widoczna ma być na polskim niebie zorza polarna. O ile nie będzie chmur.  156 lat temu miała miejsce największa opisana burza geomagentyczna. Gdyby zdarzyła się dzisiaj, zamilkłyby telefony, radia i stacje telewizyjne. Najpewniej uszkodzona zostałaby także infrastruktura energetyczna.

>>> Więcej naukowych ciekawostek na FB.com/NaukaToLubie

Dokładnie 1 września 1859 roku na Słońcu zdarzył się potężny wybuch. Materia słoneczna została wyrzucona w przestrzeń z prędkością dochodzącą nawet do 900 km na sekundę. Wybuchy na Słońcu to nic niezwykłego, ale ten był wyjątkowo silny. Co ciekawe nasza dzienna gwiazda wcale nie była wtedy w fazie swojej największej aktywności.

Tymczasem na Ziemi…     

… rozpętała się burza światła. Dzień po wybuchu na Słońcu, wyrzucona z jego powierzchni materia dotarła do Ziemi. Naładowane elektrycznie cząstki, w zderzeniu z naszą atmosferą, a właściwie hamowane przez ziemskie pole magnetyczne były źródłem jednej z największych, kiedykolwiek rejestrowanych zórz polarnych. W 1859 roku nie było telefonów komórkowych, telewizorów ani odbiorników radiowych. Gdyby były, na pewno by zamilkły. Straty byłyby ogromne. Do listy strat trzeba doliczyć stacje transformatorowe i całą flotyllę satelitów. Nie tylko tych naukowych, ale także komercyjnych. Szacuje się, że dzisiaj straty spowodowane burzą porównywalnej wielkości wyniosłyby około 2 trylionów dolarów. Trylion to miliard miliardów. Wtedy, w połowie XIX wieku, zaburzona została jedynie raczkująca wtedy łączność telegraficzna. Pierwszy telegraf elektryczny zbudowano 22 lata wcześniej, w 1837 roku. Dzisiaj burza sparaliżowałaby życie. Trudno je sobie wyobrazić bez elektronicznej komunikacji, prądu czy choćby GPS’a. Wtedy, w zasadzie nikomu nie utrudniła życia. Mocno je za to urozmaiciła.

Zorze na Kubie

Na wysokości od 100 do 400 km nad naszymi głowami naładowane elektrycznie cząstki pochodzące ze Słońca (elektrony i protony), są przechwytywane przez ziemskie pole magnetyczne. Zaczynają się poruszać wzdłuż jego linii. Te zagęszczają się w okolicach biegunów i tam cząstki wiatru słonecznego zderzają się z atomami rozrzedzonej atmosfery. Atom w który uderzają traci część swoich elektronów (zjawisko jonizacji). Gdy „złapie” je z powrotem, energię którą otrzymał od protonu czy elektronu ze Słońca, wypromieniowuje w postaci światła. To światło, to zorza polarna. Luminescencję rozrzedzonych gazów zaobserwowano także wokół biegunów innych planet, m.in. Jowisza, Saturna, Urana, Neptuna, a nawet Marsa.

Zorze występują zwykle w okolicach biegunów. 150 lat temu, w wyniku rekordowej ilości naładowanych cząstek, zjawisko było widoczne jednak w całej Ameryce Północnej, a nawet na Kubie. Zorze były tak intensywne i jasne, że ludzie wstawali w środku nocy myśląc, że już świta. Ich zdziwienie, a może przerażenie, musiało być całkiem spore gdy zamiast wschodu Słońca na niebie pojawiły się piękne, kolorowo pulsujące niby-płomienie.

To może się zdarzyć jutro

Na dużych szerokościach geograficznych zorze polarne – nazywane czasami światłami północy – mają kolor biały, żółty i zielony, na niższych, charakteryzują je kolory ciemniejsze: czerwone, niebieskie, a nawet fioletowe. Zorze polarne w Polsce zdarzają się rzadko i tylko w okresie najwyższej aktywności Słońca. Co około 11 lat nasza dzienna gwiazda przeżywa burzliwe chwile. Kolejne maksimum było rejestrowane w latach 2012-2013. Nie powinniśmy być tego jednak całkowicie pewni. Nasza gwiazda jest nieprzewidywalna. Gdy coś stanie się na jej powierzchni, mamy kilkadziesiąt godzin czasu na przygotowanie się na niesamowite zjawisko. A gdyby eksplozja na Słońcu była duża, lepiej wyłączyć wszystkie urządzenia elektroniczne i … zaopatrzyć się w świeczki. Prądu może nie być przez kilka dni.

>>> Więcej naukowych ciekawostek na FB.com/NaukaToLubie

5 komentarzy do Burza światła

W kosmosie woda jest wszędzie!

Jest na planetach, księżycach, kometach a nawet… w mgławicach. Dość powszechnie panująca opinia o tym, że woda jest obecna tylko na Ziemi, jest kompletnie błędna. Wody w kosmosie jest bardzo dużo. Ale to wcale nie musi znaczyć, że wszędzie tam jest życie.

Dość powszechnie panująca opinia o tym, że woda jest obecna tylko na Ziemi, jest kompletnie błędna. Choć w kolejnym odcinku „Megaodkryć” na National Geographic Channel będzie mowa o „Wodnej apokalipsie” to okazuje się, że ta wspomniana apokalipsa to nasz ziemski problem.

>> Polub FB.com/NaukaToLubie i pomóż mi tworzyć stronę pełną nauki. 

Woda płynna jest na przynajmniej kilku obiektach Układu Słonecznego. Kilka tygodni temu odkryto ją także na powierzchni Marsa. Co zaskakuje, obłoki pary wodnej „wiszą” także w przestrzeni kosmicznej. Kilka lat temu odkryto taki wokół kwazaru PG 0052+251. Póki co, to największy ze wszystkich znanych rezerwuarów wody w kosmosie. Dokładne obliczenia wskazują, że gdyby całą tę parę wodną skroplić, byłoby jej 140 bilionów (tysięcy miliardów) razy więcej niż wody we wszystkich ziemskich oceanach. Masa odkrytego wśród gwiazd „zbiornika wody” wynosi 100 tysięcy razy więcej niż masa Słońca. To kolejny dowód, że woda jest wszechobecna we wszechświecie.

Do wyboru: lód, woda i para

Naukowców nie dziwi sam fakt znalezienia wody, ale jej ilość. Cząsteczka wody (dwa atomy wodoru i jeden atom tlenu) jest stosunkowo prosta i występuje we wszechświecie powszechnie. Bardzo często łączy się ją z obecnością życia. Faktem jest, że życie, jakie znamy, jest uzależnione od obecności wody. Ale sam fakt istnienia gdzieś wody nie oznacza istnienia tam życia. Po to, by życie zakwitło, musi być spełnionych wiele różnych warunków. Woda wokół wspomnianego kwazaru jest w stanie gazowym, a woda niezbędna do życia musi być w stanie ciekłym. Nawet jednak ciekła woda to nie gwarancja sukcesu (w poszukiwaniu życia), a jedynie wskazówka.

Takich miejsc, którym badacze się przyglądają, jest dzisiaj w Układzie Słonecznym przynajmniej kilka. Woda może tu występować – tak jak na Ziemi – w trzech postaciach: gazowej, ciekłej i stałej. I właściwie we wszystkich trzech wszędzie jej pełno. Cząsteczki pary wodnej badacze odnajdują w atmosferach przynajmniej trzech planet Układu Słonecznego. Także w przestrzeni międzygwiezdnej. Woda w stanie ciekłym występuje na pewno na Ziemi. Czasami na Marsie, najprawdopodobniej na księżycach Jowisza, ale także – jak wykazały ostatnie badania – na księżycach Saturna. A na jednym z nich – Enceladusie – z całą pewnością. Gdy kilka lat temu amerykańska sonda kosmiczna Cassini-Huygens przelatywała blisko tego księżyca, zrobiła serię zdjęć, na których było wyraźnie widać buchające na wysokość kilku kilometrów gejzery. Zdjęcia tego zjawiska były tak dokładne, że badacze z NASA zauważyli w buchających w przestrzeń pióropuszach nie tylko strugi wody, ale także kłęby pary i… kawałki lodu. Skąd lód? Wydaje się, że powierzchnia Enceladusa, tak samo zresztą jak jowiszowego księżyca Europy, pokryta jest bardzo grubą (czasami na kilka kilometrów) warstwą lodu. Tam nie ma lądów czy wysp. Tam jest tylko zamarznięty ocean. Cały glob pokryty jest wodą.

061215_europa_02

Powierzchnia jowiszowego księżyca Europa

Nie tylko u nas

Skoro cała powierzchnia księżyców Jowisza i Saturna pokryta jest bardzo grubym lodem, skąd energia gejzerów? Skąd płynna woda pod lodem? Niektóre globy żyją, są aktywne. Ich wnętrze jest potężnym reaktorem, potężnym źródłem ciepła. Tak właśnie jest w przypadku zarówno Europy, jak i Enceladusa. Swoją drogą ciekawe, co musi się dziać pod kilkukilometrowym lodem, skoro woda, która wydrążyła sobie w nim lukę, wystrzeliwuje na wiele kilometrów w przestrzeń?

Może nie morza, jeziora czy chociażby bajora, ale lekka rosa – wodę znajduje się także na powierzchni naszego Księżyca. Zaskakujące odkrycie to dzieło indyjskiej sondy Chandrayaan-1, potwierdzone przez dwie amerykańskie misje (Deep Impact i Cassini).

Niejedna praca naukowa powstała też na temat wody na Czerwonej Planecie. Wiadomo, że jest na marsjańskich biegunach. Nie brakuje jednak danych, że woda, nawet w stanie ciekłym, pojawia się czasowo w różnych innych miejscach planety. Wyraźnie ją widać na zboczach kraterów, o ile padają na nie promienie letniego Słońca.

Z badań amerykańskiej sondy Messenger, która od 2004 roku badała Merkurego, wynika, że woda jest także w atmosferze pierwszej od Słońca gorącej planety. Co z innymi planetami spoza Układu Słonecznego? Na nich też pewnie jest mnóstwo wody. Tylko jeszcze o tym nie wiemy. Chociaż… Pierwszą egzoplanetą, na której najprawdopodobniej jest woda jest HD 189733b, która znajduje się 63 lata świetlne od nas. Ta planeta to tzw. gazowy gigant. Ogromna kula gorących i gęstych gazów z płynnym wnętrzem. Gdzie tutaj miałaby być woda? Wszędzie – twierdzą badacze. Dzięki aparaturze wybudowanej w California Institute of Technology, USA udało się odkryć, że mająca prawie 1000 st. C atmosfera zawiera duże ilości pary wodnej.

>> Polub FB.com/NaukaToLubie i pomóż mi tworzyć stronę pełną nauki. 

Czy któreś z tych kosmicznych źródeł wody będzie nas w stanie uchronić przez niedostatkiem pitnej wody na Ziemi? Tego jeszcze nie wiemy, choć problem braku podstawowej do życia substancji wydaje się być coraz bardziej palący. Przekonują o tym hollywoodzka gwiazda – Angela Basset – i jej goście – światowej sławy naukowcy, którzy próbują odpowiedzieć na pytanie czy czeka nas „Wodna Apokalipsa” w ostatnim już odcinku niezwykłej serii „Megaodkrycia” na National Geographic Channel. Jeśli chcecie wiedzieć, gdzie najtęższe umysły naukowe szukają teraz źródeł H2O, oglądajcie „Wodną Apokalipsę” – już w niedzielę, 13 grudnia, o 22.00 na National Geographic Channel.

 

 

Brak komentarzy do W kosmosie woda jest wszędzie!

Nowe zdjęcia Plutona!!!! Niesamowite.

Co tam się dzieje?!? Z najnowszych zdjęć powierzchni Plutona wynika, że ta planeta jest niezwykle zróżnicowana. Są góry, ogromne kratery i lodowe pustynie!

Co tam się dzieje?!? Z najnowszych zdjęć powierzchni Plutona wynika, że ta planeta jest niezwykle zróżnicowana. Są góry, ogromne kratery i lodowe pustynie!

>> Polub FB.com/NaukaToLubie. Pomóż mi tworzyć miejsce w którym komentuję i popularyzuję naukę.

To moje ulubione zdjęcie. Wygląda tak jak gdyby lodowiec „wylewał się” na pustynię. 2-newhorizonsr

Nadesłane obrazy zrobiła sonda New Horizons. Fotografowała powierzchnię Plutona z odległości dwunastu tysięcy kilometrów. Nigdy wcześniej nie udało się zrobić tak dokładnych zdjęć powierzchni planety karłowatej. Co na niej można zobaczyć? Góry, lodowe pustynie i kratery o średnicy wielu kilometrów.

vVpYaZs

Choć zdjęcia zostały zrobione kilka miesięcy temu, dopiero teraz znalazły się na Ziemi. Fotografie musiały „czekać w kolejce” na przesłanie. Szybkość transmisji pomiędzy New Horizons a Ziemią jest bardzo wolna. Pluton znajduje się średnio 40 razy dalej od Słońca niż Ziemia, a to oznacza, że światło (a więc i fala radiowa) potrzebuje kilku godziny by dotrzeć do Ziemi.

>> Polub FB.com/NaukaToLubie. Pomóż mi tworzyć miejsce w którym komentuję i popularyzuję naukę.

nh-craters-mountains-glaciers

Wszystkie zdjęcia należą do NASA.

 

 

5 komentarzy do Nowe zdjęcia Plutona!!!! Niesamowite.

Czy zgasną światła na Ziemi ?

Światowa konsumpcja energii do 2050 roku podwoi się. Jeżeli nie znajdziemy nowych źródeł – może nam zabraknąć prądu.

W Paryżu trwa międzynarodowy panel klimatyczny. Wiele wątków, wiele interesów, wiele sprzecznych celów. Energia jest tematem, który z klimatem wiąże się bezpośrednio. I pomijając kwestie emisji i CO2, warto zdać sobie sprawę z tego, że światowa konsumpcja energii do 2050 roku podwoi się. Jeżeli nie znajdziemy nowych źródeł – będzie kłopot.

Słońce jest dostawcą większości energii dostępnej dzisiaj na Ziemi. Dostarcza ją teraz i dostarczało w przeszłości nie tylko dlatego, że świeci, ale także dlatego że pośrednio powoduje ruchu powietrza (czyli wiatry) i wody (czyli fale). Dzisiaj dostępne źródła energii można więc podzielić na te zdeponowane przez Słońce w przeszłości – nazwane nieodnawialnymi –  i te udostępniane nam na bieżąco – czyli odnawialne. Z tego podziału wyłamuję się energetyka jądrowa, geotermalna i grawitacyjna oraz fuzja jądrowa.

Najefektywniejszym odbiornikiem energii słonecznej na Ziemi jest roślinność. Dzięki zjawisku fotosyntezy, gdy Słońce świeci – rośliny rosną. Rosną i rozprzestrzeniają się także dlatego, że wieje wiatr. Bardzo długo człowiek korzystał tylko z tego przetwornika energii słonecznej. Drzewo jednak wolniej rośnie niż się spala. Z biegiem lat było nas coraz więcej i coraz więcej energii potrzebował nasz przemysł. Wtedy zaczęło brakować lasów pod topór. Całe szczęście umieliśmy już wydobywać i spalać węgiel, ropę naftową i gaz. Ale w gruncie rzeczy to to samo, co spalanie drewna. Tyle tylko, że w przypadku drzewa energia słoneczna była „deponowana” na Ziemi przez kilka dziesięcioleci, a w przypadku węgla czy ropy – przez miliony lat.

Kłopot w tym, że spalanie kopalin jest toksyczne. Badania przeprowadzane w różnych krajach potwierdzają, że typowa elektrownia węglowa o mocy 1 GWe  powoduje przedwczesną śmierć od 100 do 500 osób. Nie są to ofiary związane z wydobywaniem węgla, czy jego transportem, a jedynie ci, którzy mieli wątpliwe szczęście mieszkać w sąsiedztwie dymiącego komina. Oczyszczanie spalin jest bardzo drogie, a usuwanie szkód środowiskowych związanych z wydobyciem kopalin, w zasadzie niewykonalne. Skoro więc nie paliwa tradycyjne, to może odnawialne?  Siłownie wykorzystujące energię wody, wiatru czy Słońca powinny być budowane jak najszybciej tam, gdzie jest to opłacalne. Nie ulega jednak wątpliwości, że nie wszędzie jest. W Islandii, bogatej w gorące źródła, aż 73 proc. całej produkcji energii stanowi energia odnawialna. W Norwegii (długa i wietrzna linia brzegowa) 45 proc energii produkują wiatraki, a w niektórych krajach Afryki ponad połowa całej wyprodukowanej energii jest pochodzenia słonecznego. Ale równocześnie w proekologicznie nastawionych – ale nie usytuowanych – Niemczech mimo miliardowych inwestycji i olbrzymiej ilości elektrowni wiatrowych zielona energia stanowi około 20 proc. całej zużywanej energii. W tych statystykach nie liczę biomasy, bo ta nie jest żadną energią odnawialną.

Energia zdeponowana przez Słońce w przeszłych epokach wyczerpuje się, a korzystanie z niej w dotychczasowy sposób jest zbrodnią na środowisku naturalnym, z kolei energii dawanej nam przez Słońce „on-line” jest za mało. No więc jaki jest wybór? Wydaje się, że dzisiaj istnieją dwa scenariusze. Obydwa opierają się na skorzystaniu z nieograniczonej energii zdeponowanej jeszcze w czasie Wielkiego Wybuchu. Ta energia nas otacza w postaci materii, ale nie na poziomie związków chemicznych, ale na poziomie pojedynczych jąder atomowych. Jak to rozumieć ? Zanim powstał węgiel kamienny czy ropa naftowa, strumień energii ze Słońca umożliwiał zachodzenie tutaj, na Ziemi, przemian chemicznych, dzięki którym np. rozwijała się bujna roślinność. Dzięki światłu, wodzie i dwutlenkowi węgla tworzą się węglowodany (cukry), białka i tłuszcze. W tych reakcjach nie tworzą się jednak nowe atomy. Dzięki energii z zewnątrz już istniejące łączą się w większe kompleksy. Energia jest zmagazynowana w połączeniach pomiędzy atomami, w wiązaniach.  Ale same pierwiastki też są magazynami energii – energii, która umożliwiła ich stworzenie – pośrednio czy bezpośrednio – w czasie Wielkiego Wybuchu.

Tę energię da się pozyskać na dwa sposoby. Pierwszy to fuzja jądrowa, a drugi to rozszczepienie jądra atomowego. W pierwszym przypadku energia jest uwalniana przez łączenie dwóch lżejszych elementów w pierwiastek cięższy. Część masy tych pierwszych jest zamieniana na energię, którą można zamienić na prąd elektryczny. Paliwem w takim procesie mogą być powszechnie dostępne w przyrodzie lekkie pierwiastki. Produktem końcowym reakcji – oprócz dużej ilości energii – jest nieszkodliwy gaz – hel. Niestety fuzja jądrowa to śpiew przyszłości. Choć naukowcy usilnie nad tym pracują, najwcześniej będziemy mieli do niej dostęp dopiero za kilkanaście, kilkadziesiąt lat. Drugi scenariusz jest w pewnym sensie odwrotnością fuzji jądrowej. W rozszczepieniu jądra atomowego pierwiastek ciężki zostaje rozerwany na elementy lżejsze. I to ten rozpad jest źródłem energii. Pierwsza elektrownia jądrowa została wybudowana w 1942 roku, a dzisiaj dzięki energetyce jądrowej niektóre kraje pokrywają ponad 75 % całego swojego zapotrzebowania na energię elektryczną.

Przewidywanie przyszłości zawsze obarczone jest spora niepewnością. W każdej chwili, może się okazać, że ktoś wymyślił zupełnie nową technologię pozyskiwania energii. Wtedy powyższe rozważania w jednej chwili mogą się stać nieaktualne. Jeżeli jednak nic takiego się nie stanie, nie ma wątpliwości, że z wyczerpaniem paliw kopalnych będziemy musieli się zmierzyć nie za kilkaset, ale za kilkadziesiąt lat. Oszczędzanie energii, zwiększanie efektywności jej wykorzystania nie zahamuje tego procesu tylko go nieznacznie opóźni. Od nas zależy czy na czas przygotujemy się do tej chwili, czy obudzimy się w świecie ciemnym, zimnym i brudnym. I wcale nie trzeba czekać na moment, w którym wyczerpią się pokłady węgla. W końcu „epoka kamieni łupanego nie skończyła się z powodu braku kamieni”.

 

 

 

Brak komentarzy do Czy zgasną światła na Ziemi ?

TworzyMy atmosferę

To my tworzymy atmosferę, którą później oddychamy. Albo – trzeba niestety to przyznać – atmosferę, którą się podtruwamy. Na przełomie jesieni i zimy jakość powietrza w Polsce jest dramatyczna!  

>>> Polub FB.com/NaukaToLubie to miejsce w którym komentuję i popularyzuję naukę.

Jakość powietrza na przełomie jesieni i zimy jest najgorsza, bo wtedy powietrze jest wilgotne a szkodliwe cząsteczki mają się o co „zawiesić”. Gdy przychodzi sroga zima zanieczyszczenia są mniej szkodliwe, bo są szybko rozwiewane. W czasie mrozu powietrze jest suche (woda osiada jako szron albo śnieg) a to znaczy, że czystsze.

Kraków – brudne miasto

Dowodów na to, że zatrute powietrze powoduje wiele groźnych chorób jest tak wiele, że aż trudno zrozumieć dlaczego wciąż tak mało energii poświęcamy jego ochronie. Z badań ankietowych wynika, że aż 81 proc. pytanych nie uważa zanieczyszczenia powietrza za problem miejsca w którym mieszka. Fakty są jednak takie, że poziom zanieczyszczenia powietrza w Polsce jest jednym z najwyższych w Unii Europejskiej. Pod względem stężenia pyłu zawieszonego PM10 wywołującego m.in. astmę, alergię i niewydolność układu oddechowego w całej Europie gorsza sytuacja niż w Polsce jest tylko w niektórych częściach Bułgarii. W przypadku pyłu PM2,5 stężenie w polskim powietrzu jest najwyższe spośród wszystkich krajów w Europie, które dostarczyły dane. Podobnie jest ze stężeniem rakotwórczego benzopirenu. Gdy Polskę podzielono na 46 stref w których badano jakość powietrza, okazało się, że aż w 42 poziom benzopirenu był przekroczony. Wczytywanie się w statystyki, liczby, tabelki i wykresy może przyprawić o ból głowy. Okazuje się bowiem, że wśród 10 europejskich miast z najwyższym stężeniem pyłów zawieszonych, aż 6 to miasta polskie; Kraków, Nowy Sącz, Gliwice, Zabrze, Sosnowiec i Katowice. Bezsprzecznym liderem na liście miast z największym zanieczyszczeniem jest od lat Kraków. Tam liczba dni w roku w których normy jakości powietrza są przekroczone wynosi 151. Kraków jest trzecim najbardziej zanieczyszczonym miastem europejskim. Brudne powietrze to nie tylko takie w którym przekroczone są normy stężania pyłów zawieszonych czy wielopierścieniowych węglowodorów aromatycznych (WWA), w tym benzopirenu (te powstają w wyniku niecałkowitego spalania np. drewna, śmieci czy paliw samochodowych). My i nasze dzieci (także te, które jeszcze się nie urodziły) oddychamy tlenkami azotu (główne źródło to spaliny samochodowe), tlenkami siarki (spalanie paliw kopalnych), przynajmniej kilkoma metalami ciężkimi np. kadmem, rtęcią, ołowiem, a także tlenkiem węgla.

Piece i samochody

Źródła poszczególnych zanieczyszczeń występujących w atmosferze są różne, ale w brew pozorom nie są one związane z przemysłem. Głównym ich źródłem jesteśmy my sami, a konkretnie indywidualne ogrzewanie domów i mieszkań oraz transport drogowy. Ponad 49 proc. gospodarstw domowych ma własne piece centralnego ogrzewania. Samo to nie byłoby problemem gdyby nie fakt, że przeważająca większość tych pieców to proste konstrukcje, które można scharakteryzować dwoma określeniami: są wszystkopalne i bardzo mało wydajne. Duża ilość paliwa, którą trzeba zużyć oraz fakt, że często używane jest w nich paliwo niskiej jakości powodują, że duże miasta w Polsce w okresie jesienno – zimowym praktycznie są cały czas zasnute mgłą. Swoje dokładają także samochody. Liczba samochodów osobowych zarejestrowanych w Polsce wynosi 520 pojazdów na 1000 mieszkańców a to więcej niż średnia europejska. Nie jest to bynajmniej powód do dumy. Spory odsetek samochodów na naszych drogach nie zostałby zarejestrowany w innych unijnych krajach. Także ze względu na toksyczność spalin.

>>> Polub FB.com/NaukaToLubie to miejsce w którym komentuję i popularyzuję naukę.

O szkodliwości zanieczyszczonego powietrza można by pisać długie elaboraty. W zasadzie nie ma organu, nie ma układu w naszym ciele, który nie byłby uszkadzany przez związki chemiczne zawarte w zanieczyszczeniach. Przyjmuje się, że z powodu zanieczyszczenia powietrza umiera w Polsce ponad 40 tys. osób rocznie. To ponad 12 razy więcej osób niż ginie wskutek wypadków drogowych! Grupami szczególnie narażonymi są dzieci i osoby starsze. Zanieczyszczenia bardzo negatywnie wpływają na rozwój dziecka przed urodzeniem. Prowadzone także w Polsce badania jednoznacznie wskazywały, że dzieci, których matki w okresie ciąży przebywały na terenach o dużym zanieczyszczeniu powietrza, miały mniejszą masę urodzeniową, były bardziej podatne na zapalenia dolnych i górnych dróg oddechowych i nawracające zapalenie płuc w okresie niemowlęcym i późniejszym, a nawet wykazywały gorszy rozwój umysłowy.

To problem każdego!

W sondażu przeprowadzonym na zlecenie Ministerstwa Środowiska w sierpniu 2015 r. czystość powietrza była wymieniana jako jedna z trzech – obok bezpieczeństwa na drogach i poziomu przestępczości – najważniejszych kwestii, od których zależy komfort życia w danej miejscowości. Problem z tym, że większość pytanych nie widzi tego problemu w miejscowości w której mieszka. Temat dla nich istnieje, ale jest abstrakcyjny, mają go inni. Prawda jest inna. Nawet w wypoczynkowych miejscowościach jak Zakopane czy Sopot jakość powietrza jest koszmarna. Tymczasem problem w dużej części można rozwiązać bez dodatkowych inwestycji czy zwiększania rachunki np. za ogrzewanie. Wystarczy zmienić własne nawyki. Kupno węgla o odpowiednich parametrach to pozornie wyższy wydatek. Lepszy węgiel ma jednak wyższą wartość opałową, czyli trzeba go zużyć mniej by wyprodukować podobna ilość ciepła. Nic nie kosztuje dbanie o sprawność domowego pieca przez regularne czyszczenie go. Nic nie kosztuje (można dzięki temu nawet zaoszczędzić), zamiana w mieście samochodu na komunikacje miejską albo rower.

A miejsce śmieci… jest w śmietniku. Inaczej pozostałości z ich spalania, będę kumulowały się w naszych płucach. Polacy w domowych piecach spalają rocznie do 2 mln ton odpadów. W konsekwencji do atmosfery i do naszych płuc trafiają m.in. toksyczne dioksyny, furany, cyjanowodór.

>>> Polub FB.com/NaukaToLubie to miejsce w którym komentuję i popularyzuję naukę.

 

Tekst został opublikowany w tygodniku Gość Niedzielny.
2 komentarze do TworzyMy atmosferę

Type on the field below and hit Enter/Return to search

WP2Social Auto Publish Powered By : XYZScripts.com
Skip to content